
Valid from

 edition

ABNT NBRBRAZILIAN
STANDARD

© ABNT 2010

ICS ISBN 978-85-07-

Reference number

95 pages

15606-4

First
2010.04.13

2010.05.13

 Digital terrestrial television — Data coding
and transmission specifi cation for digital
broadcasting
Part 4: Ginga-J — The environment for the
execution of procedural applications

33.080; 33.160.01 02022-6

ABNT NBR 15606-4:2010

© ABNT 2010 - All rights reservedii

ABNT NBR 15606-4:2010

ABNT offi ce
All rights reserved. Unless otherwise specifi ed, no part of this publication may be reproduced or utilized in any form or by
any means, electronic or mechanical, including photocopying and microfi lm, without permission in writing from either ABNT.

ABNT offi ce
Av.Treze de Maio, 13 - 28º andar
20031-901 - Rio de Janeiro - RJ
Tel.: + 55 21 3974-2300
Fax: + 55 21 3974-2346
abnt@abnt.org.br
www.abnt.org.br

Published in Brazil

© ABNT 2010 - All rights reserved iii

ABNT NBR 15606-4:2010

Contents Pages

Foreword ...viii
Introduction ..ix
1 Scope ...1
2 Normative References ...1
3 Terms and defi nitions ..2
4 Abbreviations ..3
5 Architecture of the Ginga middleware ...3
5.1 Overview of the Ginga architecture ..3
5.2 Ginga-J architecture ..4
5.2.1 Context ...4
5.2.2 Architecture ...5
6 Content format ..5
7 Ginga-J application model ...5
7.1 Application model ...5
7.1.1 Life cycle ..5
7.1.2 Startup of applications ...7
7.1.3 Finalization of applications ...7
7.1.4 Support for multiple applications ..8
7.1.5 The sharing of resources between applications ..8
7.1.6 Controlling applications ...8
7.1.7 Communication between applications ..8
7.1.8 Properties of the environment ...9
7.1.9 Application control codes ...9
7.2 Storage and caching of applications ..11
7.2.1 Storage models ..11
7.2.2 Storage issues ..11
7.2.3 Proactive caching ...12
7.3 Transmission of applications ..12
7.3.1 Signaling rules ...12
7.3.2 Packaging of applications ..12
7.3.3 Application authentication ..12
7.3.4 Signaling the same application in different departments ...12
7.3.5 Download of applications through the interactive channel 12
8 Ginga-J Platform ...13
8.1 Java Platform ...13
8.2 Basic considerations of the platform ..13
8.2.1 Execution environment ..13
8.2.2 Hierarchy of packages and classes ...13
8.2.3 Notifi cation of events ..14
8.2.4 Text coding ..14
8.2.5 Life cycle of the applications ..14

© ABNT 2010 - All rights reservediv

ABNT NBR 15606-4:2010

8.3 Common infrastructure ..14
8.4 Graphical presentation and events handling ..15
8.4.1 LWUIT, LightWeight user interface toolkit...15
8.4.2 Graphical user interface ...16
8.4.3 Treatment of the platform planes ...16
8.4.4 User events handling ..22
8.5 Information and selection of services ...23
8.5.1 General considerations ..23
8.5.2 Integration with API protocol-independent ...23
8.6 Presentation and execution of media ..24
8.7 Access to data ...24
8.7.1 General considerations ..24
8.7.2 Access to fi les ...24
8.7.3 Broadcast transport protocol...24
8.7.4 Persistent storage ...24
8.7.5 Access to system properties ..25
8.7.6 IP support over an interactive channel ...25
8.7.7 MPEG-2 section fi ltering ..25
8.8 Application management ..25
8.9 Tuning ...26
8.10 NCL Bridge ..26
8.11 Platform properties ..26
8.11.1 System Properties ...26
8.11.2 User properties ..27
8.12 Interactivity channel ...27
8.13 Complete list of Ginga-J packages ...27
8.13.1 Java platform packages ...27
8.13.2 JavaTV 1.1 and JMF 1.0 specifi cation packages ...28
8.13.3 JavaDTV 1.1 specifi cation packages ..29
8.13.4 JSSE 1.0.1 specifi cation packages ..30
8.13.5 JCE 1.0.1 specifi cation packages ..30
8.13.6 SATSA 1.0.1 specifi cation packages ..31
8.13.7 Ginga-J specifi c packages ..31
Annex A (normative) Java DTV 1.3 specifi cation ...32
A.1 General considerations ...32
A.2 Java DTV API ...32
A.2.1 com.sun.dtv.broadcast package ..32
A.2.2 com.sun.dtv.smartcard package ..33
A.2.3 com.sun.dtv.lwuit.events package...33
A.2.4 com.sun.dtv.fi ltering package ..34
A.2.5 com.sun.dtv.ui.event package ...35
A.2.6 com.sun.dtv.lwuit.plaf package ...36
A.2.7 com.sun.dtv.media.timeline package ..37

© ABNT 2010 - All rights reserved v

ABNT NBR 15606-4:2010

A.2.8 com.sun.dtv.media.language package ..37
A.2.9 com.sun.dtv.application package ..37
A.2.10 com.sun.dtv.media.audio package ..38
A.2.11 com.sun.dtv.test package ...38
A.2.12 com.sun.dtv.tuner package ..39
A.2.13 com.sun.dtv.lwuit.layouts package ...39
A.2.14 com.sun.dtv.broadcast.event package ..40
A.2.15 com.sun.dtv.lwuit.list package ...40
A.2.16 com.sun.dtv.ui package ..41
A.2.17 com.sun.dtv.media.control package ...43
A.2.18 com.sun.dtv.media.dripfeed package ..43
A.2.19 com.sun.dtv.security package ...43
A.2.20 com.sun.dtv.lwuit.painter package ..44
A.2.21 com.sun.dtv.locator package ...44
A.2.22 com.sun.dtv.resources package ..45
A.2.23 com.sun.dtv.net package ..45
A.2.24 com.sun.dtv.media.text package ...45
A.2.25 com.sun.dtv.media.format package ..46
A.2.26 com.sun.dtv.platform package ...47
A.2.27 com.sun.dtv.io package ..47
A.2.28 com.sun.dtv.lwuit.animations package ..47
A.2.29 com.sun.dtv.service package ...48
A.2.30 com.sun.dtv.media package ...48
A.2.31 com.sun.dtv.transport package ...49
A.2.32 com.sun.dtv.lwuit.util package ...49
A.2.33 com.sun.dtv.lwuit package ..50
A.2.34 com.sun.dtv.lwuit.geom package ...51
Annex B (normative) Specifi cation of the protocol-dependent service information API52
B.1 General considerations ..52
B.2 Protocol-dependent service information API ...52
B.2.1 br.org.sbtvd.net package ..52
B.2.1.1 SBTVDLocator class ...52
B.2.1.2 SBTVDNetworkBoundLocator class ..54
B.2.2 br.org.sbtvd.si package ..54
B.2.2.1 DescriptorTag interface ..54
B.2.2.2 PMTElementaryStream interface ...59
B.2.2.3 PMTService interface ...60
B.2.2.4 PMTStreamType interface ...61
B.2.2.5 SIBouquet interface ...62
B.2.2.6 SI Broadcaster interface ..62
B.2.2.7 SIEvent interface ...63
B.2.2.8 SIInformation interface ...65
B.2.2.9 SIIterator interface ..66

© ABNT 2010 - All rights reservedvi

ABNT NBR 15606-4:2010

B.2.2.10 SIMonitoringListener interface ..66
B.2.2.11 SIMonitoringType interface ..66
B.2.2.12 SINetwork interface ...67
B.2.2.13 SIRetrievalListener interface ..67
B.2.2.14 SIRunningStatus interface ...68
B.2.2.15 SIService interface ..68
B.2.2.16 SIServiceType interface ...70
B.2.2.17 SITime interface ..71
B.2.2.18 SITransportStream interface ..71
B.2.2.19 SITransportStreamBAT interface ...72
B.2.2.20 SITransportStreamNIT interface ..72
B.2.2.21 Descriptor class ..72
B.2.2.22 SIDatabase class ...73
B.2.2.23 SIExEventInformation class ...76
B.2.2.24 SILackOfResourcesEvent class ...76
B.2.2.25 SIMonitoringEvent class...77
B.2.2.26 SINotInCacheEvent class ...78
B.2.2.27 SIObjectNotInTableEvent class ..78
B.2.2.28 SIRequest class ...78
B.2.2.29 SIRequestCancelledEvent class ..78
B.2.2.30 SIRetrievalEvent class ..78
B.2.2.31 SISuccessfulRetrieveEvent class ..79
B.2.2.32 SITableNotFoundEvent class ...79
B.2.2.33 SITableUpdatedEvent class ..79
B.2.2.34 SIUtil class ...80
B.2.2.35 SIException() class ...80
B.2.2.36 SIIllegalArgumentException() class ..80
B.2.2.37 SIInvalidPeriodException class ...80
Annex C (normative) API extension specifi cation for tuning –

Package br .org.sbtvd.net.tuning ..81
C.1 ChannelManager class ...81
C.2 Channel class ..82
Annex D (normative) NCL Bridge API Specifi cation ...83
D.1 General considerations ..83
D.2 NCL bridge API ..83
D.2.1 br.org.sbtvd.net.tuning package ..83
D.2.1.1 NCLPlayer class ..83
D.2.1.2 NCLPlayerEvent class ...85
D.2.1.3 NCLPlayerEventListener interface ..86
D.2.1.4 NCLGingaSettingsNodes class..86
D.2.1.5 NCLEdit class ..87
D.2.2 br.org.sbtvd.net.bridge.ncl package ..91
D.2.2.1 NodeManager class...91

© ABNT 2010 - All rights reserved vii

ABNT NBR 15606-4:2010

D.2.2.2 NCLEvent class ..91
D.2.2.3 NCLEventListener inter face ...92
Annex E (normative) API specifi cation for graphic plane support – br.org.sbtvd.ui package93
E.1 ColorCoding class...93
E.2 StillPicture class..93
E.3 SwitchArea class ...94
Bibliography ..95

Figures
Figure 1 – High-level architecture of Ginga middleware ...4
Figure 2 – Ginga-J context ...4
Figure 3 – Ginga-J architecture and the execution environment ...5
Figure 4 – Diagram with the life cycle states of an Xlet ...6
Figure 5 – Structure of layers for the presentation of services ..17
Figure 6 – Composition example of content display plane ..22

Tables
Table 1 – Properties of the Ginga-J environment ...9
Table 2 – Ginga-J application control codes ...9
Table 3 – Details of functionalities for the text and grap ...17
Table 4 – Details of the functionalities for video and still picture plane18
Table 5 – Details of functionalities for the still picture plane ..20
Table 6 – Details of the functionalities for the video plane ..21
Table 7 – Mapping of functions of ABNT NBR 15604:2007 in the events

defi ned by JAVADTV 1.3:2009 ..23
Table 8 – System Properties ...26
Table A.1 – Classes of the com.sun.dtv.broadcast package ...32
Table A.2 – Classes of the com.sun.dtv.smartcard package ...33
Table A.3 – Classes of the com.sun.dtv.lwuit.events package ..33
Table A.4 – Classes of the com.sun.dtv.fi ltering package ...34
Table A.5 – Classes of the com.sun.ui.event package ...35
Table A.6 – Classes of the com.sun.lwui.plaf package ..36
Table A.7 – Classes of the com.sun.dtv.media.timeline package ...37
Table A.8 – Classes of the com.sun.dtv.media.language package ...37
Table A.9 – Classes of the com.sun.dtv.application package ...38
Table A.10 – Classes of the com.sun.dtv.media.auto package ...38
Table A.11 – Classes of the com.sun.dtv.test package ..39
Table A.12 – Classes of the com.sun.dtv.tuner package ...39
Table A.13 – Classes of the com.sun.dtv.lwuit.layouts package ...40
Table A.14 – Classes of the com.sun.dtv.broadcast.event package ...40
Table A.15 – Classes of the com.sun.dtv.lwuit.list package ..41

© ABNT 2010 - All rights reservedviii

ABNT NBR 15606-4:2010

Table A.16 – Classes of the com.sun.dtv.ui package ...41
Table A.17 – Classes of the com.sun.dtv.media.control package ...43
Table A.18 – Classes of the com.sun.dtv.media.dripfeed package ...43
Table A.19 – Classes of the com.sun.dtv.security package ..43
Table A.20 – Classes of the com.sun.dtv.lwuit.painter package ...44
Table A.21 – Classes of the com.sun.dtv.locator package ..44
Table A.22 – Classes of the com.sun.dtv.resources package ...45
Table A.23 – Classes of the com.sun.dtv.net package ...45
Table A.24 – Classes of the com.sun.dtv.media.text package...46
Table A.25 – Classes of the com.sun.dtv.media.format package ..46
Table A.26 – Classes of the com.sun.dtv.platform package ..47
Table A.27 – Classes of the com.sun.dtv.io package ...47
Table A.28 – Classes of the com.sun.dtv.lwuit.animations package ..48
Table A.29 – Classes of the com.sun.dtv.service package ..48
Table A.30 – Classes of the com.sun.dtv.media package ..48
Table A.31 – Classes of the com.sun.dtv.transport package ..49
Table A.32 – Classes of the com.sun.dtv.lwuit.util package ..49
Table A.33 – Classes of the com.sun.dtv.lwuit package ..50
Table A.34 – Classes of the com.sun.dtv.lwuit.geom package ...51

© ABNT 2010 - All rights reserved ix

ABNT NBR 15606-4:2010

Foreword

The Associação Brasileira de Normas Técnicas (ABNT) is the Brazilian Standardization Forum.
Brazilian Standards, wich content is the responsability of the Brazilian Committees (ABNT/CB), Sectorial
Standardization Bodies (ABNT/ONS), and Special Studies Committees (ABNT/CEE), are drafted by
Study Committees (CE). Such Studiys Committees are made up of representatives from the sectors
involved and include producers, consumers and neutral entities (universities, laboratories and others).

Brazilian Standards are drafted in accordance with the rules given in the ABNT Directives (Diretivas),
Part 2.

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ABNT shall not be held responsible for identifying any or all such patent rights.

ABNT NBR 15606-4 was prepared within the purview of the Special Studies Committes of Digital Television
(ABNT/CEE-85). The 1st Draft Standard was circulated for National Consultation in accordance with
ABNT Notice (Edital) n° 09, from September 6th, 2007 to November 5th, 2007, with the number Draft
00:001.85-006/4. The 2nd Draft Standard was circulated in accordance with ABNT Notice (Edital) nº 05,
from May, 19th, 2009 to July 17th, 2009, with number Draft 00:001.85-006/4. The 3rd Draft Standard
circulated in accordance with ABNT Notice (Edital) nº 3 from March, 5th, 2010 to April 5th,2010, with the
number 3rd Draft 85:000.00-006/4.

Should any doubts arise regarding the interpretation of the English version, the provisions in the original
text in Portuguese shall prevail at all time.

This Standard is based on work carried out by the Brazilian Digital Television Forum as established by
Presidential Decree nº 5820 of June 29, 2006.

This English version is equivalent to ABNT NBR 15606-4:2010, from 2010.04.13.

This version in English was published in 2010.06.15.

© ABNT 2010 - All rights reservedx

ABNT NBR 15606-4:2010

Introduction

The Ginga-J defi nition comprises a set of Application Programming Interfaces (API) designed to provide
all the functionalities necessary for the implementation of applications for digital television, from the
handling of multimedia data to the access protocols.

The Ginga specifi cation applies to receivers for terrestrial television transmission systems (over-the-
air). Ginga is designed to cover a full range of implementations including integrated receiver-decoders
(IRD), integrated television sets, multimedia computers and local clusters of devices connected via
Home Area Networks (HAN).

This part of ABNT NBR 15606 is aimed at developers of receivers compatible with the Brazilian digital
terrestrial television system (SBTVD) and developers of applications that use the functionality and
Ginga API.

This part of ABNT NBR 15606 is aimed at ensuring the interoperability of Ginga applications and
different Ginga implementations.

This part of ABNT NBR 15606 is consistent with international specifi cations, as detailed in Annex A.

© ABNT 2010 - All rights reserved 1

BRAZILIAN STANDARD ABNT NBR 15606-4:2010

 Digital terrestrial television — Data coding and transmission specifi cation
for digital broadcasting
Part 4: Ginga-J — The environment for the execution of procedural
applications

1 Scope

This part of ABNT NBR 15606 specifi es the requirements for the procedural part of the middleware for
the Brazilian digital terrestrial television system (SBTVD).

2 Normative References

The following documents are indispensable for the application of this document. For dated references,
only the cited editions apply. For undated references, the latest edition of the referenced document
(including any amendments) applies.

ABNT NBR 15601:2007, Digital terrestrial television –Transmission system

ABNT NBR 15603:2007 (all parts), Digital terrestrial television – Multiplexing and service information
(SI) Part 1

ABNT NBR 15604:2007, Digital terrestrial television – Receivers

ABNT NBR 15606-1, Digital terrestrial television – Data coding and transmission specifi cation for digital
broadcasting – Part 1: Data coding

ABNT NBR 15606-2:2007, Digital terrestrial television – Data coding and transmission specifi cation for
digital broadcasting – Part 2: Ginga-NCL for fi xed and mobile receivers – XML application language for
application coding

ABNT NBR 15606-3:2007, Digital terrestrial television – Data coding and transmission specifi cation for
digital broadcasting – Part 3: Data transmission specifi cation

ISO 639-2, Codes for the representation of names of languages – Part 2: alpha-3 code

ISO/IEC 8859-1:1998, Information technology - 8-bit single-byte coded graphic character sets – Part 1:
Latin alphabet N° 1

ISO/IEC 13818-1, Information technology – Generic coding of moving pictures and associated audio
information: Systems

ARIB STD-B10:2008, Service information for digital broadcasting system

ARIB STD-B23:2004, Application execution engine platform for digital broadcasting

ARIB STD-B31:2007, Transmission Coding Standard

CDC 1.1:2008, Connected Device Confi guration 1.1 (JSR 218), available in http://jcp.org/en/jsr/
detail?id=218

FP 1.1:2008, Foundation Profi le 1.1 (JSR 219), available in http://jcp.org/en/jsr/detail?id=219

© ABNT 2010 - All rights reserved2

ABNT NBR 15606-4:2010

JAR:2009, Sun Microsystems. JAR File Specifi cation. 2009, available in http://java.sun.com/j2se/1.4.2/
docs/guide/jar/jar.html

LWUIT 1.1:2008 , LightWeight User Interface Toolkit, Sun Microsystems

JAVADTV 1.3:2009, Java DTV Specifi cation, Sun Microsystems.

JAVATV 1.1:2008, Java TV Specifi cation 1.1 (JSR 927), Sun Microsystems available at: http://jcp.org/
en/jsr/detail?id=927

JCE:1.0.1:2006 , Sun Microsystem. Security (JCE – Java Cryptography Extension) Optional Package
Specifi cation v1.0.1, available at: http://jcp.org/en/jsr/detail?id=219

JSSE:1.0.1:2006, Sun Microsystem. Security (JSSE – Java Secure Socket Extension) Optional
Package Specifi cation v1.0.1, available at: http://jcp.org/en/jsr/detail?id=219

JVM:1997, Java(TM) Virtual Machine Specifi cation, The (2nd Edition), T Lindholm, F Yellin – 1997 –
Addison-Wesley

PBP 1.1:2008, Personal Basis Profi le 1.1 (JSR 217), available atn http://www.jcp.org/

SATSA:1.0.1:2007, Sun Microsystems , Security and Trust Services API for J2ME (JSR 177), available
at: http://jcp.org/en/jsr/detail?id=177

3 Terms and defi nitions

For the purposes of this part of ABNT NBR 15606, the following terms and defi nitions apply.

3.1
bytecode
intermediate form of the code interpreted by the JVM

3.2
service context
environment in which the service is displayed on the digital receiver

3.3
Java Virtual Machine
JVM
process that loads and runs the Java applications

3.4
service
set of information, which contains audio, video and/or data, to be displayed on a digital receiver

NOTE Viewers normally reference the service as a “television channel”.

3.5
zapper
resident application, normally developed by the manufacturer of the receiver, which user can activate
at any time

NOTE The zapper can be used to select services and applications for execution at a later time.

© ABNT 2010 - All rights reserved 3

ABNT NBR 15606-4:2010

4 Abbreviations

For the purposes of this part of ABNT NBR 15606, the following abbreviations apply.

