/* Author: Mike Adair madairATdmsolutions.ca Richard Greenwood rich@greenwoodmap.com License: LGPL as per: http://www.gnu.org/copyleft/lesser.html $Id: Proj.js 2956 2007-07-09 12:17:52Z steven $ */ /** * Namespace: Proj4js * * Proj4js is a JavaScript library to transform point coordinates from one * coordinate system to another, including datum transformations. * * This library is a port of both the Proj.4 and GCTCP C libraries to JavaScript. * Enabling these transformations in the browser allows geographic data stored * in different projections to be combined in browser-based web mapping * applications. * * Proj4js must have access to coordinate system initialization strings (which * are the same as for PROJ.4 command line). Thes can be included in your * application using a def is a CS definition in PROJ.4 WKT format, for example: +proj="tmerc" //longlat, etc. +a=majorRadius +b=minorRadius +lat0=somenumber +long=somenumber */ Proj4js.defs = { // These are so widely used, we'll go ahead and throw them in // without requiring a separate .js file 'WGS84': "+title=long/lat:WGS84 +proj=longlat +ellps=WGS84 +datum=WGS84 +units=degrees", 'EPSG:4326': "+title=long/lat:WGS84 +proj=longlat +a=6378137.0 +b=6356752.31424518 +ellps=WGS84 +datum=WGS84 +units=degrees", 'EPSG:4269': "+title=long/lat:NAD83 +proj=longlat +a=6378137.0 +b=6356752.31414036 +ellps=GRS80 +datum=NAD83 +units=degrees", 'EPSG:3785': "+title= Google Mercator +proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0 +k=1.0 +units=m +nadgrids=@null +no_defs" }; Proj4js.defs['GOOGLE'] = Proj4js.defs['EPSG:3785']; Proj4js.defs['EPSG:900913'] = Proj4js.defs['EPSG:3785']; Proj4js.defs['EPSG:102113'] = Proj4js.defs['EPSG:3785']; Proj4js.common = { PI : 3.141592653589793238, //Math.PI, HALF_PI : 1.570796326794896619, //Math.PI*0.5, TWO_PI : 6.283185307179586477, //Math.PI*2, FORTPI : 0.78539816339744833, R2D : 57.29577951308232088, D2R : 0.01745329251994329577, SEC_TO_RAD : 4.84813681109535993589914102357e-6, /* SEC_TO_RAD = Pi/180/3600 */ EPSLN : 1.0e-10, MAX_ITER : 20, // following constants from geocent.c COS_67P5 : 0.38268343236508977, /* cosine of 67.5 degrees */ AD_C : 1.0026000, /* Toms region 1 constant */ /* datum_type values */ PJD_UNKNOWN : 0, PJD_3PARAM : 1, PJD_7PARAM : 2, PJD_GRIDSHIFT: 3, PJD_WGS84 : 4, // WGS84 or equivalent PJD_NODATUM : 5, // WGS84 or equivalent SRS_WGS84_SEMIMAJOR : 6378137.0, // only used in grid shift transforms // ellipoid pj_set_ell.c SIXTH : .1666666666666666667, /* 1/6 */ RA4 : .04722222222222222222, /* 17/360 */ RA6 : .02215608465608465608, /* 67/3024 */ RV4 : .06944444444444444444, /* 5/72 */ RV6 : .04243827160493827160, /* 55/1296 */ // Function to compute the constant small m which is the radius of // a parallel of latitude, phi, divided by the semimajor axis. // ----------------------------------------------------------------- msfnz : function(eccent, sinphi, cosphi) { var con = eccent * sinphi; return cosphi/(Math.sqrt(1.0 - con * con)); }, // Function to compute the constant small t for use in the forward // computations in the Lambert Conformal Conic and the Polar // Stereographic projections. // ----------------------------------------------------------------- tsfnz : function(eccent, phi, sinphi) { var con = eccent * sinphi; var com = .5 * eccent; con = Math.pow(((1.0 - con) / (1.0 + con)), com); return (Math.tan(.5 * (this.HALF_PI - phi))/con); }, // Function to compute the latitude angle, phi2, for the inverse of the // Lambert Conformal Conic and Polar Stereographic projections. // ---------------------------------------------------------------- phi2z : function(eccent, ts) { var eccnth = .5 * eccent; var con, dphi; var phi = this.HALF_PI - 2 * Math.atan(ts); for (i = 0; i <= 15; i++) { con = eccent * Math.sin(phi); dphi = this.HALF_PI - 2 * Math.atan(ts *(Math.pow(((1.0 - con)/(1.0 + con)),eccnth))) - phi; phi += dphi; if (Math.abs(dphi) <= .0000000001) return phi; } alert("phi2z has NoConvergence"); return (-9999); }, /* Function to compute constant small q which is the radius of a parallel of latitude, phi, divided by the semimajor axis. ------------------------------------------------------------*/ qsfnz : function(eccent,sinphi) { var con; if (eccent > 1.0e-7) { con = eccent * sinphi; return (( 1.0- eccent * eccent) * (sinphi /(1.0 - con * con) - (.5/eccent)*Math.log((1.0 - con)/(1.0 + con)))); } else { return(2.0 * sinphi); } }, /* Function to eliminate roundoff errors in asin ----------------------------------------------*/ asinz : function(x) { if (Math.abs(x)>1.0) { x=(x>1.0)?1.0:-1.0; } return Math.asin(x); }, // following functions from gctpc cproj.c for transverse mercator projections e0fn : function(x) {return(1.0-0.25*x*(1.0+x/16.0*(3.0+1.25*x)));}, e1fn : function(x) {return(0.375*x*(1.0+0.25*x*(1.0+0.46875*x)));}, e2fn : function(x) {return(0.05859375*x*x*(1.0+0.75*x));}, e3fn : function(x) {return(x*x*x*(35.0/3072.0));}, mlfn : function(e0,e1,e2,e3,phi) {return(e0*phi-e1*Math.sin(2.0*phi)+e2*Math.sin(4.0*phi)-e3*Math.sin(6.0*phi));}, srat : function(esinp, exp) { return(Math.pow((1.0-esinp)/(1.0+esinp), exp)); }, // Function to return the sign of an argument sign : function(x) { if (x < 0.0) return(-1); else return(1);}, // Function to adjust longitude to -180 to 180; input in radians adjust_lon : function(x) { x = (Math.abs(x) < this.PI) ? x: (x - (this.sign(x)*this.TWO_PI) ); return x; }, // IGNF - DGR : algorithms used by IGN France // Function to adjust latitude to -90 to 90; input in radians adjust_lat : function(x) { x= (Math.abs(x) < this.HALF_PI) ? x: (x - (this.sign(x)*this.PI) ); return x; }, // Latitude Isometrique - close to tsfnz ... latiso : function(eccent, phi, sinphi) { if (Math.abs(phi) > this.HALF_PI) return +Number.NaN; if (phi==this.HALF_PI) return Number.POSITIVE_INFINITY; if (phi==-1.0*this.HALF_PI) return -1.0*Number.POSITIVE_INFINITY; var con= eccent*sinphi; return Math.log(Math.tan((this.HALF_PI+phi)/2.0))+eccent*Math.log((1.0-con)/(1.0+con))/2.0; }, fL : function(x,L) { return 2.0*Math.atan(x*Math.exp(L)) - this.HALF_PI; }, // Inverse Latitude Isometrique - close to ph2z invlatiso : function(eccent, ts) { var phi= this.fL(1.0,ts); var Iphi= 0.0; var con= 0.0; do { Iphi= phi; con= eccent*Math.sin(Iphi); phi= this.fL(Math.exp(eccent*Math.log((1.0+con)/(1.0-con))/2.0),ts) } while (Math.abs(phi-Iphi)>1.0e-12); return phi; }, // Needed for Gauss Schreiber // Original: Denis Makarov (info@binarythings.com) // Web Site: http://www.binarythings.com sinh : function(x) { var r= Math.exp(x); r= (r-1.0/r)/2.0; return r; }, cosh : function(x) { var r= Math.exp(x); r= (r+1.0/r)/2.0; return r; }, tanh : function(x) { var r= Math.exp(x); r= (r-1.0/r)/(r+1.0/r); return r; }, asinh : function(x) { var s= (x>= 0? 1.0:-1.0); return s*(Math.log( Math.abs(x) + Math.sqrt(x*x+1.0) )); }, acosh : function(x) { return 2.0*Math.log(Math.sqrt((x+1.0)/2.0) + Math.sqrt((x-1.0)/2.0)); }, atanh : function(x) { return Math.log((x-1.0)/(x+1.0))/2.0; }, // Grande Normale gN : function(a,e,sinphi) { var temp= e*sinphi; return a/Math.sqrt(1.0 - temp*temp); } }; /** datum object */ Proj4js.datum = Proj4js.Class({ initialize : function(proj) { this.datum_type = Proj4js.common.PJD_WGS84; //default setting if (proj.datumCode && proj.datumCode == 'none') { this.datum_type = Proj4js.common.PJD_NODATUM; } if (proj && proj.datum_params) { for (var i=0; i 3) { if (proj.datum_params[3] != 0 || proj.datum_params[4] != 0 || proj.datum_params[5] != 0 || proj.datum_params[6] != 0 ) { this.datum_type = Proj4js.common.PJD_7PARAM; proj.datum_params[3] *= Proj4js.common.SEC_TO_RAD; proj.datum_params[4] *= Proj4js.common.SEC_TO_RAD; proj.datum_params[5] *= Proj4js.common.SEC_TO_RAD; proj.datum_params[6] = (proj.datum_params[6]/1000000.0) + 1.0; } } } if (proj) { this.a = proj.a; //datum object also uses these values this.b = proj.b; this.es = proj.es; this.ep2 = proj.ep2; this.datum_params = proj.datum_params; } }, /****************************************************************/ // cs_compare_datums() // Returns 1 (TRUE) if the two datums match, otherwise 0 (FALSE). compare_datums : function( dest ) { if( this.datum_type != dest.datum_type ) { return false; // false, datums are not equal } else if( this.a != dest.a || Math.abs(this.es-dest.es) > 0.000000000050 ) { // the tolerence for es is to ensure that GRS80 and WGS84 // are considered identical return false; } else if( this.datum_type == Proj4js.common.PJD_3PARAM ) { return (this.datum_params[0] == dest.datum_params[0] && this.datum_params[1] == dest.datum_params[1] && this.datum_params[2] == dest.datum_params[2]); } else if( this.datum_type == Proj4js.common.PJD_7PARAM ) { return (this.datum_params[0] == dest.datum_params[0] && this.datum_params[1] == dest.datum_params[1] && this.datum_params[2] == dest.datum_params[2] && this.datum_params[3] == dest.datum_params[3] && this.datum_params[4] == dest.datum_params[4] && this.datum_params[5] == dest.datum_params[5] && this.datum_params[6] == dest.datum_params[6]); } else if( this.datum_type == Proj4js.common.PJD_GRIDSHIFT ) { return strcmp( pj_param(this.params,"snadgrids").s, pj_param(dest.params,"snadgrids").s ) == 0; } else { return true; // datums are equal } }, // cs_compare_datums() /* * The function Convert_Geodetic_To_Geocentric converts geodetic coordinates * (latitude, longitude, and height) to geocentric coordinates (X, Y, Z), * according to the current ellipsoid parameters. * * Latitude : Geodetic latitude in radians (input) * Longitude : Geodetic longitude in radians (input) * Height : Geodetic height, in meters (input) * X : Calculated Geocentric X coordinate, in meters (output) * Y : Calculated Geocentric Y coordinate, in meters (output) * Z : Calculated Geocentric Z coordinate, in meters (output) * */ geodetic_to_geocentric : function(p) { var Longitude = p.x; var Latitude = p.y; var Height = p.z ? p.z : 0; //Z value not always supplied var X; // output var Y; var Z; var Error_Code=0; // GEOCENT_NO_ERROR; var Rn; /* Earth radius at location */ var Sin_Lat; /* Math.sin(Latitude) */ var Sin2_Lat; /* Square of Math.sin(Latitude) */ var Cos_Lat; /* Math.cos(Latitude) */ /* ** Don't blow up if Latitude is just a little out of the value ** range as it may just be a rounding issue. Also removed longitude ** test, it should be wrapped by Math.cos() and Math.sin(). NFW for PROJ.4, Sep/2001. */ if( Latitude < -Proj4js.common.HALF_PI && Latitude > -1.001 * Proj4js.common.HALF_PI ) { Latitude = -Proj4js.common.HALF_PI; } else if( Latitude > Proj4js.common.HALF_PI && Latitude < 1.001 * Proj4js.common.HALF_PI ) { Latitude = Proj4js.common.HALF_PI; } else if ((Latitude < -Proj4js.common.HALF_PI) || (Latitude > Proj4js.common.HALF_PI)) { /* Latitude out of range */ Proj4js.reportError('geocent:lat out of range:'+Latitude); return null; } if (Longitude > Proj4js.common.PI) Longitude -= (2*Proj4js.common.PI); Sin_Lat = Math.sin(Latitude); Cos_Lat = Math.cos(Latitude); Sin2_Lat = Sin_Lat * Sin_Lat; Rn = this.a / (Math.sqrt(1.0e0 - this.es * Sin2_Lat)); X = (Rn + Height) * Cos_Lat * Math.cos(Longitude); Y = (Rn + Height) * Cos_Lat * Math.sin(Longitude); Z = ((Rn * (1 - this.es)) + Height) * Sin_Lat; p.x = X; p.y = Y; p.z = Z; return Error_Code; }, // cs_geodetic_to_geocentric() geocentric_to_geodetic : function (p) { /* local defintions and variables */ /* end-criterium of loop, accuracy of sin(Latitude) */ var genau = 1.E-12; var genau2 = (genau*genau); var maxiter = 30; var P; /* distance between semi-minor axis and location */ var RR; /* distance between center and location */ var CT; /* sin of geocentric latitude */ var ST; /* cos of geocentric latitude */ var RX; var RK; var RN; /* Earth radius at location */ var CPHI0; /* cos of start or old geodetic latitude in iterations */ var SPHI0; /* sin of start or old geodetic latitude in iterations */ var CPHI; /* cos of searched geodetic latitude */ var SPHI; /* sin of searched geodetic latitude */ var SDPHI; /* end-criterium: addition-theorem of sin(Latitude(iter)-Latitude(iter-1)) */ var At_Pole; /* indicates location is in polar region */ var iter; /* # of continous iteration, max. 30 is always enough (s.a.) */ var X = p.x; var Y = p.y; var Z = p.z ? p.z : 0.0; //Z value not always supplied var Longitude; var Latitude; var Height; At_Pole = false; P = Math.sqrt(X*X+Y*Y); RR = Math.sqrt(X*X+Y*Y+Z*Z); /* special cases for latitude and longitude */ if (P/this.a < genau) { /* special case, if P=0. (X=0., Y=0.) */ At_Pole = true; Longitude = 0.0; /* if (X,Y,Z)=(0.,0.,0.) then Height becomes semi-minor axis * of ellipsoid (=center of mass), Latitude becomes PI/2 */ if (RR/this.a < genau) { Latitude = Proj4js.common.HALF_PI; Height = -this.b; return; } } else { /* ellipsoidal (geodetic) longitude * interval: -PI < Longitude <= +PI */ Longitude=Math.atan2(Y,X); } /* -------------------------------------------------------------- * Following iterative algorithm was developped by * "Institut für Erdmessung", University of Hannover, July 1988. * Internet: www.ife.uni-hannover.de * Iterative computation of CPHI,SPHI and Height. * Iteration of CPHI and SPHI to 10**-12 radian resp. * 2*10**-7 arcsec. * -------------------------------------------------------------- */ CT = Z/RR; ST = P/RR; RX = 1.0/Math.sqrt(1.0-this.es*(2.0-this.es)*ST*ST); CPHI0 = ST*(1.0-this.es)*RX; SPHI0 = CT*RX; iter = 0; /* loop to find sin(Latitude) resp. Latitude * until |sin(Latitude(iter)-Latitude(iter-1))| < genau */ do { iter++; RN = this.a/Math.sqrt(1.0-this.es*SPHI0*SPHI0); /* ellipsoidal (geodetic) height */ Height = P*CPHI0+Z*SPHI0-RN*(1.0-this.es*SPHI0*SPHI0); RK = this.es*RN/(RN+Height); RX = 1.0/Math.sqrt(1.0-RK*(2.0-RK)*ST*ST); CPHI = ST*(1.0-RK)*RX; SPHI = CT*RX; SDPHI = SPHI*CPHI0-CPHI*SPHI0; CPHI0 = CPHI; SPHI0 = SPHI; } while (SDPHI*SDPHI > genau2 && iter < maxiter); /* ellipsoidal (geodetic) latitude */ Latitude=Math.atan(SPHI/Math.abs(CPHI)); p.x = Longitude; p.y = Latitude; p.z = Height; return p; }, // cs_geocentric_to_geodetic() /** Convert_Geocentric_To_Geodetic * The method used here is derived from 'An Improved Algorithm for * Geocentric to Geodetic Coordinate Conversion', by Ralph Toms, Feb 1996 */ geocentric_to_geodetic_noniter : function (p) { var X = p.x; var Y = p.y; var Z = p.z ? p.z : 0; //Z value not always supplied var Longitude; var Latitude; var Height; var W; /* distance from Z axis */ var W2; /* square of distance from Z axis */ var T0; /* initial estimate of vertical component */ var T1; /* corrected estimate of vertical component */ var S0; /* initial estimate of horizontal component */ var S1; /* corrected estimate of horizontal component */ var Sin_B0; /* Math.sin(B0), B0 is estimate of Bowring aux variable */ var Sin3_B0; /* cube of Math.sin(B0) */ var Cos_B0; /* Math.cos(B0) */ var Sin_p1; /* Math.sin(phi1), phi1 is estimated latitude */ var Cos_p1; /* Math.cos(phi1) */ var Rn; /* Earth radius at location */ var Sum; /* numerator of Math.cos(phi1) */ var At_Pole; /* indicates location is in polar region */ X = parseFloat(X); // cast from string to float Y = parseFloat(Y); Z = parseFloat(Z); At_Pole = false; if (X != 0.0) { Longitude = Math.atan2(Y,X); } else { if (Y > 0) { Longitude = Proj4js.common.HALF_PI; } else if (Y < 0) { Longitude = -Proj4js.common.HALF_PI; } else { At_Pole = true; Longitude = 0.0; if (Z > 0.0) { /* north pole */ Latitude = Proj4js.common.HALF_PI; } else if (Z < 0.0) { /* south pole */ Latitude = -Proj4js.common.HALF_PI; } else { /* center of earth */ Latitude = Proj4js.common.HALF_PI; Height = -this.b; return; } } } W2 = X*X + Y*Y; W = Math.sqrt(W2); T0 = Z * Proj4js.common.AD_C; S0 = Math.sqrt(T0 * T0 + W2); Sin_B0 = T0 / S0; Cos_B0 = W / S0; Sin3_B0 = Sin_B0 * Sin_B0 * Sin_B0; T1 = Z + this.b * this.ep2 * Sin3_B0; Sum = W - this.a * this.es * Cos_B0 * Cos_B0 * Cos_B0; S1 = Math.sqrt(T1*T1 + Sum * Sum); Sin_p1 = T1 / S1; Cos_p1 = Sum / S1; Rn = this.a / Math.sqrt(1.0 - this.es * Sin_p1 * Sin_p1); if (Cos_p1 >= Proj4js.common.COS_67P5) { Height = W / Cos_p1 - Rn; } else if (Cos_p1 <= -Proj4js.common.COS_67P5) { Height = W / -Cos_p1 - Rn; } else { Height = Z / Sin_p1 + Rn * (this.es - 1.0); } if (At_Pole == false) { Latitude = Math.atan(Sin_p1 / Cos_p1); } p.x = Longitude; p.y = Latitude; p.z = Height; return p; }, // geocentric_to_geodetic_noniter() /****************************************************************/ // pj_geocentic_to_wgs84( p ) // p = point to transform in geocentric coordinates (x,y,z) geocentric_to_wgs84 : function ( p ) { if( this.datum_type == Proj4js.common.PJD_3PARAM ) { // if( x[io] == HUGE_VAL ) // continue; p.x += this.datum_params[0]; p.y += this.datum_params[1]; p.z += this.datum_params[2]; } else if (this.datum_type == Proj4js.common.PJD_7PARAM) { var Dx_BF =this.datum_params[0]; var Dy_BF =this.datum_params[1]; var Dz_BF =this.datum_params[2]; var Rx_BF =this.datum_params[3]; var Ry_BF =this.datum_params[4]; var Rz_BF =this.datum_params[5]; var M_BF =this.datum_params[6]; // if( x[io] == HUGE_VAL ) // continue; var x_out = M_BF*( p.x - Rz_BF*p.y + Ry_BF*p.z) + Dx_BF; var y_out = M_BF*( Rz_BF*p.x + p.y - Rx_BF*p.z) + Dy_BF; var z_out = M_BF*(-Ry_BF*p.x + Rx_BF*p.y + p.z) + Dz_BF; p.x = x_out; p.y = y_out; p.z = z_out; } }, // cs_geocentric_to_wgs84 /****************************************************************/ // pj_geocentic_from_wgs84() // coordinate system definition, // point to transform in geocentric coordinates (x,y,z) geocentric_from_wgs84 : function( p ) { if( this.datum_type == Proj4js.common.PJD_3PARAM ) { //if( x[io] == HUGE_VAL ) // continue; p.x -= this.datum_params[0]; p.y -= this.datum_params[1]; p.z -= this.datum_params[2]; } else if (this.datum_type == Proj4js.common.PJD_7PARAM) { var Dx_BF =this.datum_params[0]; var Dy_BF =this.datum_params[1]; var Dz_BF =this.datum_params[2]; var Rx_BF =this.datum_params[3]; var Ry_BF =this.datum_params[4]; var Rz_BF =this.datum_params[5]; var M_BF =this.datum_params[6]; var x_tmp = (p.x - Dx_BF) / M_BF; var y_tmp = (p.y - Dy_BF) / M_BF; var z_tmp = (p.z - Dz_BF) / M_BF; //if( x[io] == HUGE_VAL ) // continue; p.x = x_tmp + Rz_BF*y_tmp - Ry_BF*z_tmp; p.y = -Rz_BF*x_tmp + y_tmp + Rx_BF*z_tmp; p.z = Ry_BF*x_tmp - Rx_BF*y_tmp + z_tmp; } //cs_geocentric_from_wgs84() } }); /** point object, nothing fancy, just allows values to be passed back and forth by reference rather than by value. Other point classes may be used as long as they have x and y properties, which will get modified in the transform method. */ Proj4js.Point = Proj4js.Class({ /** * Constructor: Proj4js.Point * * Parameters: * - x {float} or {Array} either the first coordinates component or * the full coordinates * - y {float} the second component * - z {float} the third component, optional. */ initialize : function(x,y,z) { if (typeof x == 'object') { this.x = x[0]; this.y = x[1]; this.z = x[2] || 0.0; } else if (typeof x == 'string') { var coords = x.split(','); this.x = parseFloat(coords[0]); this.y = parseFloat(coords[1]); this.z = parseFloat(coords[2]) || 0.0; } else { this.x = x; this.y = y; this.z = z || 0.0; } }, /** * APIMethod: clone * Build a copy of a Proj4js.Point object. * * Return: * {Proj4js}.Point the cloned point. */ clone : function() { return new Proj4js.Point(this.x, this.y, this.z); }, /** * APIMethod: toString * Return a readable string version of the point * * Return: * {String} String representation of Proj4js.Point object. * (ex. "x=5,y=42") */ toString : function() { return ("x=" + this.x + ",y=" + this.y); }, /** * APIMethod: toShortString * Return a short string version of the point. * * Return: * {String} Shortened String representation of Proj4js.Point object. * (ex. "5, 42") */ toShortString : function() { return (this.x + ", " + this.y); } }); Proj4js.PrimeMeridian = { "greenwich": 0.0, //"0dE", "lisbon": -9.131906111111, //"9d07'54.862\"W", "paris": 2.337229166667, //"2d20'14.025\"E", "bogota": -74.080916666667, //"74d04'51.3\"W", "madrid": -3.687938888889, //"3d41'16.58\"W", "rome": 12.452333333333, //"12d27'8.4\"E", "bern": 7.439583333333, //"7d26'22.5\"E", "jakarta": 106.807719444444, //"106d48'27.79\"E", "ferro": -17.666666666667, //"17d40'W", "brussels": 4.367975, //"4d22'4.71\"E", "stockholm": 18.058277777778, //"18d3'29.8\"E", "athens": 23.7163375, //"23d42'58.815\"E", "oslo": 10.722916666667 //"10d43'22.5\"E" }; Proj4js.Ellipsoid = { "MERIT": {a:6378137.0, rf:298.257, ellipseName:"MERIT 1983"}, "SGS85": {a:6378136.0, rf:298.257, ellipseName:"Soviet Geodetic System 85"}, "GRS80": {a:6378137.0, rf:298.257222101, ellipseName:"GRS 1980(IUGG, 1980)"}, "IAU76": {a:6378140.0, rf:298.257, ellipseName:"IAU 1976"}, "airy": {a:6377563.396, b:6356256.910, ellipseName:"Airy 1830"}, "APL4.": {a:6378137, rf:298.25, ellipseName:"Appl. Physics. 1965"}, "NWL9D": {a:6378145.0, rf:298.25, ellipseName:"Naval Weapons Lab., 1965"}, "mod_airy": {a:6377340.189, b:6356034.446, ellipseName:"Modified Airy"}, "andrae": {a:6377104.43, rf:300.0, ellipseName:"Andrae 1876 (Den., Iclnd.)"}, "aust_SA": {a:6378160.0, rf:298.25, ellipseName:"Australian Natl & S. Amer. 1969"}, "GRS67": {a:6378160.0, rf:298.2471674270, ellipseName:"GRS 67(IUGG 1967)"}, "bessel": {a:6377397.155, rf:299.1528128, ellipseName:"Bessel 1841"}, "bess_nam": {a:6377483.865, rf:299.1528128, ellipseName:"Bessel 1841 (Namibia)"}, "clrk66": {a:6378206.4, b:6356583.8, ellipseName:"Clarke 1866"}, "clrk80": {a:6378249.145, rf:293.4663, ellipseName:"Clarke 1880 mod."