#!/usr/bin/env python """ data - python module for data sources classes and methods. """ __author__ = "Tassia Camoes Araujo " __copyright__ = "Copyright (C) 2011 Tassia Camoes Araujo" __license__ = """ This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . """ import os import sys import gc import re import xapian import axi from debian import debtags import logging import hashlib import random from error import Error from singleton import Singleton import cluster from dissimilarity import * def axi_search_pkgs(axi,pkgs_list): terms = ["XP"+item for item in pkgs_list] query = xapian.Query(xapian.Query.OP_OR, terms) enquire = xapian.Enquire(axi) enquire.set_query(query) matches = enquire.get_mset(0,axi.get_doccount()) return matches def axi_search_pkg_tags(axi,pkg): query = xapian.Query(xapian.Query.OP_OR, "XP"+pkg) enquire = xapian.Enquire(axi) enquire.set_query(query) matches = enquire.get_mset(0,1) for m in matches: tags = [term.term for term in axi.get_document(m.docid).termlist() if term.term.startswith("XT")] return tags class SampleAptXapianIndex(xapian.WritableDatabase): """ Sample data source for packages information, mainly useful for tests. """ def __init__(self,pkgs_list,axi): xapian.WritableDatabase.__init__(self,".sample_axi", xapian.DB_CREATE_OR_OVERWRITE) sample = axi_search_pkgs(axi,pkgs_list) self.all_docs = [] for package in sample: doc_id = self.add_document(axi.get_document(package.docid)) self.all_docs.append(doc_id) def _print(self): print "---" print xapian.WritableDatabase.__repr__(self) print "---" for doc_id in self.all_docs: print [term.term for term in self.get_document(doc_id).termlist()] print "---" class PopconSubmission(): def __init__(self,submission_hash): self.hash = submission_hash self.pkgs_list = [] def add_pkg(self,pkg): self.pkgs_list.append(pkg) def parse_submission(self,submission_path,binary=1): """ Parse a popcon submission, generating the names of the valid packages in the vote. """ submission = open(submission_path) for line in submission: if not line.startswith("POPULARITY"): if not line.startswith("END-POPULARITY"): data = line[:-1].split(" ") if len(data) > 3: if binary: # every installed package has the same weight yield data[2], 1 elif data[3] == '': # No executable files to track yield data[2], 1 elif len(data) == 4: # Recently used packages yield data[2], 10 elif data[4] == '': # Unused packages yield data[2], 3 elif data[4] == '': # Recently installed packages yield data[2], 8 class PopconXapianIndex(xapian.WritableDatabase,Singleton): """ Data source for popcon submissions defined as a singleton xapian database. """ def __init__(self,cfg): """ Set initial attributes. """ self.path = os.path.expanduser(cfg.popcon_index) self.popcon_dir = os.path.expanduser(cfg.popcon_dir) #self.debtags_path = os.path.expanduser(cfg.tags_db) self.axi = xapian.Database(cfg.axi) self.load_index() def parse_submission(self,submission_path,binary=1): """ Parse a popcon submission, generating the names of the valid packages in the vote. """ submission = open(submission_path) for line in submission: if not line.startswith("POPULARITY"): if not line.startswith("END-POPULARITY"): data = line[:-1].split(" ") if len(data) > 3: if binary: # every installed package has the same weight yield data[2], 1 elif data[3] == '': # No executable files to track yield data[2], 1 elif len(data) == 4: # Recently used packages yield data[2], 10 elif data[4] == '': # Unused packages yield data[2], 3 elif data[4] == '': # Recently installed packages yield data[2], 8 def load_index(self): """ Load an existing popcon index. """ try: logging.info("Opening existing popcon xapian index at \'%s\'" % self.path) xapian.Database.__init__(self,self.path) except xapian.DatabaseError: logging.info("Could not open popcon index.") self.new_index() def new_index(self): """ Create a xapian index for popcon submissions at 'popcon_dir' and place it at 'self.path'. """ if not os.path.exists(self.path): os.makedirs(self.path) try: logging.info("Indexing popcon submissions from \'%s\'" % self.popcon_dir) logging.info("Creating new xapian index at \'%s\'" % self.path) xapian.WritableDatabase.