API Application Programming Interface
CA Conditional Access
CDC Connected Device Confi guration
CSS Cascading Style Sheets
ECMA European Computer Manufacturers Association
EDT Event
EPG Electronic Program Guide
HAN Home Area Network
IRD Integrated Receiver Decoder
JPEG Joint Photographic Expert Group
MIDP Móbile Information Devide Profi le
MPEG Moving Picture Expert Group
NCL Nested Context Language
PBP Personal Basis Profi le
PNG Portable Network Graphics
SBTVD Sistema Brasileiro de Televisão Digital Terrestre
TOT Time Offset Table
TS Transport Stream
UTF Unicode Transformation Format
XHTML Extensible Hypertext Markup Language

5 Architecture of the Ginga middleware

5.1 Overview of the Ginga architecture

The universe of applications for digital television can be partitioned into two sets: the declarative
application set and the procedural application set. A declarative application is one in which its “initial”
entity is of the “declarative content” type. Similarly, a procedural application is one in which its “initial”
entity is of the “procedural content” type.

A declarative content shall be based on a declarative language, that is, a language that emphasizes
the declarative description of the problem, instead of its breakdown into an algorithmic implementation.
A procedural content shall be based on a non-declarative language. Non-declarative languages can
follow different paradigms. Thus, we have module-based languages, object-oriented languages, etc.
The literature on digital television, however, uses the term “procedural” to represent all languages that
are not declarative. In procedural programming, the computer shall be informed about each step to
be executed. One can assert that in procedural languages, the developer has greater power over the
code, and is able to establish the entire fl ow of control and execution of the program; and because there
are more resources available, the degree of complexity is greater. Java is the most common language
found in procedural environments of digital television systems.Ginga-NCL (or Presentation Machine) is
a logical subsystem of the Ginga system that processes NCL documents. A key component of Ginga-
NCL is the informative content decoding mechanism (NCL formatter). Other important modules are the
XHTML-based user, which includes a style language (CSS) and ECMAScript interpreter; and the LUA
mechanism, which is responsible for interpreting LUA Scripts.

Ginga-J (or Execution Machine) is a logical subsystem of the Ginga System that processes procedural
applications (Java Xlets). A key component of the procedural application environment is the procedural
content execution mechanism, which is based on a Java Virtual Machine.

© ABNT 2010 - All rights reserved4

ABNT NBR 15606-4:2010

It is important to observe that in a uniquely Ginga-NCL ou uniquely Ginga-J implementation, either
in fi xed or mobile receivers, the assertion of any kinds of conformity with SBTVD is prohibited.
Thus, Ginga assures the offer of profi les that are always compatible with the previous versions.

Common content decoders shall serve the needs of both procedural and informative decoding
applications and presentation of the common PNG, JPEG, MPEG-type content and other formats.
Ginga-Core is comprised of common content decoders and procedures to obtain content transported
in MPEG-2 transport streams (TS) and through a return channel. Ginga-Core shall also support
the conceptual view model described in ABNT NBR 15606-1.

Architecture (see Figure 1) and the features of the Ginga specifi cation shall be designed for application
in transmission systems and receivers for terrestrial (over-the-air) transmission. Moreover, the same
architecture and features can be applied to other transport systems (such as satellite television systems
or cable TV systems).

Figure 1 – High-level architecture of Ginga middleware

5.2 Ginga-J architecture

5.2.1 Context

Figure 2 presents the context in which the stack of Ginga-J software is executed. Ginga-J is a specifi cation
of distributed middleware, which resides in a Ginga device (a device that deploys the Ginga middleware
- a digital television receiver).

Figure 2 – G inga-J context

© ABNT 2010 - All rights reserved 5

ABNT NBR 15606-4:2010

The Ginga device shall have access to streams of video, audio, data and other media that shall be
transmitted over air, cable, satellite or IP networks. The information received shall be processed and
displayed to the viewers.

5.2.2 Architecture

The Ginga-J model distinguishes between hardware and software entities and resources of the system
and applications as described in Figure 3.

The resident applications can be implemented using non-standard functions, provided by the Operating
System of the Ginga device, or by a particular Ginga implementation. Resident applications may also
incorporate functionalities provided by the standardized Ginga-J API. Transmitted applications (Xlets)
shall always use standardized API provided by Ginga-J.

Figure 3 – Gi nga-J architecture and the execution environment

In general, Ginga is extraneous to any resident applications. These resident applications include, but not
limited to, the following: closed caption, conditional access system messages (CA), resident receiver
menus and resident electronic programming guides (EPG).

Resident applications may have priority over Ginga applications. For example, the closed caption and
emergency message shall have priority in the Ginga system.

6 Content format

The content format for the Brazilian digital terrestrial television system shall be compliant with
ABNT NBR 15606-1.

7 Ginga-J application model

7.1 Application m odel

7.1.1 Life cycle

Th e Ginga-J application model shall be compliant with the model defi ned in JAVADTV 1.3:2009. Hence,
Ginga-J applications shall contain a class implementing the javax.microedition.xlet.Xlet interface (see
PBP 1.1:2008), which shall be referenced in accordance with the defi nitions of application signaling
(see ABNT NBR 15606-3:2007, 12.16). Otherwise, the class (and the instance of the application) may
be ignored.

© ABNT 2010 - All rights reserved6

ABNT NBR 15606-4:2010

Ginga-J applications shall be executed in an environment geared toward services and maintained by
a global application manager of the system. Every service is presented in a service context, which may
be defi ned as its environment of execution. For Ginga-J applications, the service context is represented
by an instance of the javax.microedition.xlet.ServiceContext class.

Furthermore, Ginga-J applications can be controlled either by a zapper, by the broadcaster (see
ABNT NBR 15606-3:2007, 12.16), by another application using the Ginga-J API “Application Lifecycle
Management and Control” (see JAVADTV 1.3:2009) or by Ginga-NCL documents. Considering that
the application provides a class that implements the javax.microedition.xlet.Xlet interface, this class
contains at least four methods that are called by the platform to inform the application of imminent life
cycle changes. A diagram showing the life cycle of Ginga-J applications is shown in Figure 4.

Figure 4 – Diagram with the life cycle states of an Xlet

Initially, after the data of the application is obtained, the object that implements javax.microedition.xlet.
Xlet is created by using its constructor. If the default constructor returns without triggering an exception,
the application instance will be considered as being in the “Loaded” state; if not, the application instance
will be considered as being in the “Destroyed” state and discarded.

NOTE The initialization of the resources utilized by the application is done in the initXlet() method and not
the constructor of the class. The call to the constructor is implementation-dependent.

In order to start the initXlet method application, a javax.microedition.xlet.XletContext instance object is
called, which has information about the context of the execution for the application including properties
and mechanisms for the notifi cation of changes in states initiated by the application. Once the instance
of the application has been successfully loaded and successfully initiated, the application manager can
change the state of the application instance to “Paused.”

NOTE It’s possible that the initXlet method will be called asynchronously.

The startXlet method can then be called to inform the application that it will be converted to the “Active”
state, initiating the execution thereof.

The pauseXlet method may be called to inform the application that it shall change to the “Paused” state
and that it shall minimize its consumption of resources. The application can change back to the “Active”
state after a new call to the startXlet method. An application instance in the “Paused” state shall reduce
its consumption of resources if it intends to maximize its likelihood of survival. This does not mean that it
cannot maintain any resources, but that - if it does - it shall have a lower priority for accessing resources
than if it were in the “Active” state.

© ABNT 2010 - All rights reserved 7

ABNT NBR 15606-4:2010

The destroyXlet method may be called in any state and is used to notify the application that it is about
to have its application completed. The application shall save information on its state (if possible and
necessary) and release previously used resources as soon as possible. This method has a Boolean
parameter that indicates if it is unconditional that this application shall be shut down. If the application
is being shut down due to a service selection operation, the fi nalization of the application will be
unconditional (see 7.1.3).

NOTE An application instance may enter this state only once.

If a Xlet interface method triggers javax.microedition.xlet.XletStateChangeException (see PBP
1.1:2008), by default the Xlet remains in the state it was in immediately before the call that triggered
the exception. The only exception to this rule is the destroyXlet method when the unconditional Boolean
parameter is passed with a true value, In this scenario, triggering XletStateChangeException shall have
no effect and the Xlet shall be destroyed.

The initXlet method shoall be called only once. Moreover, the application manager of may choose to
change the Xlet to the “Destroyed” state (without calling destroyXlet) at some specifi c implementation
time afterwards if an XletStateChangeException is triggered.

Applications in the “Destroyed” state cannot be started with the “Application Lifecycle Management and
Control” API (see JAVADTV 1.3:2009) or any other mechanism available on the platform.

7.1.2 Startup of applications

When a new service is selected for display, the global application manager of the system shall check
the available applications in accordance with ABNT NBR 15606-3:2007, 12.16. In particular, this
manager also identifi es applications that shoall be started immediately after the selection of the service
in question.

If there is already an application running at the time of de-selection of service that contains it, such
application can continue running if it is fl agged as a valid application for the new service selected.

After the selection of a service, it’s possible that fl agged alternative applications are started by the user,
by the zapper or by any other applications using the “Application Lifecycle Management and Control”
API (see JAVADTV 1.3:2009). In other words, the user can start an application after receiving an offer
of applications through a particular user interface. Since this interface is dependent on implementation,
fl agged services shall indicate explicitly if they require the application to be started automatically
(see ABNT NBR 15606-3:2007, 12.16).

7.1.3 Finalization of applications

Ginga-J applications can voluntarily terminate their application using the Xlet API (see PBP 1.1:2008)
or can be fi nalized by the system’s application manager.

Additionally, an application shall have its execution interrupted unconditionally whenever any of the
following conditions occur:

 — the AIT table (see ABNT NBR 15603:2007) has been updated or substituted and in this new
version there is no reference to the application in question;

 — the AIT table (see ABNT NBR 15603:2007) is no longer referenced in the PMT table (see
ABNT NBR 15603:2007) of the service being displayed.

© ABNT 2010 - All rights reserved8

ABNT NBR 15606-4:2010

When an application instance is chosen to have its execution terminated, the application manager shall
call its destroyXlet method. As described in 7.1.1, if this instance is being shut down due to a service
selection operation, its fi nalization shall be unconditional.

7.1.4 Support for m ultiple applications

Ginga-J applications shall be executed in a multitasking environment, geared toward media events
marked by broadcast and user input events. The application model was designed to be extensible.
It is possible to support multiple competing applications that are cooperating (designed to communicate
with each other and share resources) or non-cooperating (independent and competing for resources).

The support model for multiple applications in Ginga-J shall be based on the application model defi ned
in JAVADTV 1.3:2009. Thus, an application cannot be started if an instance of this application is already
active in the service selected for display. For cases where more than one Xlet is running, no actions that
may affect the global state of the platform are permitted (see 7.1.1).

Each application instance is considered as if it were running within its own virtual machine instance.
Nevertheless, it is the broadcaster’s responsibility to ensure that applications executed simultaneously
in a particular service are comprehensible to the user and cause no perceivable problems by mutual
interference.

7.1.5 The sharing of resources between applications

Allowing the simultaneous execution of multiple applications, means that some rules shall be defi ned
for these applications to share available resources in the system. In particular, applications being
executed shall share the “Input Focus” and “Output Focus”.

An application has the ‘Input Focus” if, and only if, the java.awt.Component or the com.sun.dtv.lwuit.
Component, which have “Input Focus”, belongs to the components tree of that application. The “Input
Focus” can be requested by applications calling the requestFocus method in one of the aforementioned
classes, depending on the type of graphical component used.

The application that has the “Input Focus” is, in principle, capable of receiving user input events. Other
applications that do not have the “Input Focus” can request the reception of a subgroup of user input
events through the “TV Specifi c UI functionality Event” API (see JAVADTV 1.3:2009).

7.1.6 Controlli ng applications

It is possible to control the life cycle of an application through the "Application Lifecycle Management
and Control” API (JAVADTV 1.3:2009), which provides means to permit applications to request the
Application Manager to start, stop, pause and resume other applications.

7.1.7 Communication between applications

The model of communication between Ginga-J applications shall comply with the application
model defi ned in JAVADTV 1.3:2009. Applications shall use the mechanisms defi ned in the "Inter-
Xlet Communication" API (see PBP 1.1:2008) for such mechanisms. Communication between one
application and another is established by the connection between an object to a name in javax.
microedition.xlet.ixc.IxcRegistry (see PBP 1.1:2008) and another application seeking this name and
invoking the methods of the object. The possible "namespaces" for registration shall comply with the
defi nitions established by the communication interface between applications of JAVADTV 1.3:2009.

© ABNT 2010 - All rights reserved 9

ABNT NBR 15606-4:2010

7.1.8 Properties of the environment

In addition to the properties already defi ned by the Ginga-NCL model (see ABNT NBR 15606-2:2007, 7.2.4),
the Ginga-J application model shall provide each application with a javax.microedition.xlet. XletContext
(see PBP 1.1:2008) including a set of specifi c properties already defi ned in JAVADTV 1.3:2009, which
are shown in Table 1.

Table 1 – Properties of the Ginga-J environment

Name Type of data Description

com.sun.dtv.persistent.root Alphanumeric Base directory for persistent storage on the platform

com.sun.dtv.orgid Numeric

Unique identifi er for the organization responsible for
the application. It shall be the same value transmitted
in the organization_id fi eld of the application
descriptor identifi er (see ABNT NBR 15606-3:2007,
12.7)

com.sun.dtv.appid Numeric

Unique identifi er for the application. It shall be the
same value transmitted in the application_id fi eld of
the application descriptor identifi er (see
ABNT NBR 15606-3:2007, 12.7)

com.sun.dtv.version Alphanumeric
Version number of the JavaDTV specifi cation
implemented by the platform (JAVADTV 1.3:2009)

br.org.ginga.system.
version

Alphanumeric
Version number of the Ginga-J specifi cation
implemented by the platform

7.1.9 Applicatio n control codes

The dynamic control of the application’s life cycle is signaled by the "application_control_code" fi eld for
the application in the AIT (see ABNT NBR 15606-3:2007). The Ginga-J application control codes are
shown in Table 2.

Table 2 – Ginga-J application control codes

Code Identifi er Description

0x00 Not defi ned Reserved for future use

0x01 AUTOSTART
Applications with the AUTOSTART control code start automatically
upon selection of the service that contains such applications

0x02 PRESENT

Applications with the PRESENT control code shall not be started
automatically and shall be added to the receiver’s list of available
applications. They can be started by using the “Application Life
Cycle Management and Control” API (JAVADTV 1.3:2009)

© ABNT 2010 - All rights reserved10

ABNT NBR 15606-4:2010

Code Identifi er Description

0x03 DESTROY

Applications with the DESTROY control code shall be
unconditionally shutdown by the application manager.

Applications previously signaled with the STORE control code shall
be removed from the cache

0x04 KILL

Applications with the KILL control code shall be shutdown by the
application manager as soon as possible. If an exception of the
type javax.microedition.xlet.XletStateChangeException is launched
during an attempt to fi nalize the application, it shall continue
running

Applications previously signaled with the STORE control code can
optionally be kept in the cache

0x05 Not defi ned Reserved for future use

0x06 REMOTE

Applications with the REMOTE control code do not have their
fi les transmitted in the current transport stream. The data source
for these applications shall comply with the “Transport Protocol
Descriptor” application descriptor (see ABNT NBR 15606-3:2007)

Applications with the REMOTE control code shall not be started
automatically and shall be added to the list of the receiver’s
available applications. Can be initialized using the “Application Life
Cycle Management and Control” API (see JAVADTV 1.3:2009)

0x07 UNBOUND

Applications with the UNBOUND control code are similar to
applications fl agged with PRESENT, except for the fact that its
execution is not limited to a specifi c service. If the receiver does
not have available storage capability to store the application or the
user chooses not to install the application, this shall be assigned as
non-available (it cannot be listed among the available applications).
Receivers without application storage support shall ignore the
applications fl agged with this control code

0x08 STORE

Applications with the STORE control code shall not be started
automatically, but indicate which caching techniques can be used
to accelerate the loading their resources during startup (see 7.2 for
further information)

If the platform is not able to perform pro-active caching techniques
or data storage, applications fl agged as STORE shall be treated in
the same way as applications fl agged with PRESENT

0x09…
0xFF

Not defi ned Reserved for future use

If an unknown control code is received, the application shall remain in the state it is in at that time. When
a change in the control code brings about a change of state in a Ginga-J application, an event shall be
generated for all Ginga-J applications that are registered to receive change notifi cations in the life cycle
of the application in question.

Table 2 (continued)

© ABNT 2010 - All rights reserved 11

ABNT NBR 15606-4:2010

Optionally, the platform can provide a menu with a list of applications with STORED, PRESENT and
UNBOUND fl ags (those that the user chose to install) so that the user can choose the right time to
initialize them.

With the exception of those applications fl agged with the fi eld service_bound_fl ag initialized with 0, all
applications shall be destroyed during a change of service. The execution of applications fl agged with
the fi eld service_bound_fl ag setted for 0 is not restricted to a specifi c service and cannot be interrupted
during the selection among various services (see 7.3.4 for further details). When changing the service,
the receiver can always interrupt the execution of these applications if the liberation of resources is
necessary.

7.2 Storage and caching of applications

7.2.1 Storage models

The Ginga-J application model permits applications to be stored and launched from persistent memory.
Applications may be cached proactively or in response to a request from another application, subject
to the user's consent and the platform's resource limits. In either case, the objective is to improve the
application's load speed.

Thus, it may be useful for applications where it is desirable to have a quick display, avoiding lag in the
startup thereof due to the unload time. These applications may be related to broadcast, in which case
the application's life cycle is controlled by the broadcast of the AIT, or can be completely self-suffi cient,
in which case the AIT input for the application is stored along with the application's data.

Applications fl agged with the STORE or UNBOUND control code in the AIT shall add extra information
in the MANIFEST.MF fi le in a way as to indicate which fi les shall be stored. For each fi le that shall be
stored, the input in the MANIFEST.MF for this fi le shall contain the value true for the "Persistent-Flag"
attribute and a value for the "File-Version" attribute indicating the fi le version. Receivers that support the
storage of applications shall verify the fi le version stored and update it when the application received is
a later version. Furthermore, fi le inputs shall be added to the MANIFEST.MF for the application_id and
organization_id, both fl agged in the AIT for the application in question.

Stored applications shall be visible by the Application LifeCycle Management and Control" API
(JAVADTV 1.3:2009), just as with any other applications.

7.2.2 Storage issues

The space available for application storage may not be suffi cient to accommodate all applications
fl agged as persistent (STORE or UNBOUND), making it necessary to choose which of them shall be
effectively persisted. Occasionally, it may be necessary to remove previously stored applications. In
these cases, the application persistence and removal policy of applications fl agged as STORE remains
at the discretion of the receiver manufacturer's implementation. The applications fl agged as UNBOUND
shall be installed and removed with the user’s explicit authorization and shall have priority in relation to
the applications fl agged as STORE.

When the broadcaster signals a new version of a stored application, the middleware can overwrite the
old version of the application with a new version. The time at which this happens is not predictable. If
the old version is running at the time of updating, the platform may store both versions until the copy
currently running ends. At that time, the old copy is removed from storage. If the platform chooses to
delete the old copy before the application terminates, the behavior of the application currently running
shall be the same (in practice, this means that all classes shall be loaded in memory before the old
version is deleted).

© ABNT 2010 - All rights reserved12

ABNT NBR 15606-4:2010

7.2.3 Proactive caching

When an application is fl agged with the STORE control code, the platform is permitted to proactively
store any fi les that are specifi ed in the application description fi le.

However, it is not mandatory to fulfi ll the priority requests if the proactive application storage techniques
are used. In particular, it is not mandatory for the proactive caching to store all fi les with critical priority.

7.3 Transmissio n of applications

7.3.1 Signaling rules

The default Ginga-J applications signaling rules shall comply with the provisions described in 7.1.9 and
with ABNT NBR 15606-3:2007, 12.16.

7.3.2 Packaging of applications

Ginga-J applications shall be packaged, authenticated and authorized in accordance with the defi nitions
specifi ed in JAVADTV 1.3:2009. Each Ginga-J application may contain one or more JAR fi les (see
JAR: 2009 and JVM: 1997). The main JAR fi le contains the application's class fi les, resource fi les and
a manifest that describes the application and its requirements. The JAR signature mechanism permits
JAR to be authenticated.

If the transmission is made by using the object carousel, the packaging should not be used in a JAR
fi le, but the transmitted fi le system shall be organized in the same way.

If the application is transmitted by the interactive channel, it shall be sent in JAR fi les.

7.3.3 Application authentication

The authentication of Ginga-J applications shall comply with the Brazilian Standard in force at the time
the application is transmitted.

NOTE The Brazilian Standard on application authentication is currently under development.