}, "CPM": {a:6375738.7, rf:334.29, ellipseName:"Comm. des Poids et Mesures 1799"}, "delmbr": {a:6376428.0, rf:311.5, ellipseName:"Delambre 1810 (Belgium)"}, "engelis": {a:6378136.05, rf:298.2566, ellipseName:"Engelis 1985"}, "evrst30": {a:6377276.345, rf:300.8017, ellipseName:"Everest 1830"}, "evrst48": {a:6377304.063, rf:300.8017, ellipseName:"Everest 1948"}, "evrst56": {a:6377301.243, rf:300.8017, ellipseName:"Everest 1956"}, "evrst69": {a:6377295.664, rf:300.8017, ellipseName:"Everest 1969"}, "evrstSS": {a:6377298.556, rf:300.8017, ellipseName:"Everest (Sabah & Sarawak)"}, "fschr60": {a:6378166.0, rf:298.3, ellipseName:"Fischer (Mercury Datum) 1960"}, "fschr60m": {a:6378155.0, rf:298.3, ellipseName:"Fischer 1960"}, "fschr68": {a:6378150.0, rf:298.3, ellipseName:"Fischer 1968"}, "helmert": {a:6378200.0, rf:298.3, ellipseName:"Helmert 1906"}, "hough": {a:6378270.0, rf:297.0, ellipseName:"Hough"}, "intl": {a:6378388.0, rf:297.0, ellipseName:"International 1909 (Hayford)"}, "kaula": {a:6378163.0, rf:298.24, ellipseName:"Kaula 1961"}, "lerch": {a:6378139.0, rf:298.257, ellipseName:"Lerch 1979"}, "mprts": {a:6397300.0, rf:191.0, ellipseName:"Maupertius 1738"}, "new_intl": {a:6378157.5, b:6356772.2, ellipseName:"New International 1967"}, "plessis": {a:6376523.0, rf:6355863.0, ellipseName:"Plessis 1817 (France)"}, "krass": {a:6378245.0, rf:298.3, ellipseName:"Krassovsky, 1942"}, "SEasia": {a:6378155.0, b:6356773.3205, ellipseName:"Southeast Asia"}, "walbeck": {a:6376896.0, b:6355834.8467, ellipseName:"Walbeck"}, "WGS60": {a:6378165.0, rf:298.3, ellipseName:"WGS 60"}, "WGS66": {a:6378145.0, rf:298.25, ellipseName:"WGS 66"}, "WGS72": {a:6378135.0, rf:298.26, ellipseName:"WGS 72"}, "WGS84": {a:6378137.0, rf:298.257223563, ellipseName:"WGS 84"}, "sphere": {a:6370997.0, b:6370997.0, ellipseName:"Normal Sphere (r=6370997)"} }; Proj4js.Datum = { "WGS84": {towgs84: "0,0,0", ellipse: "WGS84", datumName: "WGS84"}, "GGRS87": {towgs84: "-199.87,74.79,246.62", ellipse: "GRS80", datumName: "Greek_Geodetic_Reference_System_1987"}, "NAD83": {towgs84: "0,0,0", ellipse: "GRS80", datumName: "North_American_Datum_1983"}, "NAD27": {nadgrids: "@conus,@alaska,@ntv2_0.gsb,@ntv1_can.dat", ellipse: "clrk66", datumName: "North_American_Datum_1927"}, "potsdam": {towgs84: "606.0,23.0,413.0", ellipse: "bessel", datumName: "Potsdam Rauenberg 1950 DHDN"}, "carthage": {towgs84: "-263.0,6.0,431.0", ellipse: "clark80", datumName: "Carthage 1934 Tunisia"}, "hermannskogel": {towgs84: "653.0,-212.0,449.0", ellipse: "bessel", datumName: "Hermannskogel"}, "ire65": {towgs84: "482.530,-130.596,564.557,-1.042,-0.214,-0.631,8.15", ellipse: "mod_airy", datumName: "Ireland 1965"}, "nzgd49": {towgs84: "59.47,-5.04,187.44,0.47,-0.1,1.024,-4.5993", ellipse: "intl", datumName: "New Zealand Geodetic Datum 1949"}, "OSGB36": {towgs84: "446.448,-125.157,542.060,0.1502,0.2470,0.8421,-20.4894", ellipse: "airy", datumName: "Airy 1830"} }; Proj4js.WGS84 = new Proj4js.Proj('WGS84'); Proj4js.Datum['OSB36'] = Proj4js.Datum['OSGB36']; //as returned from spatialreference.org /******************************************************************************* NAME MERCATOR PURPOSE: Transforms input longitude and latitude to Easting and Northing for the Mercator projection. The longitude and latitude must be in radians. The Easting and Northing values will be returned in meters. PROGRAMMER DATE ---------- ---- D. Steinwand, EROS Nov, 1991 T. Mittan Mar, 1993 ALGORITHM REFERENCES 1. Snyder, John P., "Map Projections--A Working Manual", U.S. Geological Survey Professional Paper 1395 (Supersedes USGS Bulletin 1532), United State Government Printing Office, Washington D.C., 1987. 