__init__(self,self.path, xapian.DB_CREATE_OR_OVERWRITE) except xapian.DatabaseError: logging.critical("Could not create popcon xapian index.") raise Error for root, dirs, files in os.walk(self.popcon_dir): for submission in files: submission_path = os.path.join(root, submission) doc = xapian.Document() doc.set_data(submission) logging.debug("Parsing popcon submission at \'%s\'" % submission_path) for pkg, freq in self.parse_submission(submission_path): doc.add_term("XP"+pkg,freq) for tag in axi_search_pkg_tags(self.axi,pkg): print tag doc.add_term(tag,freq) doc_id = self.add_document(doc) logging.debug("Popcon Xapian: Indexing doc %d" % doc_id) # python garbage collector gc.collect() # flush to disk database changes self.flush() class PopconClusteredData(Singleton): """ Data source for popcon submissions defined as a singleton xapian database. """ def __init__(self,cfg): """ Set initial attributes. """ self.popcon_dir = os.path.expanduser(cfg.popcon_dir) self.clusters_dir = os.path.expanduser(cfg.clusters_dir) self.submissions = [] self.clustering() def parse_submission(self,submission_path,binary=1): """ Parse a popcon submission, generating the names of the valid packages in the vote. """ submission_file = open(submission_path) for line in submission_file: if not line.startswith("POPULARITY"): if not line.startswith("END-POPULARITY"): data = line[:-1].split(" ") if len(data) > 3: if binary: # every installed package has the same weight yield data[2], 1 elif data[3] == '': # No executable files to track yield data[2], 1 elif len(data) == 4: # Recently used packages yield data[2], 10 elif data[4] == '': # Unused packages yield data[2], 3 elif data[4] == '': # Recently installed packages yield data[2], 8 def clustering(self): """ called by init Create a xapian index for popcon submissions at 'popcon_dir' and place it at 'self.path'. """ if not os.path.exists(self.clusters_dir): os.makedirs(self.clusters_dir) logging.info("Clustering popcon submissions from \'%s\'" % self.popcon_dir) logging.info("Clusters will be placed at \'%s\'" % self.clusters_dir) for root, dirs, files in os.walk(self.popcon_dir): for submission_hash in files: s = PopconSubmission(submission_hash) submission_path = os.path.join(root, submission_hash) logging.debug("Parsing popcon submission \'%s\'" % submission_hash) for pkg, freq in self.parse_submission(submission_path): s.add_pkg(pkg) self.submissions.append(s) distanceFunction = JaccardDistance() # cl = cluster.HierarchicalClustering(self.submissions,lambda x,y: distanceFunction(x.pkgs_list,y.pkgs_list)) # clusters = cl.getlevel(0.5) # for c in clusters: # print "cluster" # for submission in c: # print submission.hash cl = KMedoidsClusteringPopcon(self.submissions, lambda x,y: \ distanceFunction(x.pkgs_list,y.pkgs_list)) #clusters = cl.getclusters(2) medoids = cl.getMedoids(2) print "medoids" for m in medoids: print m.hash class KMedoidsClusteringPopcon(cluster.KMeansClustering): def __init__(self,data,distance): if len(data)>100: data_sample = random.sample(data,100) cluster.KMeansClustering.__init__(self, data_sample, distance) self.distanceMatrix = {} for submission in self._KMeansClustering__data: self.distanceMatrix[submission.hash] = {} def loadDistanceMatrix(self,cluster): for i in range(len(cluster)-1): for j in range(i+1,len(cluster)): try: d = self.distanceMatrix[cluster[i].hash][cluster[j].hash] logging.debug("Using d[%d,%d]" % (i,j)) except: d = self.distance(cluster[i],cluster[j]) self.distanceMatrix[cluster[i].hash][cluster[j].hash] = d self.distanceMatrix[cluster[j].hash][cluster[i].hash] = d logging.debug("d[%d,%d] = %.2f" % (i,j,d)) def getMedoid(self,cluster): """ Return the medoid popcon submission of a given a cluster, based on the distance function. """ logging.debug("Cluster size: %d" % len(cluster)) self.loadDistanceMatrix(cluster) medoidDistance = sys.maxint for i in range(len(cluster)): totalDistance = sum(self.distanceMatrix[cluster[i].hash].values()) print "totalDistance[",i,"]=",totalDistance if totalDistance < medoidDistance: medoidDistance = totalDistance medoid = i print "medoidDistance:",medoidDistance logging.debug("Cluster medoid: [%d] %s" % (medoid, cluster[medoid].hash)) return cluster[medoid] def assign_item(self, item, origin): """ Assigns an item from a given cluster to the closest located cluster PARAMETERS item - the item to be moved origin - the originating cluster """ closest_cluster = origin for cluster in self._KMeansClustering__clusters: if self.distance(item,self.getMedoid(cluster)) < self.distance(item,self.getMedoid(closest_cluster)): closest_cluster = cluster if closest_cluster != origin: self.move_item(item, origin, closest_cluster) logging.debug("Item changed cluster: %s" % item.hash) return True else: return False def getMedoids(self,n): """ Generate n clusters and return their medoids. """ medoids = [self.getMedoid(cluster) for cluster in self.getclusters(n)] logging.info("Clustering completed and the following centroids were found: %s" % [c.hash for c in medoids]) return medoids