7.3.4 Signaling t he same application in different departments

In order for an application to be considered as signaled in various services, the following conditions
shall be met:

 — the signaling shall be present in an AIT table in all services.

 — the application identifi er shall be the same in all services;

 — the transport protocol descriptor shall be the same in all services Or the application is fl agged with
the UNBOUND control code and is already persisted in the receiver.

If besides the above described conditions the application is also fl agged with the fi eld service_bound_fl ag
with the value 0, this application shall be kept running among all the services changes, unless there are
any resources restrictions in the receiver.

7.3.5 Download of applications through the interactive channel

The application transport rules shall comply with ABNT NBR 15606-3.

Applications obtained through the interactive channel shall be contained in a JAR fi le (see 7.3.1).
Compression support in the JAR fi le is optional.

© ABNT 2010 - All rights reserved 13

ABNT NBR 15606-4:2010

8 Ginga-J Platform

8.1 Java Platfo rm

The Java platform used to run Ginga-J applications is defi ned according to PBP 1.1:2008.

The Java bytecode executed by the platform shall be version 45.3 to version 47.

8.2 Basic consi derations of the platform

8.2.1 Execution environment

Each Ginga-J application shall be processed in an isolated environment of execution, that is, there
shall be one system entity that represents one JVM where each application shall be executed without
any interference in the execution of any other application. In order to do so, this execution environment
shall allow each application to be executed by means of its own loader (ClassLoader) or even its own
hierarchy of loaders to access classes that are not part of the Ginga-J base platform.

Competing applications shall not directly share instances of objects defi ned thereby. Any interaction
between applications shall be possible only through a specifi c API. Each execution environment shall
be established at the time the application is started and should be unloaded as soon as the application
is destroyed. After the completion of each application, the Application Manager shall ensure that the
class fi nalizers contained in the application are executed.

The Ginga applications can be executed in concurrent mode. Once an instance of an application has
been loaded and started, the creation or initialization of another instance of such application shall
not be permitted. Applications are differentiated by means of their respective organization_id and
application_id values (see ABNT NBR 15606-3:2007).

Ginga-J applications should not synchronize in system classes or other static system instances.
Otherwise, the expected behavior is undefi ned.

8.2.2 Hierarchy of packages and classes

Only methods and fi elds (and their respective dependencies) of the classes listed in this part of
ABNT NBR 15606 shall be present in a Ginga implementation. Furthermore, where there is
dependence on a specifi c package, the full inclusion thereof is permitted, but not mandatory. The
behavior for additional classes and methods is not specifi ed for applications sent via broadcast.

The classes, interfaces and methods listed or referenced herein that are marked as obsolete
(depreciated), shall have their marks overwritten so that such classes, interfaces or methods become
mandatory in this part of ABNT NBR 15606. It is strongly recommended that Ginga-J applications not
use these depreciated elements, since they may no longer be supported in future versions of this part
of ABNT NBR 15606.

The inclusion of any package herein does not directly involve the inclusion of its sub-packages.

Ginga-J applications should not defi ne classes or interfaces in any package (or namespace) defi ned
herein.

Implementation classes of the Ginga-J platform should not be contained in the empty package (default
package).

© ABNT 2010 - All rights reserved14

ABNT NBR 15606-4:2010

8.2.3 Notifi cation of events

For all classes listed in this part of ABNT NBR 15606 in which there are methods for registering/
deregistering notifi cations, successive calls for registration of listeners shall have the same effect as
a single call. Therefore, each event shall be notifi ed only once per listener. Additionally, a request for
registration cancellation should not take effect if the listener in question is not registered.

The number of processes (threads) used for the notifi cation of events to the listeners, is implementation
dependent. Ginga-J applications should not block the processing in their listeners in a way as to avoid
that other listeners fail to be notifi ed.

All classes of events listed in this part of ABNT NBR 15606 shall extend to the java.util.EventObject
class.

8.2.4 Text coding

The standard text coding for the Ginga-J platform shall be UTF-8 in accordance with the java.
io.DataOutput.writeUTF method (see PBP 1.1:2008). The "Latin1" standard shoall also be supported
in accordance with ISO/IEC 8859-1:1998.

8.2.5 Life cycle of the applications

The state machine defi ned in 7.1.1 shall operate so that the behavior of applications complies with the
following restrictions:

 — the lag time perceived during startup of the application shall be as short as possible;

 — an application can be destroyed at any time.

The Application Manager shall use the Xlet API (see PBP 1.1:2008) to order changes in the life cycle
of the applications. Therefore, several factors can stimulate the Application Manager, such as:

 — fl ags originating from the broadcasters (see 7.1.9);

 — selection based on a property menu with a list of applications;

 — order originated in another Ginga-J application by means of the "Application Lifecycle Management
and Control" API (JAVADTV 1.3:2009) (see 7.1.6);

 — order originated in NCL documents deploying one or more Xlets.

The application itself may decide to change its state. In order to do so, it shall use its instance of javax.
microedition.xlet.XletContext to request such change from the Application Manager.

8.3 Common infra structure

The APIs defi ned in (see CDC 1.1:2008; FP 1.1:2008 and PBP 1.1:2008) are included herein as the
basis for the functioning of the Ginga-J platform.

The specifi c packages for digital television defi ned in JAVATV 1.1:2008 shall also be used in this
Standard. Additionally, the following restrictions shall be compliant:

 — the group of processes (threads) of a Ginga-J application shall not contain processes with priority
higher than java.lang.Thread.NORM_PRIORITY;

© ABNT 2010 - All rights reserved 15

ABNT NBR 15606-4:2010

 — the return of the System.currentTimeMillis method shall be synchronized with the date and time
transmitted in the TOT;

 — the return of the System.currentTimeMillis method shall have granularity less than or equal to 10 ms;

 — the TimeZone used by the JVM shall be in accordance with the receiver's confi gurations.

 — the java.util.Calendar shall be synchronized in accordance with the date and time transmitted in
the TOT ;

 — the default java.util.Locale of the JVM shall be defi ned as "pt_BR";

 — the Ginga-J applications shall not use the java.util.TimeZone.setDefault method. The behavior of
this method is implementation dependent;

 — the System.out and System.err output streams shall be available for Ginga-J applications. However,
the System.in input stream should not be available;

 — the Runtime.traceInstructions and Runtime.traceMethodCalls methods shall be available without
having any negative impact on the execution of the applications and without interference in the
functioning of other API;

 — the System.gc method is implementation dependent and has no defi ned behavior;

 — the Runtime.gc method is implementation dependent and has no defi ned behavior;

 — the platform should use mechanisms prescribed in java.lang.SecurityManager.
checkPackageDefi nition and java.lang.SecurityManager.checkPackageAccess, in order to
prevent improper use of the system classes by the applications;

 — the javax.tv.xlet package is considered obsolete (depreciated) for this specifi cation. However,
in order to enable greater integration with legacy applications, instances of javax.microedition.
xlet.XletContext should also implement javax.tv.xlet.XletContext. Both interfaces contain similar
methods and behaviors. Use of the javax.tv.xlet.XletContext interface shall be avoided for Ginga-J
applications;

 — the javax.tv.graphics package is considered obsolete (deprecated) for this specifi cation.
The classes and interfaces defi ned therein should not be used by Ginga-J applications;

 — the minimum granularity for the javax.tv.util.TVTimer class shall be less than or equal to 10 ms;

 — the smallest increment of repetition for the javax.tv.util.TVTimer class shall be 40 ms;

 — calls to the javax.tv.util.TVTimer.scheduleTimerSpec method shall bring about exceptions
of TVTimerScheduleFailedException type, if there are no timers available in the system.

8.4 Graphical pr esentation and events handling

8.4.1 LWUIT, LightWeight user interface toolkit

This Standard uses JAVADTV 1.3:2009 to defi ne the graphical components and user events handling
mechanism. The applications have graphical functionalities such as:

 — high-level graphical components;

© ABNT 2010 - All rights reserved16

ABNT NBR 15606-4:2010

 — application of customizable themes to the graphical components;

 — hierarchical treatment through containers and components;

 — abstraction of components native to the system.

8.4.2 Graphical us er interface

The graphical user interface will be made using the specifi c components for television applications
and graphical components provided by the LWUIT 1,1:2008incorporated into JAVADTV 1.3:2009.
The packages that defi ne the graphical components are:

 ● com.sun.dtv.ui – defi nes the graphical components specifi cally related to television;

 ● com.sun.dtv.lwuit – contains the graphical components that support the creation of graphical user
interfaces;

 ● com.sun.dtv.lwuit.animations – enables not only graphical components but also animated transitions
between containers;

 ● com.sun.dtv.lwuit.geom – defi nes the basic geometric elements for drawing;

 ● com.sun.dtv.lwuit.layouts – defi nes useful types of graphic layouts;

 ● com.sun.dtv.lwuit.list – defi nes customizable list structures, used in components of other packages
such as com.sun.dtv.lwuit;

 ● com.sun.dtv.lwuit.painter – permits graphical elements to be drawn arbitrarily based on fl at, scaled
and/or tiled images;

 ● com.sun.dtv.lwuit.plaf – permits customization of the appearance of the graphical components;

 ● com.sun.dtv.lwuit.util – utilities package.

The com.sun.dtv.ui.MatteEnabled interface, and the com.sun.dtv.ui.AnimatedMatte and com.sun.
dtv.ui.StillMatte classes shall be present and implemented in order to maintain the contract with the
applications. However, the functionality of graphic composition using the transparency information
provided by the instances of these objects is optional for implementations of the Ginga-J platform.

8.4.3 Treatment of the platform planes

8.4.3.1 General considerations

The com.sun.dtv.ui package permits generic access to the planes offered by the platform for content
display, organized into sections on the device’s screen. According to ABNT NBR 15606-1, the organization
of the planes, or layers, is presented as shown in Figure 5.

© ABNT 2010 - All rights reserved 17

ABNT NBR 15606-4:2010

Figure 5 – Structure of layers for the presentation of services

The subtitles plane is not accessible by Ginga applications; this is a characteristic, which is native to
the receiver. However, there remain four planes upon which a Java application can operate. Following
this convention, they are always returned in this manner, the getAllPlanes() method of the com.sun.dtv.
ui class.Screen (which in turn is obtained by means of the com.sun.dtv.ui.Device class):

 — Plane[0]: Text and graphic plane;

 — Plane[1]: Video/picture selection plane;

 — Plane[2]: Still pictures plane;

 — Plane[3]: Video plane.

For each of these planes, it is possible to obtain the characteristics thereof, and perform graphic
operations thereon. These characteristics, and the operations supported by each plane, maintain
compliance with the defi nitions set forth in ABNT NBR 15606-1. This detailing is done in the following
subsections, where the return values are defi ned for each one of the methods, within the com.sun.dtv.
ui.Capabilities object that corresponds to the respective plane.

8.4.3.2 Text and graphic plane

The text and graphic plane is the one on which the application can draw graphical elements (primitive
geometrics and images) with high color defi nition and channel of transparency over the video.

The return of the getID (): “GraphicPlane” method is detailed in Table 3.

Table 3 – Details of functionalities for the text and grap

Function Description

getBitsPerPixel() 32

getColorCodingModel() ColorCoding.ARGB8888

getSupportedPixelAspectRatios()

A single Dimension(1,1) object is the
recommended value (indicates pixels with
a 1:1 ratio). Any value other than this is
considered optional

© ABNT 2010 - All rights reserved18

ABNT NBR 15606-4:2010

Function Description

getSupportedPlaneAspectRatios()
A single Dimension object with constr uction
value (16.9) or (4.3), depending on the
confi guration of the receiver’s video output

getSupportedScreenResolutions()
A single Dimensionobject with the
dimensions of the text and graphic plane
at that moment

isAlphaBlendingSupported() True

isGIFRenderingSupported()
True only for platforms that permit GIF
images display in the graphic plane

isGraphicsRenderingSupported() True

isImageRenderingSupported() True

isJPEGRenderingSuppored() True

isPNGRenderingSuppored() True

isRealAlphaBlendingSupported() True

isVideoRenderingSupported()

True only for platforms that permit
display of video monomedia (or even an
elementary video stream) in the graphic
plane

isWidgetRenderingSupported() True

The com.sun.dtv.ui.DTVContainer associated with this com.sun.dtv.ui.Plane shall support all types of
com.sun.dtv.lwuit.component and graphical operations defi ned in the LWUIT API, except for the display
of media types that are not permitted in the text and graphic plane (see ABNT NBR 15606-1).

8.4.3.3 Video/picture selection plane

The video/picture selection plane allows the defi nition of areas of precedence between the still picture
plane and the video plane. In other words, in which rectangular areas of the screen the still pictures
plane will be displayed over the video, or vice-versa.

The return of the getID: “SwitchingPlane” method is detailed in Table 4.

Table 4 – Details of the functionalities for video and still picture plane

Function Description

getBitsPerPixel() 1

getColorCodingModel() ColorCoding.ONE_BPP

getSupportedPixelAspectRatios() Ditto as the GraphicPl ane.

getSupportedPlaneAspectRatios() Ditto as the GraphicPlane.

Table 3 (continued)

© ABNT 2010 - All rights reserved 19

ABNT NBR 15606-4:2010

Function Description

getSupportedScreenResolutions()
A single Dimensionobject with the
dimensions of the video at that moment.

isAlphaBlendingSupported()
True (The video/picture selection plane is
the mode whereby the still picture plane
implements alpha blending).

isGIFRenderingSupported() False

isGraphicsRenderingSupported() False

isImageRenderingSupported() False

isJPEGRenderingSuppored() False

isPNGRenderingSuppored() False

isRealAlphaBlendingSupported() False

isVideoRenderingSupported() False

isWidgetRenderingSupported() True

The com.sun.dtv.ui.DTVContainer associated with this com.sun.dtv.ui.Plane will support – in
addition to the defi nition of a layout manager (setLayout () method) – only the addComponent() and
removeComponent() calls, and only when the com.sun.dtv.lwuit.Component is passed as the parameter
is of the br.org.sbtvd.ui.SwitchArea type (see Annex G). The other methods, although they do not
generate errors in the application, have no effect because they refer to operations that aren’t supported
by the video/picture selection plane.

By means of the com.sun.dtv.lwuit.plaf.Style associated with the com.sun.dtv.ui.DTVContainer of this
plane, the video content that will appear over the Still Picture Plane can be defi ned, and vice-versa.
The instances of com.sun.dtv.lwuit.plaf.Style associated with this component may only contain solid
colors (java.awt.Color). The color black, java.awt.Color. BLACK, represents that the video shall be
displayed over the Still Picture Plane. With the use of any other color, the contents of the Still Picture
Plane will appear in front of the video. Thus, the applications use a Java (RGB888 or ARGB8888)
color model in order to control the video/image selection plane. This API implementation will make the
conversion of the Java color model to the color model of the video/image selection plane, in accordance
with the following function:

8.4.3.4 Still pictures plane

This is the plane upon which the application can display images with high resolution and color depth in
the JPEG format. Typically, it is used to defi ne a background plane for the application on screens where
the video is resized. However, through combined use with the video/picture selection plane, it can be
used to display high-resolution JPEG images over the video.

The return of the getID: “StillPlane” is detailed in Table 5.

Table 4 (continued)

© ABNT 2010 - All rights reserved20

ABNT NBR 15606-4:2010

Table 5 – Details of functionalities for the still picture plane

Function Description

getBitsPerPixel() 16

getColorCodingModel() ColorCoding.YUV442

getSupportedPixelAspectRatios() Ditto as the GraphicPlane

getSupportedPlaneAspectRatios() Ditto as the GraphicPlane

getSupportedScreenResolutions()
A single Dimensionobject with the dimensions
of the still picture plane at that moment

isAlphaBlendingSupported()
True (implemented through the video/picture
selection plane)

isGIFRenderingSupported() False

isGraphicsRenderingSupported() False

isImageRenderingSupported() True

isJPEGRenderingSuppored() True

isPNGRenderingSuppored() False

isRealAlphaBlendingSupported() False

isVideoRenderingSupported() False

isWidgetRenderingSupported() True

The com.sun.dtv.ui.DTVContainer associated with this com.sun.dtv.ui.Plane will support – in
addition to the defi nition of a layout manager (setLayout () method) – only the addComponent () and
removeComponent () calls, and only when the component passed as the parameter is of the br.org.
sbtvd.ui.StillPicture type (see Annex G). The other methods, although they do not generate an error
in the application, have no effect because they refer to operations that are not supported by the still
picture plane.

Through a com.sun.dtv.lwuit.plaf.Style associated to the com.sun.dtv.ui.DTVContainer object instance
of this plane, a solid back color (without transparency) can be defi ned. This color shall be displayed
as a content of the still picture plane in all regions of this plane that are not fulfi lled by objects of the
br.org.sbtvd.ui.StillPicture kind. This color shall be defi ned in the RGB888, color model, which is natural
of Java’s environment, being the conversion to a YUV442 color model made by the platform.

8.4.3.5 Video plane

The video plane displays the elementary video stream of the service, or (optionally) video monomedia.
The content displayed in this plane can be handled through the JMF controls.

The return of the getID: “VideoPlane” is detailed Table 6.

© ABNT 2010 - All rights reserved 21

ABNT NBR 15606-4:2010

Table 6 – Details of the functionalities for the video plane

Function Description

getBitsPerPixel() Launches a SetupException.

getColorCodingModel() Launches a SetupException.

getSupportedPixelAspectRatios() Ditto as the GraphicPlane.

getSupportedPlaneAspectRatios() Ditto as the GraphicPlane.

getSupportedScreenResolutions()
A single Dimensionobject with the
dimensions of the video at that moment.

isAlphaBlendingSupported()
False (it is the plane located farthest back
in the chain).

isGIFRenderingSupported() False

isGraphicsRenderingSupported() False

isImageRenderingSupported() False

isJPEGRenderingSuppored() False

isPNGRenderingSuppored() False

isRealAlphaBlendingSupported() False

isVideoRenderingSupported() True

isWidgetRenderingSupported() False

There is no com.sun.dtv.ui.DTVContainer object associated with this com.sun.dtv.ui.Plane.
The invocation of any method other than getCapabilities () in this instance in particular, will have an
implementation-dependent effect.

8.4.3.6 Planes Compostion

Picture 6 represents an example of composition between different planes. It is possible to observe
how the video content is displayed by the black region in the video/image selection plane in the fi nal
composition. Similarly, the contents of the static images plane are displayed in front of the video in the
video/image selection plane “white” region.

The text and graphic plane content is always displayed in front of the other planes.

© ABNT 2010 - All rights reserved22

ABNT NBR 15606-4:2010

Figure 6 – Composition example of content display plane

8.4.4 User events handling

The user events handling mechanism is provided by specialized television components and the
components provided by the LWUIT 1.1:2008 incorporated in to JAVADTV 1.3:2009. The packages that
defi ne these components are:

 ● com.sun.dtv.ui.event – specifi c television events handling mechanism;

 ● com.sun.dtv.lwuit .events – events handling mechanism related to the graphical components
defi ned in the LWUIT 2008 incorporated into JAVADTV 1.3:2009.

The entire user events handling mechanism is based on the EDT (Event Dispatch Thread) model,
giving the platform thorough knowledge of the events and passing them on to the applications and their
specialized treatment.

© ABNT 2010 - All rights reserved 23

ABNT NBR 15606-4:2010

ABNT NBR 15604:2007, 7.2.28.3, defi nes the minimum functions on the remote control for receivers
that feature an interactivity mechanism. These functions shall be mapped for the event types defi ned
in the com.sun.dtv.lwuit.event.RemoteControlEvent class of JAVADTV 1.3:2009. Table 7 shows this
mapping.

Table 7 – Mapping of functions of ABNT NBR 15604:2007 in the events
defi ned by JAVADTV 1.3:2009

Functions defi ned in
ABNT NBR 15604:2007

com.sun.dtv.lwuit.event.RemoteControlEvent
class

Confi rm VK_CONFIRM

Exit VK_ESCAPE

Back VK_BACK

Directional/Arrow

Up VK_UP & VK_KP_UP

Down VK_DOWN & VK_KP_DOWN

Left VK_LEFT & VK_KP_LEFT

Right VK_RIGHT e VK_KP_RIGHT

Coloured

Red VK_COLORED_KEY_0

Green VK_COLORED_KEY_1

Yellow VK_COLORED_KEY_2

Blue VK_COLORED_KEY_3

8.5 Information and selecti on of services

8.5.1 General considerations

The API service information for this specifi cation is responsible for providing the applications with access
to the information contained in the MPEG service information tables. Such information shoall include
the audio and video streams present in each multiplex service, also including a textual description
of the services and events that comprise it, among others.