2. Snyder, John P. and Voxland, Philip M., "An Album of Map Projections", U.S. Geological Survey Professional Paper 1453 , United State Government Printing Office, Washington D.C., 1989. *******************************************************************************/ //static double r_major = a; /* major axis */ //static double r_minor = b; /* minor axis */ //static double lon_center = long0; /* Center longitude (projection center) */ //static double lat_origin = lat0; /* center latitude */ //static double e,es; /* eccentricity constants */ //static double m1; /* small value m */ //static double false_northing = y0; /* y offset in meters */ //static double false_easting = x0; /* x offset in meters */ //scale_fact = k0 Proj4js.Proj.merc = { init : function() { //?this.temp = this.r_minor / this.r_major; //this.temp = this.b / this.a; //this.es = 1.0 - Math.sqrt(this.temp); //this.e = Math.sqrt( this.es ); //?this.m1 = Math.cos(this.lat_origin) / (Math.sqrt( 1.0 - this.es * Math.sin(this.lat_origin) * Math.sin(this.lat_origin))); //this.m1 = Math.cos(0.0) / (Math.sqrt( 1.0 - this.es * Math.sin(0.0) * Math.sin(0.0))); if (this.lat_ts) { if (this.sphere) { this.k0 = Math.cos(this.lat_ts); } else { this.k0 = Proj4js.common.msfnz(this.es, Math.sin(this.lat_ts), Math.cos(this.lat_ts)); } } }, /* Mercator forward equations--mapping lat,long to x,y --------------------------------------------------*/ forward : function(p) { //alert("ll2m coords : "+coords); var lon = p.x; var lat = p.y; // convert to radians if ( lat*Proj4js.common.R2D > 90.0 && lat*Proj4js.common.R2D < -90.0 && lon*Proj4js.common.R2D > 180.0 && lon*Proj4js.common.R2D < -180.0) { Proj4js.reportError("merc:forward: llInputOutOfRange: "+ lon +" : " + lat); return null; } var x,y; if(Math.abs( Math.abs(lat) - Proj4js.common.HALF_PI) <= Proj4js.common.EPSLN) { Proj4js.reportError("merc:forward: ll2mAtPoles"); return null; } else { if (this.sphere) { x = this.x0 + this.a * this.k0 * Proj4js.common.adjust_lon(lon - this.long0); y = this.y0 + this.a * this.k0 * Math.log(Math.tan(Proj4js.common.FORTPI + 0.5*lat)); } else { var sinphi = Math.sin(lat); var ts = Proj4js.common.tsfnz(this.e,lat,sinphi); x = this.x0 + this.a * this.k0 * Proj4js.common.adjust_lon(lon - this.long0); y = this.y0 - this.a * this.k0 * Math.log(ts); } p.x = x; p.y = y; return p; } }, /* Mercator inverse equations--mapping x,y to lat/long --------------------------------------------------*/ inverse : function(p) { var x = p.x - this.x0; var y = p.y - this.y0; var lon,lat; if (this.sphere) { lat = Proj4js.common.HALF_PI - 2.0 * Math.atan(Math.exp(-y / this.a * this.k0)); } else { var ts = Math.exp(-y / (this.a * this.k0)); lat = Proj4js.common.phi2z(this.e,ts); if(lat == -9999) { Proj4js.reportError("merc:inverse: lat = -9999"); return null; } } lon = Proj4js.common.adjust_lon(this.long0+ x / (this.a * this.k0)); p.x = lon; p.y = lat; return p; } }; /******************************************************************************* NAME TRANSVERSE MERCATOR PURPOSE: Transforms input longitude and latitude to Easting and Northing for the Transverse Mercator projection. The longitude and latitude must be in radians. The Easting and Northing values will be returned in meters. ALGORITHM REFERENCES 1. Snyder, John P., "Map Projections--A Working Manual", U.S. Geological Survey Professional Paper 1395 (Supersedes USGS Bulletin 1532), United State Government Printing Office, Washington D.C., 1987. 2. Snyder, John P. and Voxland, Philip M., "An Album of Map Projections", U.S. Geological Survey Professional Paper 1453 , United State Government Printing Office, Washington D.C., 1989. *******************************************************************************/ /** Initialize Transverse Mercator projection */ Proj4js.Proj.utm = { dependsOn : 'tmerc', init : function() { if (!this.zone) { Proj4js.reportError("utm:init: zone must be specified for UTM"); return; } this.lat0 = 0.0; this.long0 = ((6 * Math.abs(this.zone)) - 183) * Proj4js.common.D2R; this.x0 = 500000.0; this.y0 = this.utmSouth ? 10000000.0 : 0.0; this.k0 = 0.9996; Proj4js.Proj['tmerc'].init.apply(this); this.forward = Proj4js.Proj['tmerc'].forward; this.inverse = Proj4js.Proj['tmerc'].inverse; } }; /******************************************************************************* NAME TRANSVERSE MERCATOR PURPOSE: Transforms input longitude and latitude to Easting and Northing for the Transverse Mercator projection. The longitude and latitude must be in radians. The Easting and Northing values will be returned in meters. ALGORITHM REFERENCES 1. Snyder, John P., "Map Projections--A Working Manual", U.S. Geological Survey Professional Paper 1395 (Supersedes USGS Bulletin 1532), United State Government Printing Office, Washington D.C., 1987. 