This API is based on the defi nition of the APIs described in ARIB STD-B.23: 2006, Annex M,
which is based on the GEM and provides functionalities of access to service information in accordance
with the reference model of the Japanese digital TV standard ARIB STD-B10: 2008, the same as
extended by the SBTVD. However, since the core of this standard is the JAVADTV 1.3:2009 specifi cation,
it was necessary to make changes in the elements of the jp.or.arib.tv.si and jp.or. arib.tv.net package,
aimed at integrating the functionality of protocol-dependent access to service information. Annex B
provides details on these functionalities.

8.5.2 Integration with API protocol-independent

The protocol-independent API service information shall comply with JAVADTV 1.3:2009, 6.4.

© ABNT 2010 - All rights reserved24

ABNT NBR 15606-4:2010

8.6 Presentation and execut ion of media

The service information API adopts the Java Media Framework (JMF) 1.0 and optionally may incorporate
additional API defi ned by Java Media Framework (JMF) 2.1. The JMF2.1 is backward compatible with
the JMF 1.0.

8.7 Access to data

8.7.1 General considerations

The java.io API (see PBP 1.1:2008) shall be used to access data objects in a generic way. Classes
and interfaces contained in this package related to fi les and fi le systems shall comply with the following
restriction:

 — the java.io.ObjectInputStream.readLine method is marked as obsolete (depreciated) by this
Standard. Therefore, it should not be used by applications sent via broadcast.

8.7.2 Access to fi les

For an application sent via broadcast and signaled in a particular service, data objects accessed by
means of relative paths shall be queried based on the path indicated in the application's location
descriptor “ginga_j_application_location_descriptor” (see ABNT NBR 15606-3:2007, 12.18.2),
in the base_directory fi eld. The path defi ned in the descriptor in question shall be considered as the
application's base directory.

8.7.3 Broadcast transport protocol

When the application is transmitted via broadcast protocol, using the DSMCC Object Carousel
or DSMCC Data Carousel protocols, they shall be supported by the extensions provided by the
"Broadcast fi le and streams handling" (see JAVADTV 1.3:2009). This API provides access to internal
stream data and fi les as an extension to the set of functionalities already available in the java.io
package (see PBP 1.1:2008).

Clarifi cations about input/output operations for objects sent via broadcast can be found in the
documentation of the com.sun.broadcast.BroadcastFile class (see JAVADTV 1.3:2009), as well as
JAVADTV 1.3:2009 , 8.2.7.

The aforementioned clarifi cations shall also be applied to operations with data objects of the java.io.File
type (see PBP 1.1:2008).

8.7.4 Persistent storage

For the purposes of persistent storage, the javax.microedition.io and java.io packages shall be
available (see PBP 1.1:2008), as well as the "Persistent storage access rights and properties" API
(see JAVADTV 1.3:2009).

The "com.sun.dtv.persistent.root” property should be accessible by means of the java.lang.System.
getProperty method (see PBP 1.1:2008) and shall identify the root directory for persistent storage.
Relative paths should not be used to access objects in persistent storage, under penalty of undefi ned
functioning across platforms. The structure of directories prescribed for persistent storage is described
in detail in JAVADTV 1.3:2009, 6.5.

© ABNT 2010 - All rights reserved 25

ABNT NBR 15606-4:2010

Access to fi les or directories above the application’s base directory shall always result in an exception
of the java.lang.SecurityException type (see PBP 1.1:2008) for Ginga-J applications.

Ginga-J applications that are signed, authenticated and have authorized permissions to access
persistent storage, shall have the privileges provided in JAVADTV 1.3:2009, 6.5 granted.

For applications with access permissions granted, the directories and sub-directories that have access
shall be created automatically by the platform if they do not already exist. It is recommended that required
directories and sub-directories be created as soon as the permissions are granted. The identifi er of the
owner of the directories and sub-directories created automatically by the platform shall have the same
value of the application_id (see ABNT NBR 15606-3:2007, 12.7) of the application in question.

Ginga-J applications shall create fi les or directories only where they have “write” permissions.

Details about the release of space by the platform are implementation-dependent. However,
the persistence of the fi les shall be guaranteed while the application is running or fl agged in the AIT
table with a control code other than KILL or DESTROY.

8.7.5 Access to system properties

Access to the system properties will be done by the java.lang.System.getProperty,java.lang.System.
getProperties and java.lang.System. setProperty methods.

The use of the java.lang.System.setProperties () method is not permitted for Ginga-J applications.

8.7.6 IP support over an interactive channel

For devices where the establishment (setup) of a connection is necessary, the direct use of java.net.
Socket or java.net.URLConnection shall result in an attempt to connect according to the parameters
sent in the application's permissions fi le. For further information, see "Per Policy Application Schema"
(see JAVADTV 1.3:2009).

For handling of the interactivity devices available on the platform, the "Extensive communication control
device" API shall be used (see JAVADTV 1.3:2009). Additional defi nitions on the use of the java.net
default connection API (see PBP 1.1:2008) are found in the class documentation com.sun.dtv.net.
NetworkDevice (see JAVADTV 1.3:2009), as well as in JAVADTV 1.3:2009, 6.2.5.

8.7.7 MPEG-2 section fi ltering

To get the MPEG-2 section fi lters, the "Support MPEG-2 Section Filtering" API shall be used (see
JAVADTV 1.3:2009).

8.8 Application management

In this Standard, the digital television applications are called Xlets (see JAVATV 1.1:2008), and their life
cycle is managed as described in 7.1. These applications execute in an services-oriented environment
controlled by an Application Manager (see JAVADTV 1.3:2009), and this component is responsible
for the actions of loading, confi guring, instantiating and executing applications for digital television, as
well as for controlling the life cycle and states of these applications. It is also the responsibility of the
applications manager to attribute execution priority levels to the applications, as well as identify and
mitigate any failures that occur during the execution thereof.

© ABNT 2010 - All rights reserved26

ABNT NBR 15606-4:2010

All this management and monitoring is conducted internally by the system. Television applications
duly signed and certifi ed, as described in JAVADTV 1.3:2009 clause 6.2, are permitted to control and/
or monitor the life cycle of these applications. These features are accessible in JAVADTV 1.3:2009
through the package:

 ● com.sun.dtv.application

8.9 Tuning

The br.org.sbtv d.net.tuning API is an extension of the com.sun.dtv.tuner package of JAVADTV 1.3:2009.
The new functions are interactive channel zapping and scanning of all existing network interfaces on a
receiver. Further details about these functionalities are available in Annex C.

8.10 NCL Bridge

The NCL brid ge API contains the set of classes available for the bridge between information and
process applications, in the Ginga environment. The functions available in the classes that are described
below permit the development of Ginga-J procedure applications, including Ginga-NCL applications,
and vice-versa. The Ginga-J NCL bridge API controls the presentation of an NCL document and offers
resources so that a Ginga-J application included in an NCL document is notifi ed about the occurrence
of transition events made on the media node that encapsulates it.

If Java is instantied from NCL, the applications management shall be in compliance with
ABNT NBR 15606-2:2007, 8.5. If NCL is instantied from Java, the applications management shall be
in compliance with which is described in 8.8.

Complementary information can be found in ABNT NBR 15606-2:2007, 11.2 and 10.3.4.3 and Annex D.

8.11 Platform properties

8.11.1 S ystem Properties

Ging a-J applications shall have access to platform properties that indicate general characteristics,
such as supported profi les and/or features. Therefore, in addition to the properties already specifi ed
in the java.lang.System.getProperties (see PBP 1.1:2008) and the Ginga-NCL methods (see
ABNT NBR 15606-2:2007, 7.2.4), the properties listed on Table 8 shall be available through the
getProperty () and getProperties () methods of the java.lang.System class (see PBP 1.1:2008).

The system properties are described in Table 8 and cannot be changed by the Ginga-J applications.

Table 8 – System Properties

Name Type of data Description

com.sun.dtv.version Alphanumeric
The version number of the JavaDTV
specifi cation implemented by the platform (see
JAVADTV 1.3:2009)

com.sun.dtv.net.default.timeout Numeric
Maximum wait time (timeout) for establishing a
connection

system.gingaj_version Alphanumeric Version number of the Ginga-J specifi cation
implemented by the platform

© ABNT 2010 - All rights reserved 27

ABNT NBR 15606-4:2010

Name Type of data Description

system.internet_access Boolean
Indicates whether the Internet access profi le is
available. (Possible values: “true” or “false”)

system.gingaj_profi le Alphanumeric
The Ginga-J specifi cation profi le number
supported by the platform

8.11.2 User properties

In addition to the set of system properties, Ginga-J applications can maintain user-specifi c platform
properties. For such, the "User preferences" API shall be used (see JAVADTV 1.3:2009).

The "User preferences" API (see JAVADTV 1.3:2009) shall also be used to receive notifi cations of
changes to any system properties defi ned in 8.11.1.

8.12 Interactivity channel

Through th is API, the Ginga system has the ability to identify the existence of the interactivity channel
devices on the receiver, and may establish a connection if it is disconnected. Data communication after
the established connection takes place through the java.net API. *

8.13 Complete list of Ginga-J package s

8.13.1 Java platform packages

The following packages (see CDC 1.1:2008; FP 1.1:2008; PBP 1.1:2008) are included by this part of
ABNT NBR 15606:

 ● java.awt

 ● java.awt.color

 ● java.awt.event

 ● java.awt.font

 ● java.awt.im

 ● java.awt.image

 ● java.beans

 ● java.io

 ● java.lang

 ● java.lang.ref

 ● java.lang.refl ect

Table 8 (continued)

© ABNT 2010 - All rights reserved28

ABNT NBR 15606-4:2010

 ● java.math

 ● java.net

 ● java.rmi

 ● java.rmi.registry

 ● java.security

 ● java.security.acl

 ● java.security.cert

 ● java.security.interfaces

 ● java.security.spec

 ● java.text

 ● java.util

 ● java.util.jar

 ● java.util.zip

 ● javax.microedition.io

 ● javax.microedition.pki

 ● javax.microedition.xlet

 ● javax.microedition.xlet.ixc

 ● javax.security.auth.x500

8.13.2 JavaTV 1.1 and JMF 1.0 specifi cation packages

The following packages (see JAVATV 1.1:2008) are included by this part of ABNT NBR 15606:

 ● javax.media

 ● javax.media.protocol

 ● javax.tv.graphics

 ● javax.tv.locator

 ● javax.tv.media

 ● javax.tv.net

 ● javax.tv.service

© ABNT 2010 - All rights reserved 29

ABNT NBR 15606-4:2010

 ● javax.tv.service.guide

 ● javax.tv.service.navigation

 ● javax.tv.service.selection

 ● javax.tv.service.transport

 ● javax.tv.util

 ● javax.tv.xlet

8.13.3 JavaDTV 1.1 specifi cation packages

The following packages (see JAVADTV 1.3:2009) are included by this part of ABNT NBR 15606:

 ● com.sun.dtv.application

 ● com.sun.dtv.broadcast

 ● com.sun.dtv.broadcast.event

 ● com.sun.dtv.fi ltering

 ● com.sun.dtv.io

 ● com.sun.dtv.locator

 ● com.sun.dtv.lwuit

 ● com.sun.dtv.lwuit.animations

 ● com.sun.dtv.lwuit.events

 ● com.sun.dtv.lwuit.geom

 ● com.sun.dtv.lwuit.layouts

 ● com.sun.dtv.lwuit.list

 ● com.sun.dtv.lwuit.painter

 ● com.sun.dtv.lwuit.plaf

 ● com.sun.dtv.lwuit.util

 ● com.sun.dtv.media

 ● com.sun.dtv.media.audio

 ● com.sun.dtv.media.control

 ● com.sun.dtv.media.dripfeed

© ABNT 2010 - All rights reserved30

ABNT NBR 15606-4:2010

 ● com.sun.dtv.media.format

 ● com.sun.dtv.media.language

 ● com.sun.dtv.media.text

 ● com.sun.dtv.media.timeline

 ● com.sun.dtv.net

 ● com.sun.dtv.platform

 ● com.sun.dtv.resources

 ● com.sun.dtv.security

 ● com.sun.dtv.service

 ● com.sun.dtv.smartcard

 ● com.sun.dtv.test

 ● com.sun.dtv.transport

 ● com.sun.dtv.tuner

 ● com.sun.dtv.ui

 ● com.sun.dtv.ui.event

8.13.4 JSSE 1.0.1 specifi cation packages

The following packages (see JSSE 1.0.1) are included by this part of ABNT NBR 15606:

 ● com.sun.net.ssl

 ● javax.net

 ● javax.net.ssl

 ● javax.security.cert

8.13.5 JCE 1.0.1 specifi cation packages

The following packages (see JCE 1.0.1) are included by this part of ABNT NBR 15606:

 ● javax.crypto

 ● javax.crypto.interfaces

 ● javax.crypto.spec

© ABNT 2010 - All rights reserved 31

ABNT NBR 15606-4:2010

8.13.6 SATSA 1.0.1 specifi cation packages

The following package (see SATSA 1.0.1) is included by this part of ABNT NBR 15606:

 ● javax.microedition.apdu

8.13.7 Ginga-J specifi c packages

The following GINGA-J specifi c packages are included by this part of ABNT NBR 15606:

 ● br.org.sbtvd.net

 ● br.org.sbtvd.net.si

 ● br.org.sbtvd.net.tuning

 ● br.org.sbtvd.bridge

 ● br.org.sbtvd.ui

The minimum requirements for a receiver compatible with Ginga shall comply with ABNT NBR 15604:2007.

© ABNT 2010 - All rights reserved32

ABNT NBR 15606-4:2010

Annex A
(normative)

Java DTV 1.3 specifi cation

A.1 General considerations

The JAVADTV 1.3:2009 specifi cation is comprised of the Java DTV API added to the component base
of the Java execution environment, also including Connected Device Confi guration, Foundation Profi le,
and Personal Basis Profi le.

Java DTV is a specifi cation that offers functionality of a digital television receiver for the development
of Java-based applications. In this Annex, the main elements of the JAVADTV 1.3:2009 specifi cation
are described.

A.2 Java DTV API

NOTE For further details on the Java DTV API, see http://java.sun.com/javame/technology/javatv/index.jsp

A.2.1 com.sun.dtv.broadcast package

The com.sun.dtv.broadcast package permits access to broadcast fi les and streams and shall be
implemented in accordance with JAVADTV 1.3:2009. The interfaces and classes of this package,
described in Table A.1, shall be used.

Table A.1 – Classes of the com.sun.dtv.broadcast package

Class Description

BroadcastFile class
Represents fi le or directory data obtained from the broadcast
channel

BroadcastFileEvent class Indicates notifi cations of change for the BroadcastFile data

BroadcastFilesystem class
Represent instances of the fi le system obtained from the
broadcast channel and assembled within the local fi le system

BroadcastFileListener interface
Implemented by application classes that wish to receive
notifi cations of changes to the BroadcastFile data

BroadcastStream class
Represents streams obtained through fi les obtained from the
broadcast channel

BroadcastException class

All broadcast-related exceptions shall use this subclass (which
in turn is an extension of java.io.IOException) in order to
facilitate the identifi cation of the reasons that brought about the
exception

© ABNT 2010 - All rights reserved 33

ABNT NBR 15606-4:2010

A.2.2 com.sun.dtv.smartcard package

The com.sun.dtv.smartcard package provides supports for additional functionalities for the use of smart
cards.

The implementation of this package shall be in compliance with JAVADTV 1.3:2009, including the
interfaces and classes described in Table A.2.

Table A.2 – Classes of the com.sun.dtv.smartcard package

Classes Description

CardTerminalListener interface
Listener interface, responsible for receiving events
originating from the device’s smart card readers

PassThroughAPDUConnection interface
Marker interface that identifi es the specifi c connection
objects of the APDU (Application Protocol Data Unit),
which perform direct communication with the smart card

TerminalFactory class
Provides access to the smart card reader device(s)
implemented or connected to the device

CardTerminalEvent class
Defi nes an event object that informs the listeners about
changes of state occurring in the smart card reader

CardTerminal class
Encapsulates the functionalities of the physical part of
the smart card reader

A.2.3 com.sun.dtv.lwuit.events package

The com.sun.dtv.lwuit.events package implements the Observable design standard (also used in 1.1
AWT API) that defi nes an architecture to fi re and handling events on graphical interfaces. All events are
triggered by a thread called Event Dispatch Thread (EDT). See documentation on the API for further
details.

This package shall be implemented according to JAVADTV 1.3:2009, where the interfaces and classes
of this package, described in Table A.3, shall be used.

Table A.3 – Classes of the com.sun.dtv.lwuit.events package

Classes Description

DataChangedListener interface
Interface callback events handling, which are invoked when
changes in the state occur and indicate that the display shall
be updated

FocusListener interface
Focus-change event listener for Form, permits features to be
attributed according to the current focus of the component

SelectionListener interface Invoked to indicate a change in the default list selection

StyleListener interface Invoked to indicate changes in a property

ActionEvent class Object event triggered when a callback is invoked

ActionListener interface
Callback events interface invoked when a component action
occurs

© ABNT 2010 - All rights reserved34

ABNT NBR 15606-4:2010

A.2.4 com.sun.dtv.fi ltering package

The com.sun.dtv.fi ltering package offers support for access to MPEG-2 transport stream sections.
In addition to permitting various types of fi ltering, the API uses an asynchronous model that provides
notifi cation about events or errors in reading the sections.

This package shall be implemented according to JAVADTV 1.3:2009. The interfaces and classes of this
package, described in Table A.4, shall be used.

Table A.4 – Classes of the com.sun.dtv.fi ltering package

Classes Description

DataSectionFilterCollection class
This class represents a collection of data section fi lters,
where such fi lters may be activated and deactivated as
a single operation

FilterTimedOutEvent class
This event is triggered if data section fi lter operations
expire (time-out) according to the period specifi ed by
the setTimeout () method

DataSectionFilterException class
Base class for launching exceptions of the data section
fi lter API

DataSectionAvailableEvent class
This event indicates that a data section has been
completely processed

DataSectionFilter class This is the root class of all fi lter classes

DataSection class
This class encapsulates a transport stream data section,
where the objects of this class are also cloneable

IncompatibleSourceException class
Class that informs when an incompatible source stream
is supplied

DataSectionDataBuffer class
This class encapsulates a part of the loaded transport
stream section

FilteringStoppedEvent class

This class is used to inform the end of a fi ltering
operation, with one exception: It is not informed when a
SimpleSectionFilter ends in normal conditions (e.g., after
a fi lter section has been performed successfully)

DataUnavailableException class
Informs when the information of a DataSection object are
not available

DataSectionFilterEvent class This is a base class for fi lter section API events

FilterInterruptException class
Signals that a fi lter was interrupted before all the data
have been fi ltered

DisconnectedException class
Indicates that when the DataSectionFilterCollection
lost the connection because of a fl aw in the call of the
startFiltering () method

InvalidFilterException class Signals that a fi lter has been defi ned incorrectly

© ABNT 2010 - All rights reserved 35

ABNT NBR 15606-4:2010

Classes Description

FilterResourceUnavailableException
class

Informs that the necessary requirements for an fi ltering
operation have not been met

CircularFilter class
This class defi nes a fi lter section designed to capture
continuous data streams without the need to restart
the fi lter continuously

FilterEventListener interface
This listener interface can be implemented by classes
that demand fi ltering events

ListFilter class
This class defi nes a fi lter section that can process a
complete set of segments of a data section that represent
a simple section table

SingleFilter class
This class defi nes a fi lter section destined to capture
a single data section

A.2.5 com.sun.dtv.ui.event package

The com.sun.dtv.ui.event sub-package has the function of treating graphical user interface events
specifi c to digital television.

This package shall be implemented according to JAVADTV 1.3:2009. The interfaces and classes of this
package, described in Table A.5, shall be used.

Table A.5 – Classes of the com.sun.ui.event package

Classes Description

KeyListener interface

Functions only as an encapsulator to introduce java.
awt.event.KeyListener in the LWUIT API, since it does
not support key event objects and provides only an
ActionListener

PlaneSetupEvent class
Event sent to all registered consumers when the
confi guration of a Plane is changed

MouseEvent class

Extends java.awt.event.MouseEvent implementing the com.
sun.dtv.ui.eventUserInputEvent interface. Works only as an
marker interface, because UserInputEvent is derived from
the ScarceResource interface

UserInputEvent interface
Abstraction for user input events sent to all registered
consumers whenever a new user input event occurs through
a UserInputDevice

UserInputEventListener interface
Shall be implemented by classes that wish to receive
UserInputEvent

Table A.4 (continued)

© ABNT 2010 - All rights reserved36

ABNT NBR 15606-4:2010

Classes Description

KeyEvent class

Extends java.awt.event.KeyEvent implementing the com.
sun.dtv.ui.eventUserInputEvent interface. Works only as
an marker interface, because UserInputEvent is derived
from the ScarceResource interface

MouseListener interface

Functions only as an encapsulator to introduce java.awt.
event.MouseListener in the LWUIT API, since it does
not support mouse event objects and provides only an
ActionListener

UserInputEventManager class
The instances of this class are events managers that treat
user input events generated by graphical components

RemoteControlEvent class
Extends com.sun.dtv.ui.event.KeyEvent adding
the television-specifi c key codes

PlaneSetupListener interface Used to monitor changes in the confi guration of a Plane

A.2.6 com.sun.dtv.lwuit.plaf package

The com.sun.dtv.lwuit.plaf package permits customization of the application's appearance ("look and
feel"). In this case, it uses a rendering layer abstraction that can be coupled and confi gured (with
themes, for example) in run time.

This package shall be implemented according to JAVADTV 1.3:2009. The interfaces and classes of this
package, described in Table A.6, shall be used.

Table A.6 – Classes of the com.sun.lwui.plaf package

Classes Description

LookAndFeel class

Allows programmers to completely customize the
appearance (look and feel) of the application, through
appropriate methods of image superimposition and
dimensioning

UIManager class
The central point for managing the look and feel of the
application allows customization of styles (themes) and
appearance

Style class Represents the appearance of a particular component

Border class
Base class that permits the creation of a frame for a
component, whereby the frame is drawn before the
component fi lling in its marginal region

DefaultLookAndFeel class Used to render the default appearance of the LWUIT

Table A.5 (continued)

© ABNT 2010 - All rights reserved 37

ABNT NBR 15606-4:2010

A.2.7 com.sun.dtv.media.timeline package

The com.sun.dtv.media.timeline package permits the obtainment and defi nition of media timelines to
be notifi ed about time events launched during media playback.

This package shall be implemented according to JAVADTV 1.3:2009. The interfaces and classes of this
package, described in Table A.7, shall be used.

Table A.7 – Classes of the com.sun.dtv.media.timeline package

Classes Description

MediaTimeListener interface Listening interface for receipt of media time events

MediaTimePositionControl interface

Controls the defi nition and obtainment of mediaTime from
a media stream. The maximum duration of the media
can be obtained based on the Duration interface if it is
implemented by the type of media in playback

MediaTimeEvent interface
Event that informs the application about changes in
media time

A.2.8 com.sun.dtv.media.language package

The com.sun.dtv.media.language package provides the basic consulting and languages defi nition,
for the audio, subtitles and Closed Captioning. The languages are coded in three languages
in accordance with ISO 639-2 and ABNT NBR 15603-2 for use in service descriptors.

This package shall be implemented according to JAVADTV 1.3:2009. The interfaces and classes of this
package, described in Table A.8, shall be used.

Table A.8 – Classes of the com.sun.dtv.media.language package

Classes Description

LanguageNotSupportedException class
Exception raised when a requested language is not
supported

LanguageControl interface
 Control for consulting supported languages
for defi ning a specifi c language for a player

A.2.9 com.sun.dtv.application package

The com.sun.dtv.application package defi nes the JavaDTV applications model, its life cycle and
management. JavaDTV applications run through an environment for Java DTV multi-task execution, and
it is through this package that the developer can access this environment to verify which applications
are available (AppManager), the attributes of each application (Application) and perform monitoring and
control over such an application (ApplicationProxy). This package also implements the application’s life
cycle through the use of the JavaTV API classes.

This package shall be implemented according to JAVADTV 1.3:2009. The following interfaces and
classes of this package, described in Table A.9, shall be included.

© ABNT 2010 - All rights reserved38

ABNT NBR 15606-4:2010

Table A.9 – Classes of the com.sun.dtv.application package

Classes Description

AppManagerListener interface
Listener that notifi es about changes in the available
applications

AppManager class Provides control and access to the applications

ApplicationProxy interface
Provides control over an application through the
application manager

Application interface Contains the attributes of an application

AppFilter class AppFilter is called to permit an application in a fi lter, or not

AppManagerPermission class Required for queries or control of applications

AppProxyListener interface
Listener that receives notifi cations of changes of state
of the application

A.2.10 com.sun.dtv.media.audio package

The com.sun.dtv.media.audio package offers functionalities regarding audio language control, for example:

 — consult the languages that can be selected for association with a Service Component;

 — select the language associated with a Service Component

 — permit the applications to receive notifi cations when the language of a Service Component
is changed.

This package shall be implemented according to JAVADTV 1.3:2009. The interfaces and classes of this
package, described in Table A.10, shall be used.

Table A.10 – Classes of the com.sun.dtv.media.auto package

Classes Description

AudioEvent interface Indicates changes related to audio language selection

AudioControl interface Provides audio control to register specifi c audio events

AudioListener interface Listener for change in audio

A.2.11 com.sun.dtv.test package

The com.sun.dtv.test package provides a framework for compliance testing. Since it is usually found
in Java test environments, the environment defi ned for using the package involves a test client and
server that can use any means of communication.

This package shall be implemented according to JAVADTV 1.3:2009. The interfaces and classes of this
package, described in Table A.11, shall be used.

© ABNT 2010 - All rights reserved 39

ABNT NBR 15606-4:2010

Table A.11 – Classes of the com.sun.dtv.test package

Classes Description

TestCase interface
Defi nes the necessary methods that shall be implemented
by the tests in order to be able to execute the test framework

TestHarness class Provides an entry point and a set of tools for test cases

Report class
Adds the result of a test: the code, the reference for the test
and the related reasons

A.2.12 com.sun.dtv.tuner package

The com.sun.dtv.tuner package provides an API for access and control of a broadcast network interface
(or "tuner") used to receive transport streams.

This package shall be implemented according to JAVADTV 1.3:2009. The interfaces and classes of
this package, described in Table A.12, shall be used.

Table A.12 – Classes of the com.sun.dtv.tuner package

Classes Description

Tuner class
Represents a network interface or “tuner” for receiving broadcast
transport streams

TuningCompletedEvent class
Event that indicates the successful completion of a tuning
operation

TuningFailedEvent class
Event that indicates the unsuccessful completion of a tuning
operation

TuningException class Exception that indicates synchronous reports of tuning failure

TuningEvent class Base class for events generated by tuning operations

TunerListener interface Listener that receives tuning events coming from the Tuner

TuningInitiatedEvent class Indicates the start of a tuning operation

A.2.13 com.sun.dtv.lwuit.layouts package

The com.sun.dtv.lwuit.layouts package contains the management model of the LWUIT layout, which
is similar to the model used by the AWT/Swing APIs. In this case, the layout managers permit
a Container to arrange its components through a set of pre-defi ned rules that can be adapted to
specifi c font or screen sizes.

This package shall be implemented in accordance with JAVADTV 1.3:2009. The interfaces and classes
of this package, described in Table A.13, shall be used.

© ABNT 2010 - All rights reserved40

ABNT NBR 15606-4:2010

Table A.13 – Classes of the com.sun.dtv.lwuit.layouts package

Classes Description

GridLayout class
By using this class as a layout manager, the components are
arranged on a grid of equal size, based on available space

BorderLayout class
Defi nes a container that organizes and redimensions its
components in a layout based on fi ve r egions: north, south,
east, west and center

LayoutStyle class
LayoutStyle is used to determine how much space is used
between components

BoxLayout class
Arranges elements in a row or column, according to a box
orientation

FlowLayout class
Arranges the components in a row so that when a line end is
reached, the components go on to the next line

Layout class
Abstract class, which can be used to organize components
in a container using a predefi ned algorithm

GroupLayout class Layout manager that groups hierarchical components

CoordinateLayout class
Permits the components based on absolute positions and sizes
to be adjusted based on available space for the layout

A.2.14 com.sun.dtv.broadcast.event package

Treats events generated by the broadcast channel. In this case the BroadcastEventManager class
deals with all events and passes them on to the registered BroadcastEventListener.

This package shall be implemented according to JAVADTV 1.3:2009. The interfaces and classes of this
package, described in Table A.14, shall be used.

Table A.14 – Classes of the com.sun.dtv.broadcast.event package

Classes Description

BroadcastReceivedEvent class
Represents the events that were received through
the broadcast channel

BroadcastEventManager class
Represents the events obtained through the fi le system
of the broadcast channel

BroadcastEventListener Interface
Implemented by the application classes that request
notifi cation of receipt of BroadcastEvent data

A.2.15 com.sun.dtv.lwuit.list package

The com.sun.dtv.lwuit.list package related to the handling of List that uses the same Swing MVC
model, including the renderer design standard. The package has two interfaces and two classes. The
ListCellRenderer interface permits customization of the appearance of the List and the ListModel
defi nes the representation of a data structure that is used by the List as the source of its information.
The classes are default implementations of the interfaces.

© ABNT 2010 - All rights reserved 41

ABNT NBR 15606-4:2010

This package shall be implemented according to JAVADTV 1.3:2009. The interfaces and classes of this
package, described in Table A.15, shall be used.

Table A.15 – Classes of the com.sun.dtv.lwuit.list package

Classes Description

DefaultListCellRenderer class Default implementation of the renderer based on a label

ListModel interface
Represents the data structure of the list, thus permitting a list
to represent any potential data source through the reference to
several implementations of this interface

ListCellRenderer interface
Interface that defi nes a label renderer of a List. In this case,
represents only the marker of each cell selected in the List

DefaultListModel class
Default implementation of the list model based on an elements
vector

A.2.16 com.sun.dtv.ui package

The com.sun.dtv.ui package is a package with graphical user interface functionalities specifi c to digital
television.

This package shall be implemented according to JAVADTV 1.3:2009. The interfaces and classes of this
package, described in Table A.16, shall be used.

Table A.16 – Classes of the com.sun.dtv.ui package

Classes Description

MatteException class
 A MatteException is triggered when an application, for any
reason, is unable to perform an association with a graphical
element

DTVContainerPattern class
The DTVContainerPattern is a means to describe the
characteristics of a valid DTVContainer

Device class This class is the representation of the television device

Screen class This class is the representation of the television device screen

DefaultTextLayoutManager class This class provides a standard mechanism for text rendering

FontSpecifi cationException class
Exception launched when an attempt to specify
characteristics of a font in an incorrect manner. In this case,
only for fonts that are not defi ned in a fi le

ViewOnlyComponent interface
This class represents any type of non-interactive component
of the system. Also uses a mechanism for confi guring the
appearance thereof

UserInputDevice class
Basis for all input devices that can be used to control the
device screen

Mouse class
This class represents the mouse that can be used to control a
particular screen of a UserInputDevice

© ABNT 2010 - All rights reserved42

ABNT NBR 15606-4:2010

Classes Description

AlphaComposite class Implements all of the alpha composition (transparency) rules.

DTVContainer class

A high-level container in the hierarchy of components of the
Java DTV API that represents a graphical element containing
anything visible on a particular Plane. In this case, there is
only one DTVCointaner for each Plane

TextLayoutManager interface
Defi nes the functionalities for the layout of texts and the
display thereof on screen

Capabilities class Describes the capabilities of a Plane

SetupException class
Exception that can be launched in several situations where
an attempt is made to perform an illegal change in the
confi guration of one or more planes of a Screen

SophisticatedTextLayoutManager
class

This class provides a TextLayoutManager with more
functionalities in a way as to permit a more sophisticated layout

PlaneSetupPattern class
This class provides a means of describing the confi gurations
of a viewing plane, specifying various properties and the
importance thereof for the application

AnimatedMatte class
This class represents an animated matte with a dynamic
image mask, where the pixel values determine the
transparency of the matte at any given time

RemoteControl class
This class represents a television remote control that can be
used to control a particular screen as a UserInputDevice

Interface TextOverfl owListener
Notifi es if a character string does not fi t into a component
during the attempt to render it

Keyboard class
This class represents a keyboard that can be used to control
certain screens as a UserInputDevice

FontFileException class
This exception will be launched in an attempt to read a font
fi le with an inappropriate format

PlaneSetup class Describes the characteristics of a Plane

DownloadableFont class Introduces the possibility of downloading fonts

Matte interface Basic interface for all Matte classes

Animated interface
This interface provides methods to defi ne and obtain
parameters of an animation

MatteEnabled interface Permits components to make matte composition

StaticMatte class
This class represents non-animated mattes, for example,
mattes that do not change during an increment of time

Plane class Represents a video output from a television device

Table A.16 (continued)

© ABNT 2010 - All rights reserved 43

ABNT NBR 15606-4:2010

A.2.17 com.sun.dtv.media.control package

The com.sun.dtv.media.control package has additional controls to obtain information about the media
being displayed.

This package shall be implemented according to JAVADTV 1.3:2009. The interfaces and classes of this
package, described in Table A.17, shall be used.

Table A.17 – Classes of the com.sun.dtv.media.control package

Classes Description

FrameRateControl interface A control to obtain the frame rate

MpegAudioControl interface A control to obtain the parameters of an MPEG audio stream

BitRateControl interface A control to obtain the bit rate

A.2.18 com.sun.dtv.media.dripfeed package

The com.sun.dtv.media.dripfeed package allows the delivery of data from a still picture to a JMF Player,
in a way that permits the application to have control over the data. The pictures can be from frames
captured from a video source.

This package shall be implemented according to JAVADTV 1.3:2009. The interfaces and classes of this
package, described in Table A.18, shall be used.

Table A.18 – Classes of the com.sun.dtv.media.dripfeed package

Classes Description

DripFeedControl interface Permits the progressive feeding of parts of a video on a Player

DripFeedPermission class Represents the permissions to access the DripFeedControl

A.2.19 com.sun.dtv.security package

The com.sun.dtv.secutity package includes additional security functionalities. The basic functions are
provided by the classes in the java.security package.

This package shall be implemented according to JAVADTV 1.3:2009. The interfaces and classes of this
package, described in Table A.19, shall be used.

Table A.19 – Classes of the com.sun.dtv.security package

Classes Description

CallbackHandler interface

An application implements a CallbackHandler and passes it
on to the security services. Thus, the application can interact
with the security services with the aim of retrieving specifi c
authentication information such as username and password,
or to display certain information such as error messages or
warnings

© ABNT 2010 - All rights reserved44

ABNT NBR 15606-4:2010

Classes Description

Callback interface

Implementations of this interface are passed to a
CallbackHandler, allowing security services to interact with
the application called and to retrieve specifi c authentication
information such as username and password, or to display
certain information such as error messages or warnings

AuthProvider class This class defi nes login and logout methods for a provider

LoginException class Exception related to login operations

UnsupportedCallbackException
class

Triggered when a callback call is passed and cannot be treated
by the receiver of the call

A.2.20 com.sun.dtv.lwuit.painter package

The com.sun.dtv.lwuit.painter package contains classes that extend functionalities of the com.sun.
dtv.lwuit.Painter interface and that permit one to draw arbitrary graphic elements in the background of
components (com.sun.dtv.lwuit.Component).

This package shall be implemented according to JAVADTV 1.3:2009. The interfaces and classes of this
package, described in Table A.20, shall be used.

Table A.20 – Classes of the com.sun.dtv.lwuit. painter package

Classes Description

PainterChain class
Permits the linking of several painters so as to achieve a “layering”
effect and where each painter draws only one element

BackgroundPainter class Draws the screen background of a component based on its style

A.2.21 com.sun.dtv.locator package

The com.sun.dtv.locator package defi nes all of the Locators to be used in the Java DTV system.

This package shall be implemented according to JAVADTV 1.3:2009. The interfaces and classes of this
package, described in Table A.21, shall be used.

Table A.21 – Classes of the com.sun.dtv.locator package

Classes Description

EntityLocator class Entity locator in the stream transport sectors

URLLocator class URL-based locator

TransportDependentLocator
interface

Locator that references the entities of a transport stream

NetworkBoundLocator
Classe

Locator that references entities that are network bound

Table A.19 (continued)

© ABNT 2010 - All rights reserved 45

ABNT NBR 15606-4:2010

A.2.22 com.sun.dtv.resources package

The com.sun.dtv.resources package provides a basic framework for devices with limited resources.

This package shall be implemented according to JAVADTV 1.3:2009. The interfaces and classes of this
package, described in Table A.22, shall be used.

Table A.22 – Classes of the com.sun.dtv.resources package

Classes Description

TimeoutException class Signals when a timeout occurs

ScarceResourceListener
interface

Notifi es about the release of a particular scarce resource

ScarceResource interface
Represents resources that need special treatment to reserve and
release

ScarceResourcePermission
class

Used to deal with the various permissions relating to scarce
resources

ResourceTypeListener
interface

Notifi es the status of changes occurring in resources of the same
object type to which the listener has connected

A.2.23 com.sun.dtv.net package

The com.sun.dtv.net package extends the java.net package to support the extensive communication
control of with devices. In this case it represents a device through the NetworkDevice class.

This package shallbe implemented according to JAVADTV 1.3:2009. The interfaces and classes of this
package, described in Table A.23, shall be used.

Table A.23 – Classes of the com.sun.dtv.net package

Classes Description

NetworkDeviceStatusListener
interface

Listener for events related to network devices

NetworkDevicePermission
class

Used to deal with the various permissions relating to scarce
resources of network devices

NetworkDevice class
Represents each physical instance of any network interface
in IP protocol support (TCP, UDP) The communication can be
obtained through the platform

A.2.24 com.sun.dtv.media.text package

The package com.sun.dtv.media.text permits access to the Control key and "Closed Captioning".
This package shall be implemented according to JAVADTV 1.3:2009. The interfaces and classes of this
package, described in Table A.24, shall be used.

© ABNT 2010 - All rights reserved46

ABNT NBR 15606-4:2010

Table A.24 – Classes of the com.sun.dtv.media.text package

Classes Description

OverlayTextEvent interface
 Events that report changes in: “OverlayText”, “Subtitle” and
“Closed Captioning”

OverlayTextControl interface Provides control over “Subtitles and “Closed Captioning”

OverlayTextListener interface Receives events related to “OverlayText “

A.2.25 com.sun.dtv.media.format package

The com.sun.dtv.media.format package is responsible for the video format settings.

This package shall be implemented according to JAVADTV 1.3:2009. The interfaces and classes of this
package, described in Table A.25, shall be used.

Table A.25 – Classes of the com.sun.dtv.media.format package

Classes Description

VideoFormatControl interface
Provides the means to obtain information about the
format and aspect ratio of the video

VideoFormatListener interface
Listening interface that receives notifi cation of events on
changes in the video display (presentation)

AspectRatioEvent Interface
The VideoFormatEvent interface informs on changes
occurring in the aspect ratio

VideoPresentationControl interface
Provides the means to consult and manipulate the video
display (presentation)

VideoPresentationEvent class
Event that informs about changes occurring in the video
display

ActiveFormatEvent interface
The VideoFormatEvent informs about the changes in the
Active Format

VideoPresentationListener interface
Reports on changes in the video display, as well as all
types of ContollerEvents

DecoderFormatEvent interface Event that informs that the decoder format has changed

ClippingControl interface
Control that retrieves and defi nes the rectangular cut of
the video

VideoFormatEvent interface Event that informs about changes the in video format

BackgroundVideoPresentationControl
interface

Control of videos shown in the screen background

ArbitraryVideoScalingControl interface Control for retrieving the arbitrary factors of the video scale

Transformation class
Represents a container for transformation information for
a video

© ABNT 2010 - All rights reserved 47

ABNT NBR 15606-4:2010

A.2.26 com.sun.dtv.platform package

The com.sun.dtv.platform package provides classes that are specifi c to the Java DTV platform,
in particular the classes related to the treatment of users.

This package shall be implemented according to JAVADTV 1.3:2009. The interfaces and classes of this
package, described in Table A.26, shall be used.

Table A.26 – Classes of the com.sun.dtv.platform package

Classes Description

UserPropertyPermission
class

Describes permissions for the user’s properties

UserPropertyListener
interface

As an alternative, an application can attach a UserPropertyListener
to the sub-system user properties, in order to be notifi ed of any
changes in the user properties

User class
Contains several fi elds and methods that are specifi c to each user
of the platform

A.2.27 com.sun.dtv.io package

The com.sun.dtv.io package extends the java.io package, providing access to the rights and properties
of the fi les.

This package shall be implemented according to JAVADTV 1.3:2009. The interfaces and classes of this
package, described in Table A.27, shall be used.