2. Snyder, John P. and Voxland, Philip M., "An Album of Map Projections", U.S. Geological Survey Professional Paper 1453 , United State Government Printing Office, Washington D.C., 1989. *******************************************************************************/ /** Initialize Transverse Mercator projection */ Proj4js.Proj.tmerc = { init : function() { this.e0 = Proj4js.common.e0fn(this.es); this.e1 = Proj4js.common.e1fn(this.es); this.e2 = Proj4js.common.e2fn(this.es); this.e3 = Proj4js.common.e3fn(this.es); this.ml0 = this.a * Proj4js.common.mlfn(this.e0, this.e1, this.e2, this.e3, this.lat0); }, /** Transverse Mercator Forward - long/lat to x/y long/lat in radians */ forward : function(p) { var lon = p.x; var lat = p.y; var delta_lon = Proj4js.common.adjust_lon(lon - this.long0); // Delta longitude var con; // cone constant var x, y; var sin_phi=Math.sin(lat); var cos_phi=Math.cos(lat); if (this.sphere) { /* spherical form */ var b = cos_phi * Math.sin(delta_lon); if ((Math.abs(Math.abs(b) - 1.0)) < .0000000001) { Proj4js.reportError("tmerc:forward: Point projects into infinity"); return(93); } else { x = .5 * this.a * this.k0 * Math.log((1.0 + b)/(1.0 - b)); con = Math.acos(cos_phi * Math.cos(delta_lon)/Math.sqrt(1.0 - b*b)); if (lat < 0) con = - con; y = this.a * this.k0 * (con - this.lat0); } } else { var al = cos_phi * delta_lon; var als = Math.pow(al,2); var c = this.ep2 * Math.pow(cos_phi,2); var tq = Math.tan(lat); var t = Math.pow(tq,2); con = 1.0 - this.es * Math.pow(sin_phi,2); var n = this.a / Math.sqrt(con); var ml = this.a * Proj4js.common.mlfn(this.e0, this.e1, this.e2, this.e3, lat); x = this.k0 * n * al * (1.0 + als / 6.0 * (1.0 - t + c + als / 20.0 * (5.0 - 18.0 * t + Math.pow(t,2) + 72.0 * c - 58.0 * this.ep2))) + this.x0; y = this.k0 * (ml - this.ml0 + n * tq * (als * (0.5 + als / 24.0 * (5.0 - t + 9.0 * c + 4.0 * Math.pow(c,2) + als / 30.0 * (61.0 - 58.0 * t + Math.pow(t,2) + 600.0 * c - 330.0 * this.ep2))))) + this.y0; } p.x = x; p.y = y; return p; }, // tmercFwd() /** Transverse Mercator Inverse - x/y to long/lat */ inverse : function(p) { var con, phi; /* temporary angles */ var delta_phi; /* difference between longitudes */ var i; var max_iter = 6; /* maximun number of iterations */ var lat, lon; if (this.sphere) { /* spherical form */ var f = Math.exp(p.x/(this.a * this.k0)); var g = .5 * (f - 1/f); var temp = this.lat0 + p.y/(this.a * this.k0); var h = Math.cos(temp); con = Math.sqrt((1.0 - h * h)/(1.0 + g * g)); lat = Proj4js.common.asinz(con); if (temp < 0) lat = -lat; if ((g == 0) && (h == 0)) { lon = this.long0; } else { lon = Proj4js.common.adjust_lon(Math.atan2(g,h) + this.long0); } } else { // ellipsoidal form var x = p.x - this.x0; var y = p.y - this.y0; con = (this.ml0 + y / this.k0) / this.a; phi = con; for (i=0;true;i++) { delta_phi=((con + this.e1 * Math.sin(2.0*phi) - this.e2 * Math.sin(4.0*phi) + this.e3 * Math.sin(6.0*phi)) / this.e0) - phi; phi += delta_phi; if (Math.abs(delta_phi) <= Proj4js.common.EPSLN) break; if (i >= max_iter) { Proj4js.reportError("tmerc:inverse: Latitude failed to converge"); return(95); } } // for() if (Math.abs(phi) < Proj4js.common.HALF_PI) { // sincos(phi, &sin_phi, &cos_phi); var sin_phi=Math.sin(phi); var cos_phi=Math.cos(phi); var tan_phi = Math.tan(phi); var c = this.ep2 * Math.pow(cos_phi,2); var cs = Math.pow(c,2); var t = Math.pow(tan_phi,2); var ts = Math.pow(t,2); con = 1.0 - this.es * Math.pow(sin_phi,2); var n = this.a / Math.sqrt(con); var r = n * (1.0 - this.es) / con; var d = x / (n * this.k0); var ds = Math.pow(d,2); lat = phi - (n * tan_phi * ds / r) * (0.5 - ds / 24.0 * (5.0 + 3.0 * t + 10.0 * c - 4.0 * cs - 9.0 * this.ep2 - ds / 30.0 * (61.0 + 90.0 * t + 298.0 * c + 45.0 * ts - 252.0 * this.ep2 - 3.0 * cs))); lon = Proj4js.common.adjust_lon(this.long0 + (d * (1.0 - ds / 6.0 * (1.0 + 2.0 * t + c - ds / 20.0 * (5.0 - 2.0 * c + 28.0 * t - 3.0 * cs + 8.0 * this.ep2 + 24.0 * ts))) / cos_phi)); } else { lat = Proj4js.common.HALF_PI * Proj4js.common.sign(y); lon = this.long0; } } p.x = lon; p.y = lat; return p; } // tmercInv() };