Table A.27 – Classes of the com.sun.dtv.io package

Classes Description

FileProperties class
Used to associate properties (or methods) to a fi le identifi ed by its
“pathname” in a given fi le system

FileAccessRights class
Provides a means to defi ne groups of levels of access rights to a fi le
or directory

A.2.28 com.sun.dtv.lwuit.animations package

In the com.sun.dtv.lwuit.animations package, all of the components are potential animations and can
be executed in run time; transitions between Forms are also treated as part of package. The animation
threads are treated uniformly in order to reduce the complexity for execution on computationally limited
devices.

This package shall be implemented according to JAVADTV 1.3:2009. The interfaces and classes of this
package, described in Table A.28, shall be used.

© ABNT 2010 - All rights reserved48

ABNT NBR 15606-4:2010

Table A.28 – Classes of the com.sun.dtv.lwuit.animations package

Classes Description

Transition class
Represents an animated transition between two Forms, this class is
used internally by a DTVContainer to reproduce an animation when
shifting from one Form to the next

CommonTransitions class Contains common transition animations

Motion class
Abstraction of the notion of physical movement over time between
two points represented by numerical values

Animation interface
Permits any component to receive animation events at time
increments and to be updated

A.2.29 com.sun.dtv.service package

The com.sun.dtv.service package provides an interface to access the SI (Service Information) database.

This package shall be implemented according to JAVADTV 1.3:2009. The interfaces and classes of this
package, described in Table A.29, shall be used.

Table A.29 – Classes of the com.sun.dtv.service package

Classes Description

SIDatabase class Generically provides access to the SI database that resides on the platform

A.2.30 com.sun.dtv.media package

The com.sun.dtv.media package is for the relevant functionalities and for the freeze and resume controls.

This package shall be implemented according to JAVADTV 1.3:2009. The interfaces and classes of this
package, described in Table A.30, shall be used.

Table A.30 – Classes of the com.sun.dtv.media package

Classes Description

FreezeResumeListener
interface

Permits the application to execute playback “freeze” and “resume”
events

FreezeResumeEvent
interface

Indicates if the freeze or resume events happened and identifi es if
they such events originated from an application or a user

FreezeEvent interface
Indicates whether an freeze action happened originating from an
application or a user

MediaPresentedEvent
interface

This event is generated after a javax.media.Player has been
transferred to the initial state

© ABNT 2010 - All rights reserved 49

ABNT NBR 15606-4:2010

Classes Description

FreezeResumeException
class

This exception indicates that either the freeze method or resume
method was unsuccessful

FreezeResumeControl
interface

Shall be implemented to permit the application to freeze the Player

ConditionalAccessException
class

Indicates that a media on the control of a Player or Data Source is
protected by conditional access

ResumeEvent interface
Indicates that the action to continue playback happened
originating from an application or a user

A.2.31 com.sun.dtv.transport package

The com.sun.dtv.transport package provides access to the entities contained in a transport stream.

This package shall be implemented according to JAVADTV 1.3:2009. The interfaces and classes of this
package, described in Table A.31, shall be used.

Table A.31 – Classes of the com.sun.dtv.transport package

Classes Description

TransportStream class
Representation of a transport stream and its associated
services

ConditionalAccessDeniedException
class

This class is launched upon a request for access to
information that is coded and whose access is not
permitted by the security system

ElementaryStream class Representation of an elementary stream

Service class Representation of a service contained in the transport stream

A.2.32 com.sun.dtv.lwuit.util package

The com.sun.dtv.lwuit.util package provides utility functionalities that are domain-specifi c or are not
suited for any other package in the API.

This package shall be implemented according to JAVADTV 1.3:2009. The interfaces and classes of this
package, described in Table A.32, shall be used.

Table A.32 – Classes of the com.sun.dtv.lwuit.util package

Classes Description

Log class
Permits the developer – through a pluggable logging framework –
to utilize log functionalities using the fi le connector API

Resources class
This is related to the loading resources (animations, images, themes,
fonts, etc.) from a binary fi le generated in the build process

Table A.30 (continued)

© ABNT 2010 - All rights reserved50

ABNT NBR 15606-4:2010

A.2.33 com.sun.dtv.lwuit package

The com.sun.dtv.lwuit package contains the main hierarchy of graphical elements composition
(com.sun.dtv.lwuit.Component and com.sun.dtv.lwuit.Container) of the LWUIT API that follows the
same model as the Swing/AWT API. However, unlike Swing/AWT, a system of full-screen windows
is not used. In this case, a model is used similar to the MIDP API, which uses a display abstraction
in which the graphics can be arranged.

This package shall be implemented according to JAVADTV 1.3:2009. The interfaces and classes of this
package, described in Table A.33, shall be used.

Table A.33 – Classes of the com.sun.dtv.lwuit package

Classes Description

MediaComponent
class

Permits the insertion and control of rich-media content

StaticAnimation class An image capable of animation

Graphics class
Abstracts the graphic context platform, permitting portability between
MIDP and CDC devices

Container class
Implements the Composite default design for com.sun.dtv.lwuit.
Component so as to permits the arrangement and relationship of
components using an architecture of pluggable layout managers

ComboBox class
Graphic element that represents a list that permits only one selection at
a time through the user’s choice

Font class
A simple abstraction of platform fonts and library that permits use of fonts
that are not supported by the device

Painter interface This interface can be used to draw on screen background components.

RadioButton class
Specifi c type of com.sun.dtv.lwuit.Button that maintains a state of
selection exclusively of a com.sun.dtv.lwuit.KeyGroup

Calendar class Permits the selection of date and time values

TabbedPane class
Permits the user to toggle between a group of components by clicking on
a tab with a particular title and/or icon

Command class
Action relating to the “soft buttons” and device menu, similar to the
abstraction of the MIDP command and Swing actions

CheckBox class
Button that can be marked or unmarked and simultaneously display its
status to the user

Form class

High-level component that is the base class for LWUIT1.1:2008 graphical
user interfaces. The container is divided into 3 (three) parts: Title (title bar,
usually located at the top), ContentPane (central space available for the
layout of Title and MenuBar) elements and MenuBar (menu bar usually
located at the bottom)

© ABNT 2010 - All rights reserved 51

ABNT NBR 15606-4:2010

Classes Description

Dialog class
A type of Form that occupies a part of the screen and appears as a modal
entity to the developer

Image class
Abstraction of the platform that treats images, permitting the handling
thereof as uniform objects

TextField class
Component for receiving user text input that uses a lighter API, without
using the device’s native text support

ButtonGroup class
This class is used to create a multiple-exclusion scope for a set of Radio
Buttons

Label class
Permits the display labels and images with different alignment options,
also functions as a base class for alignment of layout components

Button class Base component for other graphical elements that are clickable

List class
A set (list) of elements that are created using a ListCellRenderer and are
extracted through the ListModel

Component class
Base class for all graphical elements of the LWUIT. Uses the Composite
default design in a similar way to the AWT’s relation of Container and
Component

TextArea class
Graphical component that permits text input with multiple editable lines
also permits display and editing of text

AWTComponent class
Extends the com.sun.dtv.lwuit.Component class as a special variant that
delegates the rendering actions to java.awt.Component

A.2.34 com.sun.dtv.lwuit.geom package

Contains classes related to the geometric location and calculation of dimensions of graphical
components.

This package shall be implemented according to JAVADTV 1.3:2009. The interfaces and classes of this
package, described in Table A.34, shall be used.

Table A.34 – Classes of the com.sun.dtv.lwuit.geom package

Classes Description

Point class
Represents a location in space of x and y coordinates. Its accuracy is
based on whole numbers

Rectangle class
Represents a rectangular with the size based on width and height, it is
useful for measuring coordinates within an application

Dimension class
Utility class that stores values of width and height and represents a
dimension of a graphical component or element

Table A.33 (continued)

© ABNT 2010 - All rights reserved52

ABNT NBR 15606-4:2010

Annex B
(normative)

Specifi cation of the protocol-dependent service information API

B.1 General considerations

This Annex describes the protocol-dependent service information API in Ginga-J. This API is based
on changes in specifi cation ARIB STD-B23: 2004, Annex M. This is due to the adoption of ISDB-T
(see ARIB STD-B31: 2007) based on ABNT NBR 15601:2007. Parameters relevant to the information
about digital television service are associated with the transmission method used; hence, the Brazilian
service information specifi ed by ABNT NBR 15603:2007 is largely consistent with specifi cation ARIB
STD-B10.2008. However, the ARIB STD-B23: 2004 is based on the GEM API. This Standard is
compatible with the Java DTV platform, which makes it necessary to introduce adjustments in the
SI API. Therefore, a new API was defi ned and specifi ed.

B.2 Protocol-dependent service information API

B.2.1 br.org.sbtvd.net package

B.2.1.1 SBTVDLocator class

SBTVD Locator encapsulates SBTVD URL in the object. This class extends the com.sun.dtv.locator.
EntityLocator class (see JAVADTV 1.3:2009).

The public methods of the SBTVDLocator class are:

 ● SBTVDLocator(java.lang.String url) throws javax.tv.locator.InvalidLocatorException

 ○ Generation of SBTVD Locator.

 ● SBTVDLocator(java.lang.String scheme, int onid, int tsid) throws javax.tv.locator.
InvalidLocatorException

 ○ Generation of SBTVD Locator based on the following format.

 ● SBTVDLocator(java.lang.String scheme, int onid, int tsid, int serviceid) throws javax.tv.locator.
InvalidLocatorException

 ○ Generation of SBTVD Locator based on the following format.

 ● SBTVDLocator(java.lang.String scheme, int onid, int tsid, int serviceid, int contentid) throws javax.
tv.locator.InvalidLocatorException

 ○ Generation of SBTVD Locator based on the following format.

 ● SBTVDLocator(java.lang.String scheme, int onid, int tsid, int serviceid, int contentid, int eventid)
throws javax.tv.locator.InvalidLocatorException

 ○ Generation of SBTVD Locator based on the following format.

© ABNT 2010 - All rights reserved 53

ABNT NBR 15606-4:2010

 ● SBTVDLocator(java.lang.String scheme, int onid, int tsid, int serviceid, int contentid, int eventid, int
componenttag) throws javax.tv.locator.InvalidLocatorException

 ○ Generation of SBTVD Locator based on one of the following formats.

 ● SBTVDLocator(java.lang.String scheme, int onid, int tsid, int serviceid, int contentid, int eventid,
int[] componenttags) throws javax.tv.locator.InvalidLocatorException

 ○ Generation of SBTVD Locator based on one of the following formats.

 ● SBTVDLocator(java.lang.String scheme, int onid, int tsid, int serviceid, int contentid, int eventid,
int[] componenttags, java.lang.String fi lePath) throws javax.tv.locator.InvalidLocatorException

 ○ Generation of SBTVD Locator based on one of the following formats.

 ● SBTVDLocator(java.lang.String scheme, int onid, int tsid, int serviceid, int contentid, int eventid, int
componenttag, int channelid) throws javax.tv.locator.InvalidLocatorException

 ○ Generation of SBTVD Locator based on one of the following formats.

 ● SBTVDLocator(java.lang.String scheme, int onid, int tsid, int serviceid, int contentid, int eventid,
int componenttag, java.lang.String modulename) throws javax.tv.locator.InvalidLocatorException

 ○ Generation of SBTVD Locator based on one of the following formats.

 ● SBTVDLocator(java.lang.String scheme, int onid, int tsid, int serviceid, int contentid, int eventid, int
componenttag, java.lang.String modulename, java.lang.String resourcename)

 ○ Generation of SBTVD Locator based on one of the following formats.

 ● int getChannelId ()

 ○ Retrieves channel id.

 ● int[] getComponentTags()

 ○ Retrieves component_tag array.

 ● int getContentId()

 ○ Retrieves the content_id.

 ● int getEventId()

 ○ Retrieves the event_id.

 ● java.lang.String getFilePath()

 ○ Retrieves part of the fi le name locator path.

 ● java.lang.String getModuleName()

 ○ To acquire moduleName.

© ABNT 2010 - All rights reserved54

ABNT NBR 15606-4:2010

 ● int getOriginalNetworkID()

 ○ Retrieves the original_network_id.

 ● java.lang.String getResourceName()

 ○ Retrieves the resourceName.

 ● java.lang.String getScheme()

 ○ Retrieves the scheme.

 ● int getServiceID()

 ○ Retrieves the service_id.

 ● int getTransportStreamID()

 ○ Retrieves the transport_stream_id.

 ● java.net.URL getURL()

 ○ Retrieves the SBTVD URL encapsulated in the SBTVDLocator object.

B.2.1.2 SBTVDNetworkBoundLocator class

SBTVDLocator is connected to the network. This object type uniquely identifi es a certain entity including
the distribution of the system that transmits the entity. For example, if two types of networks transmit
a particular service, it can be identifi ed as a common service on the SBTVDLocator. However, each
service transmitted has a different SBTVDNetworkBoundLocator. This class implements the com.sun.
dtv.locator.TransportDependentLocator interface (see JAVADTV 1.3:2009) and extends the br.org.
sbtvd.net.SBTVDLocator class.

The public methods of the SBTVDNetworkBoundLocator class are:

 ● SBTVDNetworkBoundLocator(SBTVDLocator unboundLocator, int networkId)

 ○ Generation of the network bound locator.

 ● int getNetworkID()

 ○ Retrieves the network_id.

B.2.2 br.org.sbtvd.si package

B.2.2.1 DescriptorTag interface

The DescriptorTag interface defi nes the constants that correspond to the most common values of the
descriptor tag.

The public static constants of the DescriptorTag class are:

 ● static short AUDIO_COMPONENT

 ○ The constant indicates the value of the audio component descriptor tag specifi ed in
ARIB STD-B10.

© ABNT 2010 - All rights reserved 55

ABNT NBR 15606-4:2010

 ● static short BASIC_LOCAL_EVENT

 ○ The constant indicates the value of the basic local event descriptor tag specifi ed in
ARIB STD-B10.

 ● static short BOARD_INFORMATION

 ○ The constant indicates the value of the board information descriptor tag specifi ed in
ARIB STD-B10.

 ● static short BOUQUET_NAME

 ○ The constant indicates the value of the bouquet name descriptor tag specifi ed in
ARIB STD-B10.

 ● static short BROADCASTER_NAME

 ○ The constant indicates the value of the broadcaster name descriptor tag specifi ed in
ARIB STD-B10.

 ● static short CA_CONTRACT_INFO

 ○ The constant indicates the value of the CA contractor information descriptor tag specifi ed in
ARIB STD-B10.

 ● static short CA_EMM_TS

 ○ The constant indicates the value of the CA_EMM_TS descriptor tag specifi ed in ARIB STD-B10.

 ● static short CA_IDENTIFIER

 ○ The constant indicates the value of the CA identifi cation descriptor tag specifi ed in
ARIB STD-B10.

 ● static short CA_SERVICE

 ○ The constant indicates the value of the CA service descriptor tag specifi ed in ARIB STD-B10.

 ● static short CABLE_DELIVERY_SYSTEM

 ○ The constant indicates the value of the cable delivery system descriptor tag specifi ed in
ARIB STD-B10.

 ● static short CAROUSEL_COMPATIBLE_COMPOSITE

 ○ The constant indicates the value of the carousel compatible composite descriptor tag specifi ed
in ARIB STD-B10.

 ● static short COMPONENT

 ○ The constant indicates the value of the component descriptor tag specifi ed in ARIB STD-B10.

 ● static short COMPONENT_GROUP

 ○ The constant indicates the value of the component group descriptor tag specifi ed in
ARIB STD-B10.

© ABNT 2010 - All rights reserved56

ABNT NBR 15606-4:2010

 ● static short CONNECTED_TRANSMISSION

 ○ The constant indicates the value of the connected transmission descriptor tag specifi ed in
ARIB STD-B10.

 ● static short CONTENT

 ○ The constant indicates the value of the content descriptor tag specifi ed in ARIB STD-B10.

 ● static short CONTENT_AVAILABILITY

 ○ The constant indicates the value of the contents availability descriptor tag specifi ed in
ARIB STD-B10.

 ● static short COUNTRY_AVAILABILITY

 ○ The constant indicates the value of the country receiving availability descriptor tag specifi ed
in ARIB STD-B10.

 ● static short DATA_COMPONENT

 ○ The constant indicates the value of the data component descriptor tag specifi ed in
ARIB STD-B10.

 ● static short DATA_CONTENTS

 ○ The constant indicates the value of the data contents descriptor tag specifi ed in ARIB STD-B10.

 ● static short DIGITAL_COPY_CONTROL

 ○ The constant indicates the value of the digital copy control descriptor tag specifi ed in
ARIB STD-B10.

 ● static short DOWNLOAD_CONTENT

 ○ The constant indicates the value of the download contents descriptor tag specifi ed in
ARIB STD-B10.

 ● static short EMERGENCY_INFORMATION

 ○ The constant indicates the value of the emergency information descriptor tag specifi ed in
ARIB STD-B10.

 ● static short EVENT_GROUP

 ○ The constant indicates the value of the event group descriptor tag specifi ed in ARIB STD-B10.

 ● static short EXTENDED_BROADCASTER

 ○ The constant indicates the value of the extended broadcaster descriptor tag specifi ed in
ARIB STD-B10.

 ● static short EXTENDED_EVENT

 ○ The constant indicates the value of the extended event descriptor tag specifi ed in
ARIB STD-B10.

© ABNT 2010 - All rights reserved 57

ABNT NBR 15606-4:2010

 ● static short HIERARCHICAL_TRANSMISSION

 ○ The constant indicates the value of the hierarchical transmission descriptor tag specifi ed in
ARIB STD-B10.

 ● static short HYPER_LINK

 ○ The constant indicates the value of the hyper link descriptor tag specifi ed in ARIB STD-B10.

 ● static short LDT_LINKAGE

 ○ The constant indicates the value of the LDT linkage descriptor tag specifi ed in ARIB STD-B10.

 ● static short LINKAGE

 ○ The constant indicates the value of the linkage descriptor tag specifi ed in ARIB STD-B10.

 ● static short LOCAL_TIME_OFFSET

 ○ The constant indicates the value of the local time offset descriptor tag specifi ed in
ARIB STD-B10.

 ● static short LOGO_TRANSMISSION

 ○ The constant indicates the value of the logo transmission descriptor tag specifi ed in
ARIB STD-B10.

 ● static short MOSAIC

 ○ The constant indicates the value of the mosaic descriptor tag specifi ed in ARIB STD-B10.

 ● static short NETWORK_IDENTIFICATION

 ○ The constant indicates the value of the network identifi cation tag descriptor specifi ed in
ARIB STD-B10.

 ● static short NETWORK_NAME

 ○ The constant indicates the value of the network name descriptor tag specifi ed in
ARIB STD-B10.

 ● static short NODE_RELATION

 ○ The constant indicates the value of the node relation descriptor tag specifi ed in ARIB STD-B10.

 ● static short NVOD_REFERENCE

 ○ The constant indicates the value of the NVOD reference service descriptor tag specifi ed in
ARIB STD-B10.

 ● static short PARENTAL_RATING

 ○ The constant indicates the value of the parental rating descriptor tag specifi ed in
ARIB STD-B10.

© ABNT 2010 - All rights reserved58

ABNT NBR 15606-4:2010

 ● static short PARTIAL_RECEPTION

 ○ The constant indicates the value of the partial reception descriptor tag specifi ed in
ARIB STD-B10.

 ● static short PARTIAL_TRANSPORT_STREAM

 ○ The constant indicates the value of the partial transport stream descriptor tag specifi ed in
ARIB STD-B10.

 ● static short PARTIALTS_TIME

 ○ The constant indicates the value of the partial transport stream time descriptor tag specifi ed
in ARIB STD-B10.

 ● static short REFERENCE

 ○ The constant indicates the value of the reference descriptor tag specifi ed in ARIB STD-B10.

 ● static short SATELLITE_DELIVERY_SYSTEM

 ○ The constant indicates the tag value for the satellite delivery system descriptor specifi ed in
ARIB STD-B10.

 ● static short SERIES

 ○ The constant indicates the tag value for the series descriptor specifi ed in ARIB STD-B10.

 ● static short SERVICE

 ○ The constant indicates the tag value for the service descriptor specifi ed in ARIB STD-B10.

 ● static short SERVICE_LIST

 ○ The constant indicates the tag value for the service list descriptor specifi ed in ARIB STD-B10.

 ● static short SHORT_EVENT

 ○ The constant indicates the tag value for the short form event descriptor specifi ed in
ARIB STD-B10.

 ● static short SHORT_NODE_INFORMATION

 ○ The constant indicates the tag value for the short form node information descriptor specifi ed
in ARIB STD-B10.

 ● static short SI_PARAMETER

 ○ The constant indicates the tag value for the SI transmission parameter descriptor specifi ed in
ARIB STD-B10.

 ● static short SI_PRIME_TS

 ○ The constant indicates the tag value for the SI prime TS descriptor specifi ed in ARIB STD-B10.

© ABNT 2010 - All rights reserved 59

ABNT NBR 15606-4:2010

 ● static short STC_REFERENCE

 ○ The constant indicates the tag value for the STC reference descriptor specifi ed in
ARIB STD-B10.

 ● static short STREAM_IDENTIFIER

 ○ The constant indicates the tag value for the stream identifi cation descriptor specifi ed in
ARIB STD-B10.

 ● static short STUFFING

 ○ The constant indicates the tag value for the stuffi ng descriptor specifi ed in ARIB STD-B10.

 ● static short SYSTEM_MANAGEMENT

 ○ The constant indicates the tag value for the system management descriptor specifi ed in
ARIB STD-B10.

 ● static short TARGET_AREA

 ○ The constant indicates the tag value for the target area descriptor specifi ed in ARIB STD-B10.

 ● static short TERRESTRIAL_DELIVERY_SYSTEM

 ○ The constant indicates the tag value for the terrestrial delivery system descriptor specifi ed in
ARIB STD-B10.

 ● static short TIME_SHIFTED_EVENT

 ○ The constant indicates the tag value for the time shifted event descriptor specifi ed in
ARIB STD-B10.

 ● static short TIME_SHIFTED_SERVICE

 ○ The constant indicates the tag value for the time shifted service descriptor specifi ed in
ARIB STD-B10.

 ● static short TS_INFORMATION

 ○ The constant indicates the tag value for the TS information descriptor specifi ed in
ARIB STD-B10.

 ● static short VIDEO_DECODE_CONTROL

 ○ The constant indicates the tag value for the video decode control descriptor specifi ed in
ARIB STD-B10.

B.2.2.2 PMTElementaryStream interface

The PMTElementaryStream interface indicates the elementary stream for the service (channel). The
PMT is present in each service to describe the elementary streams of the service. This means that
the object set up with the interface indicates one of these elementary streams. Each object set up with
the PMTElementaryStream interface is identifi ed by a combination of original_network_id, transport_
stream_id, service_id and component_tag (or elementary_PID).

© ABNT 2010 - All rights reserved60

ABNT NBR 15606-4:2010

The public methods for the PMTElementaryStream class are:

 ● SBTVDLocator getSBTVDLocator ()

 ○ Recovers the SBTVDLocator that identifi es the elementary stream.

 ● int getComponentTag ()

 ○ Recovers the component tag.

 ● short getElementaryPID ()

 ○ Recovers the elementary_PID.

 ● int getOriginalNetworkID ()

 ○ Recovers the original network ID.

 ● int getServiceID ()

 ○ Recovers the service ID.

 ● byte getStreamType ()

 ○ Recovers the stream type ID for the elementary stream.

 ● int getTransportStreamID ()

 ○ Recovers the transport stream ID.

B.2.2.3 PMTService interface

The PMTService interface indicates the specifi c service to be transmitted by the transport stream. The
information is recovered from the PMT. Each object set up with the PMTElementaryStream interface is
identifi ed by a combination of original_network_id, transport_stream_id and service_id.

The public methods for the PMTService class are:

 ● SBTVDLocator getSBTVDLocator()

 ○ Recovers the SBTVDLocator that identifi es this service.

 ● int getOriginalNetworkID ()

 ○ Recovers the original network ID.

 ● int getPcrPid()

 ○ Recovers the PCR’s PID.

 ● int getServiceID()

 ○ Recovers the service ID.

© ABNT 2010 - All rights reserved 61

ABNT NBR 15606-4:2010

 ● int getTransportStreamID()

 ○ Recovers the transport stream ID.

 ● SIRequest retrievePMTElementaryStreams(short retrieveMode,java.lang.Object appData,
SIRetrievalListener listener, short[] somePMTDescriptorTags) throws br.org.sbtvd.
si.SIIllegalArgumentException

 ○ Recovers the information relevant to the elementary streams that comprise this service from
the PMT.

B.2.2.4 PMTStreamType interface

The PMTStreamType interface defi nes the constants that correspond to the various stream types.

The PMTStreamType class' public static constants are:

 ● static byte DSMCC_DATA_CAROUSEL

 ○ The constant indicates the data carousel stream type defi ned by ISO/IEC 13818-1.

 ● static byte INDEPENDENT_PES

 ○ The constant indicates the independent PES stream type defi ned by ISO/IEC 13818-1.

 ● static byte MPEG1_AUDIO

 ○ The constant indicates the MPEG1 audio stream type defi ned by ISO/IEC 13818-1.

 ● static byte MPEG1_VIDEO

 ○ The constant indicates the MPEG1 video stream type defi ned by ISO/IEC 13818-1.

 ● static byte MPEG2_AAC_AUDIO

 ○ The constant indicates the MPEG2AAC audio stream type defi ned by ISO/IEC 13818-1.

 ● static byte MPEG2_AUDIO

 ○ The constant indicates the MPEG2 audio stream type defi ned by ISO/IEC 13818-1.

 ● static byte MPEG2_VIDEO

 ○ The constant indicates the MPEG2 video stream type defi ned by ISO/IEC 13818-1.

 ● static byte MPEG4_VIDEO

 ○ The constant indicates the MPEG4 video stream type defi ned by ISO/IEC 13818-1.

 ● static byte MPEG4_AVC_VIDEO

 ○ The constant indicates the H.264/MPEG-4 AVC video stream type defi ned by ISO/IEC 13818-1.

© ABNT 2010 - All rights reserved62

ABNT NBR 15606-4:2010

B.2.2.5 SIBouquet interface

The SIBouquet interface indicates the sub-table of the Bouquet Association Table's (BAT), which
describes a specifi c bouquet (with the SITransportStreamBAT). Each object that sets up the SIBouquet
interface is identifi ed by the bouquet_id identifi er. This interface extends br.org.sbtvd.si.SIInformation.
The public methods for the SIBouquet class are:

 ● int getBouquetID()

 ○ Recover bouquet ID.

 ● short[] getDescriptorTags()

 ○ This method defi nes additional semantics for the SIInformation#getDescriptorTags.

 ● java.lang.String getName()

 ○ This method returns the name of the bouquet to be described in the bouquet descriptor.

 ● SBTVDLocator[] getSIServiceLocators()

 ○ This method recovers the SBTVDLocators list to identify the service that belongs to the service.

 ● SIRequest retrieveDescriptors(short retrieveMode, java.lang.Object appData, SIRetrievalListener
listener)

 ○ This method defi nes additional semantics for the fi rst SIInformation#retrieveDescriptors
prototype.

 ● SIRequest retrieveDescriptors(short retrieveMode,java.lang.Object appData, SIRetrievalListener
listener, short[] someDescriptorTags) throws br.org.sbtvd.si.SIIllegalArgumentException

 ○ This method defi nes additional semantics for the second SIInformation#retrieveDescriptors
prototype.

 ● SIRequest retrieveSIBouquetTransportStreams(short retrieveMode, java.lang.Object
appData, SIRetrievalListener listener, short[] someDescriptorTags) throws br.org.sbtvd.
si.SIIllegalArgumentException

 ○ This method provides signifi cant information for the transport stream to which the bouquet
belongs.

B.2.2.6 SI Broadcaster interface

The interface indicates the specifi c provider in the service. The information returned by the methods
is acquired from BIT. Each object that implements the SI Broadcaster interface is identifi ed by the
broadcaster_id.

The public methods for the SI Broadcaster class are:

 ● int getBroadcasterID ()

 ○ Returns the provider’s ID.

© ABNT 2010 - All rights reserved 63

ABNT NBR 15606-4:2010

 ● boolean getBroadcastViewProperty ()

 ○ Returns the broadcaster’s display property value.

 ● java.lang.String getName ()

 ○ Returns the name of the provider to be described in the provider descriptor.

 ● int getOriginalNetworkID()

 ○ Returns the original network ID.

 ● SBTVDLocator[] getSIServiceLocators()

 ○ This method recovers the SBTVDLocators list to identify the service that belongs to
the provider.

 ● SIRequest retrieveOriginalNetworkDescriptors(short retrieveMode, java.lang.Object appData,
SIRetrievalListener listener) throws br.org.sbtvd.si.SIIllegalArgumentException

 ○ This method recovers all descriptors transmitted in the fi rst BIT loop.

 ● SIRequest retrieveOriginalNetworkDescriptors(short retrieveMode, java.lang.Object
appData, SIRetrievalListener listener, short[] someDescriptorTags) throws br.org.sbtvd.
si.SIIllegalArgumentException

 ○ This method recovers the set of descriptors transmitted in the fi rst BIT loop.

B.2.2.7 SIEvent interface

The SIEvent interface indicates a specifi c program in the service. Each object that implements
the SIEvent interface is identifi ed by a combination of original_network_id, transport_stream_id, service_
id and event_id. If the method's return value is acquired in the simple manner from the event descriptor
and more than one descriptor is present, the following algorithm shall be used. In case the language
returned by javax.tv.service.SIManager#getPreferredLanguage is used in the simple event descriptor,
the value is returned from the descriptor. Otherwise, it depends on the set up status that shall be used
besides the available simple event descriptors. This interface extends br.org.sbtvd.si.SIInformation.

The public methods for the SIEvent class are:

 ● SBTVDLocator getSBTVDLocator()

 ○ Recover the SBTVDLocator that identifi es the program.

 ● java.lang.String[] getAudioComponentDescriptions()

 ○ This method returns the description in elementary audio stream text relevant to the program.

 ● java.lang.String[] getComponentDescriptions()

 ○ This method returns the description in elementary stream text relevant to the program.

 ● byte[] getContentNibbles()

 ○ This method returns the program genre.

© ABNT 2010 - All rights reserved64

ABNT NBR 15606-4:2010

 ● java.lang.String[] getDataContentDescriptions()

 ○ This method returns the description in text relevant to the data broadcasting program.

 ● long getDuration()

 ○ This method recovers program duration.

 ● int getEventID()

 ○ This method recovers event ID.

 ● SIExEventInformation[] getExEventInformations()

 ○ This method returns detailed information relevant to the program.

 ● boolean getFreeCAMode ()

 ○ This method recovers the program shuffl e value.

 ● byte[] getLevel1ContentNibbles()

 ○ This method returns the fi rst step of program content classifi cation.

 ● java.lang.String getName()

 ○ This method returns the name of the program.

 ● int getOriginalNetworkID()

 ○ This method recovers the original network ID.

 ● byte getRunningStatus()

 ○ This method recovers program execution status.

 ● java.lang.String getSeriesName()

 ○ This method returns the name of the relevant series to the program.

 ● int getServiceID()

 ○ This method recovers the service ID.

 ● java.lang.String getShortDescription()

 ○ This method returns the program description.

 ● java.util.Date getStartTime()

 ○ This method recovers the time the program started.

 ● int getTransportStreamID()

 ○ This method recovers the transport stream ID.

© ABNT 2010 - All rights reserved 65

ABNT NBR 15606-4:2010

 ● byte[] getUserNibbles()

 ○ This method returns the genre relevant to the program.

 ● SIRequest retrieveSIService(short retrieveMode,java.lang.Object appData, SIRetrievalListener
listener, short[] someDescriptorTags) throws br.org.sbtvd.si.SIIllegalArgumentException

 ○ This method recovers the SIService that indicates the service. The service is the one to which
the program indicated by SIEvent belongs.

B.2.2.8 SIInformation interface

The SIInformation interface is a collection of functions, which are common to SIBouquet, SIBroadcaster,
SINetwork, SITransportStream, SIService, PMTService, SIEvent, SITime and PMTElementaryStream.

The SIInformation class public static constants are:

 ● static short FROM_CACHE_ONLY

 ○ The constant is used for the acquisition mode parameter of the acquisition methods.

 ● static shor t FROM_CACHE_OR_STREAM

 ○ The constant is used for the acquisition mode parameter of the acquisition methods.

 ● static short FROM_STREAM_ONLY

 ○ The constant is used for the acquisition mode parameter of the acquisition methods.

The public methods for the SIInformation class are:

 ● boolean fromActual()

 ○ If the information contained in the object that implements this interface was selected from the
“actual” table or the table that does not distinguish “actual” or “not actual”, “true” is returned.

 ● com.sun.dtv.transport.TransportStream getDataSource()

 ○ This method returns the com.sun.dtv.transport.TransportStream object selected from the
information contained in the object that implements this interface.

 ● short[] getDescriptorTags()

 ○ This method recovers the tag values for all descriptors that are part of the object’s current version.

 ● SIDatabase getSIDatabase()

 ○ This method returns the hierarchical structure root to which the object that implements this
interface belongs.

 ● java.util.Date getUpdateTime()

 ○ This method returns the last day and hour the information included in the object that implements
this interface was updated.

© ABNT 2010 - All rights reserved66

ABNT NBR 15606-4:2010

 ● SIRequest retrieveDescriptors (short retrieveMode, java.lang.Object appData, SIRetrievalListener
listener) throws br.org.sbtvd.si.SIIllegalArgumentException

 ○ This method returns all descriptors in the order they were sent.

 ● SIRequest retrieveDescriptors (short retrieveMode, java.lang.Object appData, SIRetrievalListener
listener, short[] someDescriptorTags) throws br.org.sbtvd.si.SIIllegalArgumentException

 ○ This method recovers some descriptors.

B.2.2.9 SIIterator interface

The object that implements the SIIterator interface can access the content through the collection of
SI objects. In order to maintain collection consistency, some accesses to the stream are not initiated
depending on access to the content.

The public method for the SIIterator class is:

 ● int numberOfRemainingObjects()

 ○ The number of objects maintained in the iterator.

B.2.2.10 SIMonitoringListener interface

The SImonitoringListener interface is implemented by the application class, in order to receive the SI
object monitoring changes.

The public method for the SIMonitoringListener class is:

 ● void postMonitoringEvent(SIMonitoringEvent anEvent)

 ○ This method is called by the SI’s API to inform the listener of the event.

B.2.2.11 SIMonitoringType interface

The SIMonitoringType interface defi nes the constants that correspond to each type of SI information in
the SIMonitoringEvent.

The SIMonitoringType class' public static constants are:

 ● static byte BOUQUET

 ○ Constant of the SIInformation object that indicates the bouquet.

 ● static byte BROADCASTER

 ○ Constant of the SIInformation object that indicates the provider.

 ● static byte NETWORK

 ○ Constant of the SIInformation object that indicates the network.

 ● static byte PMT_SERVICE

 ○ Constant of the SIInformation object that indicates the PMT service.

© ABNT 2010 - All rights reserved 67

ABNT NBR 15606-4:2010

 ● static byte PRESENT_FOLLOWING_EVENT

 ○ Constant of the SIInformation object that indicates the EIT [Present/Following].

 ● static byte SCHEDULED_EVENT

 ○ Constant of the SIInformation object that indicates the EIT [Schedule].

 ● static byte SERVICE

 ○ Constant of the SIInformation object that indicates the service.

B.2.2.12 SINetwork interface

The SINetwork interface indicates the Network Information Table (NIT) sub-table that describes a
specifi c network (with the SITransportStreamNIT). Each object that implements the SINetwork interface
is identifi ed by the network_id.

The public methods for the SINetwork class are:

 ● short[] getDescriptorTags()

 ○ This method defi nes additional semantics for the SIInformation#getDescriptorTags method.

 ● java.lang.String getName()

 ○ This method returns the name of the network described in the Network Name Descriptor.

 ● int getNetworkID()

 ○ Recovers the network ID from this network.

 ● SIRequest retrieveDescriptors(shortretrieveMode,java.lang.ObjectappData, SIRetrievalListener
listener) throws br.org.sbtvd.si.SIIllegalArgumentException

 ○ This method defi nes additional semantics for the fi rst prototype of the SIInformation#retrieve
Descriptors method.

 ● SIRequest retrieveDescriptors(short retrieveMode, java.lang.Object appData, SIRetrievalListener
listener, short[] someDescriptorTags) throws br.org.sbtvd.si.SIIllegalArgumentException

 ○ This method defi nes additional semantics for the second prototype of the SIInformation#retri
eveDescriptors method.

 ● SIRequest retrieveSITransportStreams(shortretrieveMode,java.lang.ObjectappData,
SIRetrievalListener listener, short[] someDescriptorTags) throws br.org.sbtvd.
si.SIIllegalArgumentException

 ○ This method recovers information about the transport stream to be transmitted over the
network.

B.2.2.13 SIRetrievalListener interface

The SIRetrievalListener interface shall be implemented to receive an SI event.

© ABNT 2010 - All rights reserved68

ABNT NBR 15606-4:2010

The public method for the SIRetrievalListener class is:

 ● void postRetrievalEvent(SIRetrievalEvent event)

 ○ This method is called from the implemented SI API in order to notify conclusion of the listener’s
request.

B.2.2.14 SIRunningStatus interface

The SIRunningStatus interface defi nes the constant that corresponds to the execution status value for
the service and for the event.

The SIRunningStatus class' public static constants are:

 ● static NOT_RUNNING

 ○ constant byte, as defi ned in ARIB STD-B10, indicates the status is “not running”.

 ● static PAUSING

 ○ constant byte, as defi ned in ARIB STD-B10, indicates the status is executing “pausing”.

 ● static RUNNING

 ○ constant byte, as defi ned in ARIB STD-B10, indicates the status is “running”.

 ● static STARTS_IN_A_FEW_SECONDS

 ○ constant byte, as defi ned in ARIB STD-B10, indicates the status is “ready to start in a few
seconds”.

 ● static UNDEFINED

 ○ constant byte, as defi ned in ARIB STD-B10, indicates the status is “undefi ned”.

B.2.2.15 SIService interface

The SIService interface indicates a specifi c service that is transmitted by one of the transport streams.
The information obtained through this interface's method is acquired from the SDT. Each object set up
with the SIService interface is identifi ed by a combination of the following ID:

Original network ID, Transport stream ID, Service ID

The public methods for the SIService class are:

 ● SBTVDLocator getSBTVDLocator()

 ○ This method acquires the SBTVDLocator to identify this service.

 ● boolean getEITPresentFollowingFlag()

 ○ This method returns the EIT_present_following_fl ag value.

 ● boolean getEITScheduleFlag()

 ○ This method returns the EIT_schedule_fl ag value.

© ABNT 2010 - All rights reserved 69

ABNT NBR 15606-4:2010

 ● int getEITUserDefi nedFlag()

 ○ This method returns the EIT_user_defi ned_fl ags value.

 ● boolean getFreeCAMode()

 ○ This method returns the free_CA_mode value.

 ● java.lang.String getName()

 ○ This method returns the name that indicates the service included in the service descriptor.

 ● int getOriginalNetworkID()

 ○ This method recovers the original network ID.

 ● java.lang.String getProviderName()

 ○ This method returns the name of the service provider included in the service descriptor.

 ● byte getRunningStatus()

 ○ This method acquires the execution status for this service.

 ● int getServiceID()

 ○ This method acquires the ID service.

 ● short getSIServiceType()

 ○ This method acquires the type of service.

 ● int getTransportStreamID()

 ○ This method acquires the transport stream ID.

 ● SIRequest retrieveFollowingSIEvent(shortretrieveMode,java.lang.ObjectappData,
SIRetrievalListener listener, short[] someDescriptorTags) throws br.org.sbtvd.
si.SIIllegalArgumentException

 ○ This method acquires the information relevant to the next EIT program [Current / next].

 ● SIRequest retrievePMTService(shortretrieveMode,java.lang.Object appData, SIRetrievalListener
listener, short[] someDescriptorTags) throws br.org.sbtvd.si.SIIllegalArgumentException

 ○ This PMTService method acquires the relevant information for this service.

 ● SIRequest retrievePresentSIEvent(shortretrieveMode,java.lang.ObjectappData,
SIRetrievalListener listener, short[] someDescriptorTags) throws br.org.sbtvd.
si.SIIllegalArgumentException

 ○ This method acquires the information relevant to the current EIT program [Current / next].

© ABNT 2010 - All rights reserved70

ABNT NBR 15606-4:2010

 ● SIRequest retrieveScheduledSIEvents(shortretrieveMode,java.lang.ObjectappData,
SIRetrievalListener listener, short[] someDescriptorTags, java.util.Date startTime, java.
util.Date endTime) throws br.org.sbtvd.si.SIIllegalArgumentException, br.org.sbtvd.si.
SIInvalidPeriodException

 ○ This method acquires the relevant information for the program projected in the designated EIT
period [Calendar].

B.2.2.16 SIServiceType interface

This API is responsible for access to information related to the defi nition of ServiceType.

The SIServiceType class' public static constants are:

 ● static BOOKMARK_LIST

 ○ Constant, short type, as defi ned in ARIB STD-B10, indicates the service type is a “data list
marker”.

 ● static DATA

 ○ Constant, short type, as defi ned in ARIB STD-B10, indicates the service type is a “data
service”.

 ● static DATA_EXCLUSIVE_FOR_ACCUMULATION

 ○ Constant, short type, as defi ned in ARIB STD-B10, indicates the service type is a “data service
exclusively for accumulation”.

 ● static DATA_FOR_ACCUMULATION_IN_ADVANCE

 ○ Constant, short type, as defi ned in ARIB STD-B10, indicates the service type is a “data service
exclusively for in-advance accumulation”.

 ● static DIGITAL_AUDIO

 ○ Constant, short type, as defi ned in ARIB STD-B10, indicates the service type is “digital audio”.

 ● static DIGITAL_TELEVISION

 ○ Constant, short type, as defi ned in ARIB STD-B10, indicates the service type is “digital TV”.

 ● static ENGINEERING_DOWNLOAD

 ○ Constant, short type, as defi ned in ARIB STD-B10, indicates the service type is “download
engineering”.

 ● static PROMOTION_DATA

 ○ Constant, short type, as defi ned in ARIB STD-B10, indicates the service type is a “data
promotion”.

 ● static PROMOTION_SOUND

 ○ Constant, short type, as defi ned in ARIB STD-B10, indicates the service type is a “sound
promotion”.

© ABNT 2010 - All rights reserved 71

ABNT NBR 15606-4:2010

 ● static PROMOTION_VIDEO

 ○ Constant, short type, as defi ned in ARIB STD-B10, indicates the service type is a “video
promotion”.

 ● static SPECIAL_AUDIO

 ○ Constant, short type, as defi ned in ARIB STD-B10, indicates the service type is a “special
audio”.

 ● static SPECIAL_DATA

 ○ Constant, short type, as defi ned in ARIB STD-B10, indicates the service type is a “special
data”.

 ● static SPECIAL_VIDEO

 ○ Constant, short type, as defi ned in ARIB STD-B10, indicates the service type is a “special
video”.

 ● static UNKNOWN

 ○ Constant, short type, as defi ned in ARIB STD-B10, indicates the service type is an “unknown”.

B.2.2.17 SITime interface

The SITime interface provides access to Time and Date Table (TDT) information. If the object indicates
TDT, the retrieveDescriptors and getDescriptorTags methods behave as specifi ed when there is no
description, because TDT does not have descriptors.

This interface indicate time and date obtained from the table (TDT). If the object indicates TDT,
retrieveDescriptors and getDescriptorTags behavior is similar to when there is no descriptor (because
the TDT Descriptor is not found).

The public method for the SITime class is:

 ● java.util.Date getTime()

 ○ This method acquires the encrypted time in the TDT or the TOT.

B.2.2.18 SITransportStream interface

The SITransportStream interface is the base interface used to indicate relevant information for the
transport stream.

The method that recovers the transport stream in the SIDatabase class and the SINetwork interface
returns the object set up with the SITransportStreamNIT interface that refers to the NIT.
The method that recovers the transport stream in the SIBouquet interface returns the object set up
with the SITransportStreamBAT interface that refers to the BAT.

The public methods for the SITransportStream class are:

 ● SBTVDLocator getSBTVDLocator()

 ○ This method acquires the SBTVDLocator that identifi es the transport stream.

© ABNT 2010 - All rights reserved72

ABNT NBR 15606-4:2010

 ● int getOriginalNetworkID()

 ○ This method acquires the original network ID.

 ● int getTransportStreamID()

 ○ This method acquires the transport stream ID.

 ● SIRequest retrieveSIServices(short retrieveMode, java.lang.Object appData, SIRetrievalListener
listener, short[] someDescriptorTags) throws br.org.sbtvd.si.SIIllegalArgumentException

 ○ This method acquires the relevant information for the service to be transmitted by the stream.

B.2.2.19 SITransportStreamBAT interface

The SITransportStreamBAT interface indicates information from the transport stream recovered from
BAT. All of the methods that access descriptors return information from descriptors acquired from BAT.
The method that recovers the transport stream in the SIBouquet returns an object that implements this
interface.

The public method for the SITransportStreamBAT class is:

 ● int getBouquetID()

 ○ The method acquires the ID from the bouquet to which this transport stream belongs.

B.2.2.20 SITransportStreamNIT interface

The SITransportStreamNIT interface indicates information from the transport stream acquired from
NIT. All of the methods that access descriptors return information from descriptors acquired from NIT.
The method that recovers the transport stream in the SIDatabase or SINetwork returns an object that
implements this interface.

The public method for the SITransportStreamNIT class is:

 ● int getNetworkID()

 ○ This method acquires the ID from the network to which this transport stream belongs.

B.2.2.21 Descriptor class

The Descriptor class indicates sub-table descriptors.

The public methods for the Descriptor class are:

 ● byte getByteAt(int index) throws java.lang.IndexOutOfBoundsException

 ○ This method obtains the value of one byte from the descriptor data section.

 ● byte[] getContent()

 ○ This method acquires a copy of the descriptor data section (bytes that are after the byte that
indicates descriptor size).

© ABNT 2010 - All rights reserved 73

ABNT NBR 15606-4:2010

 ● Short getContentLength()

 ○ This method returns the length of the data section indicated in the “descriptor length” fi eld.

 ● short getTag()

 ○ This method acquires the tag from the descriptor.

B.2.2.22 SIDatabase class

The SIDatabase class indicates the hierarchical structure root for SI information. There is one
SIDatabase for each network interface. Thus, there is only one SIDatabase, if there is only one network
interface.

The SIDatabase class' public static constants are:

 ● static int RETRIEVE_ALL_INFORMATIONS

 ● static int RETRIEVE_CURRENT_SELECTED

The public methods for the SIDatabase class are:

 ● void addBouquetMonitoringListener(SIMonitoringListener listener, int bouquetId) throws br.org.
sbtvd.si.SIIllegalArgumentException

 ○ This method initializes the accompaniment of bouquet information.

 ● void addBroadcasterMonitoringListener(SIMonitoringListener listener, int broadcasterId) throws
br.org.sbtvd.si.SIIllegalArgumentException

 ○ This method initializes the accompaniment of broadcaster information.

 ● void addEventPresentFollowingMonitoringListener(SIMonitoringListener listener,
int originalNetworkId, int transportStreamId, int serviceId) throws br.org.sbtvd.
si.SIIllegalArgumentException

 ○ This method initializes the accompaniment of EIT information [Current / Next].

 ● void addEventScheduleMonitoringListener(SIMonitoringListener listener, int originalNetworkId, int
transportStreamId, int serviceId, java.util.Date startTime, java.util.Date endTime) throws br.org.
sbtvd.si.SIIllegalArgumentException, br.org.sbtvd.si. SIInvalidPeriodException

 ○ This method initializes the accompaniment of EIT information [schedule].

 ● void addNetworkMonitoringListener(SIMonitoringListener listener, int networkId) throws br.org.
sbtvd.si.SIIllegalArgumentException

 ○ This method initializes the accompaniment of network information.

 ● void addPMTServiceMonitoringListener(SIMonitoringListener listener, int originalNetworkId, int
transportStreamId, int serviceId) throws br.org.sbtvd.si.SIIllegalArgumentException

 ○ This method initializes the accompaniment of PMT information relevant to the service.

© ABNT 2010 - All rights reserved74

ABNT NBR 15606-4:2010

 ● void addServiceMonitoringListener(SIMonitoringListener listener, int originalNetworkId, int
transportStreamId) throws br.org.sbtvd.si.SIIllegalArgumentException

 ○ This method initializes the accompaniment of SDT information relevant to the service.

 ● static SIDatabase[] getSIDatabase()

 ○ This method returns the SIDatabase object (for each network interface).

 ● void removeBouquetMonitoringListener(SIMonitoringListener listener, int bouquetId) throws br.org.
sbtvd.si.SIIllegalArgumentException

 ○ This method removes the listener registry from the bouquet information monitoring event.

 ● void removeBroadcasterMonitoringListener(SIMonitoringListener listener,int broadcasterId)
throws br.org.sbtvd.si.SIIllegalArgumentException

 ○ This method removes the listener registry from the broadcaster information monitoring event.

 ● void removeEventPresentFollowingMonitoringListener(SIMonitoringListener listener,
int originalNetworkId, int transportStreamId, int serviceId) throws br.org.sbtvd.
si.SIIllegalArgumentException

 ○ This method removes the listener registry from the EIT information monitoring event [current/
next].

 ● void removeEventScheduleMonitoringListener(SIMonitoringListener listener, int originalNetworkId,
int transportStreamId, int serviceId) throws br.org.sbtvd.si.SIIllegalArgumentException

 ○ Corresponding to the scheduled total, this method eliminates the registry of the EIT monitoring
event [schedule].

 ● void removeNetworkMonitoringListener(SIMonitoringListener listener, int networkId) throws br.org.
sbtvd.si.SIIllegalArgumentException

 ○ This method removes the registry of the network monitoring event.

 ● void removePMTServiceMonitoringListener(SIMonitoringListener listener, int originalNetworkId,
int transportStreamId, int serviceId) throws br.org.sbtvd.si.SIIllegalArgumentException

 ○ This method removes the listener registry from the monitoring event for PMT information
relevant to the service.

 ● void removeServiceMonitoringListener(SIMonitoringListener listener, int originalNetworkId, int
transportStreamId) throws br.org.sbtvd.si.SIIllegalArgumentException

 ○ This method removes the listener registry from monitoring for information relevant to the
service.

 ● SIRequest retrieveActualSINetwork(short retrieveMode,java.lang.Object appData,
SIRetrievalListener listener, short[] someDescriptorTags) throws br.org.sbtvd.
si.SIIllegalArgumentException

 ○ This method acquires the relevant information for the current network.

© ABNT 2010 - All rights reserved 75

ABNT NBR 15606-4:2010

 ● SIRequest retrieveActualSIServices(short retrieveMode,java.lang.Object appData,
SIRetrievalListener listener, short[] someDescriptorTags) throws br.org.sbtvd.
si.SIIllegalArgumentException

 ○ This method acquires the relevant information for this service.

 ● SIRequest retrieveActualSITransportStreaM (short retrieveMode, java.lang.Object
appData, SIRetrievalListener listener, short[] someDescriptorTags). throws br.org.sbtvd.
si.SIIllegalArgumentException

 ○ This method acquires the relevant information for the stream.

 ● SIRequestretrievePMTElementaryStreams(short retrieveMode,java.lang.Object appData,
SIRetrievalListener listener, SBTVDLocator sbtvdLocator, short[] someDescriptorTags) throws
br.org.sbtvd.si.SIIllegalArgumentException

 ○ This method acquires information about PMT’s elementary stream relevant to the service
component of this SIDatabase stream.

 ● SIRequest retrievePMTElementaryStreams(short retrieveMode,java.lang.Object appData,
SIRetrievalListener listener,int serviceId,int componentTag, short[] someDescriptorTags) throws
br.org.sbtvd.si.SIIllegalArgumentException

 ○ This method acquires information about PMT’s elementary stream relevant to the service
component of this SIDatabase stream.

 ● SIRequest retrievePMTService(short retrieveMode,java.lang.Object appData, SIRetrievalListener
listener, SBTVDLocator sbtvdLocator, short[] someDescriptorTags) throws br.org.sbtvd.
si.SIIllegalArgumentException

 ○ This method acquires PMT information relevant to this service.

 ● SIRequest retrievePMTServices(short retrieveMode,java.lang.Object appData,
SIRetrievalListener listener, int serviceId, short[] someDescriptorTags) throws br.org.sbtvd.
si.SIIllegalArgumentException

 ○ This method acquires the PMT information relevant to the service from this SIDatabase’s
transport stream.

 ● SIRequest retrieveSIBouquets(short retrieveMode,java.lang.Object appData,
SIRetrievalListener listener, int bouquetId, short[] someDescriptorTags) throws br.org.sbtvd.
si.SIIllegalArgumentException

 ○ This method acquires the information relevant to the stream.

 ● SIRequest retrieveSIBroadcaster(short retrieveMode,java.lang.ObjectappData, SIRetrievalListener
listener, intoriginalNetworkId, int broadcasterId, short [] some DescriptorTags) throws br.org.sbtvd.
si.SIIllegalArgumentException

 ○ This method acquires the information relevant to the broadcaster.

 ● SIRequest retrieveSIBroadcasters(short retrieveMode,java.lang.Object appData,
SIRetrievalListener listener, int originalNetworkId, short [] some DescriptorTags) throws br.org.
sbtvd.si.SIIllegalArgumentException

 ○ This method acquires the information relevant to the broadcaster specifi ed by originalNetworkId.

© ABNT 2010 - All rights reserved76

ABNT NBR 15606-4:2010

 ● SIRequest retrieveSINetworks(short retrieveMode,java.lang.Object appData,
SIRetrievalListener listener, int networkId, short[] someDescriptorTags) throws br.org.sbtvd.
si.SIIllegalArgumentException

 ○ This method acquires the information relevant to the network.

 ● SIRequest retrieveSIService(short retrieveMode,java.lang.Object appData, SIRetrievalListener
listener, SBTVDLocator sbtvdLocator, short[] someDescriptorTags) throws br.org.sbtvd.
si.SIIllegalArgumentException

 ○ This method acquires the relevant information for this service.

 ● SIRequest retrieveSIServices(short retrieveMode,java.lang.Object appData, SIRetrievalListener
listener,int originalNetworkId,int transportStreamId, int serviceId, short[] someDescriptorTags)
throws br.org.sbtvd.si.SIIllegalArgumentException

 ○ This method acquires the relevant information for this service.

 ● SIRequest retrieveSITimeFromTDT(short retrieveMode,java.lang.Object appData,
SIRetrievalListener listener) throws br.org.sbtvd.si.SIIllegalArgumentException

 ○ This method acquires information about time from the Time Date Table (TDT).

 ● SIRequest retrieveSITimeFromTOT(short retrieveMode,java.lang.Object appData,
SIRetrievalListener listener, short[] someDescriptorTags) throws br.org.sbtvd.
si.SIIllegalArgumentException

 ○ This method acquires information about time from the Time Offset Table (TOT).

B.2.2.23 SIExEventInformation class

The SIExEventInformation interface indicates the items of the description and the names of the details
for a specifi c program. The information is acquired from the event descriptors in extended format.

The public methods for the SIExEventInformation class are:

 ● java.lang.String getDescription()

 ○ This method acquires the description of the item.

 ● java.lang.String getName()

 ○ This method acquires the name of the item.

B.2.2.24 SILackOfResourcesEvent class

The SILackOfResourcesEvent class event is notifi ed when the resources necessary for acquiring
requested data in a requisition are not available in the SI. This class extends br.org.sbtvd.
si.SIRetrievalEvent

The public method for the SILackOfResourcesEvent class is:

 ● SILackOfResourcesEvent(java.lang.Object appData, SIRequest request)

 ○ The constructor of this event.

© ABNT 2010 - All rights reserved 77

ABNT NBR 15606-4:2010

B.2.2.25 SIMonitoringEvent class

The object of the SIMonitoringEvent class is transmitted so the listener object notifi es the application of
the change in monitored information. This class extends java.util.EventObject.

The public methods for the SIMonitoringEvent class are:

 ● SIMonitoringEvent(SIDatabase source,byte objectType,int networkId,int bouquetId, int
originalNetworkId, int transportStreamId, int broadcasterId, int serviceId, java.util.Date startTime,
java.util.Date endTime)

 ○ Constructor of event object

 ● int getBouquetID()

 ○ This method returns the bouquet ID

 ● int getBroadcasterID()

 ○ This method returns the broadcaster ID for the broadcaster.

 ● java.util.Date getEndTime()

 ○ This method returns the end of programming when event information is modifi ed.

 ● int getNetworkID()

 ○ This method returns the network ID for the network.

 ● int getOriginalNetworkID()

 ○ This method returns the original network ID for the SIInformation object.

 ● int getServiceID()

 ○ This method returns the service ID for the SIInformation object.

 ● byte getSIInformationType()

 ○ This method acquires the SIInformation type in the change of information.

 ● java.lang.Object getSource()

 ○ This method acquires the SIDatabase instance to be sent to the event.

 ● java.util.Date getStartTime()

 ○ This method returns the beginning of programming when event information is modifi ed.

 ● int getTransportStreamID()

 ○ This method returns the transport stream ID for the SIInformation object.

© ABNT 2010 - All rights reserved78

ABNT NBR 15606-4:2010

B.2.2.26 SINotInCacheEvent class

When the request for SI acquisition in the FROM_CACHE_ONLY mode is executed and the data
requested does not exist in the cache, this event is notifi ed as a reply. This class extends br.org.sbtvd.
si.SIRetrievalEvent.

The public method for the SINotInCacheEvent class is:

SINotInCacheEvent(java.lang.Object appData, SIRequest request)

 ○ Constructor of the event

B.2.2.27 SIObjectNotInTableEvent class

The SIObjectNotlnTableEvent class event is notifi ed when the SI table with the information about the
location of the requested object is recovered but does not contain the referred to object. This class
extends br.org.sbtvd.si.SIRetrievalEvent.

The public method for the SIObjectNotInTableEvent class is:

SIObjectNotInTableEvent(java.lang.Object appData, SIRequest request)

 ○ Constructor of the event

B.2.2.28 SIRequest class

The instance of the SIRequest class object indicates the application acquisition request. The application
can cancel the request using this object.

The public methods for the SIRequest class are:

 ● boolean cancelRequest()

 ○ This method cancels the acquisition request.

 ● boolean isAvailableInCache()

 ○ This method returns the availability of information if it is returned from the stream or cache.

B.2.2.29 SIRequestCancelledEvent class

The SIRequestCancelledEvent class event is launched as a response when a requisition is canceled
using the SIRequest.cancelRequest method. This class extends br.org.sbtvd.si.SIRetrievalEvent.

The public method for the SIRequestCancelledEvent class is:

SIRequestCancelledEvent(java.lang.Object appData, SIRequest request)

 ○ Constructor

B.2.2.30 SIRetrievalEvent class

The SIRetrievalEvent class is a basic class for the SI acquisition request conclusion event. Only one
event is returned for an SI acquisition request. This class extends java.util.EventObject.

© ABNT 2010 - All rights reserved 79

ABNT NBR 15606-4:2010

The public methods for the SIRetrievalEvent class are:

 ● SIRetrievalEvent(java.lang.Object appData, SIRequest request)

 ○ Constructor of the event

 ● java.lang.Object getAppData()

 ○ This method returns application data that go through the acquisition method.

 ● java.lang.Object getSource()

 ○ This method returns a SIRequest object for the event of origin.

B.2.2.31 SISuccessfulRetrieveEvent class

The SISuccessfulRetrieveEvent class event is sent as a response when the request is terminated
normally. The result can be acquired by using the getResult method. This class extends br.org.sbtvd.
si.SIRetrievalEvent.

The public methods for the SISuccessfulRetrieveEvent class are:

 ● SISuccessfulRetrieveEvent(java.lang.Object appData, SIRequest request, SIIterator result)

 ○ Constructor

 ● SIIterator getResult()

 ○ This method returns the SIIterator object that includes requested data.

B.2.2.32 SITableNotFoundEvent class

The SITableFoundEvent class event is sent as a response when the SI table that shall contain the
requested information has not been found. One of the reasons may be the fact it is not being transmitted
in the stream connected to the SI database. This class extends br.org.sbtvd.si.SIRetrievalEvent class.

The public method for the SITableNotFoundEvent class is:

SITableNotFoundEvent(java.lang.Object appData, SIRequest request)

 ○ Constructor

B.2.2.33 SITableUpdatedEvent class

The SITableUpdateEvent class event is launched as a response when the table, which transmits
the information about the SI requisition's target object is updated and the descriptor information in
compliance with the old object is not available. In this case, the application shall initially update the
SIInformation object. Then the information about the descriptor shall be requested again. This class
extends br.org.sbtvd.si.SIRetrievalEvent.

The public method for the SITableUpdatedEvent class is:

 ● SITableUpdatedEvent(java.lang.Object appData, SIRequest request)

 ○ Standard Constructor

© ABNT 2010 - All rights reserved80

ABNT NBR 15606-4:2010

B.2.2.34 SIUtil class

The SIUtil class includes a utility function relevant to the SI.

The public method for the SIUtil class is:

 ● static java.lang.String convertSIStringToJavaString(byte[] sbtvdSIText, int offset, int length) throws
br.org.sbtvd.si.SIIllegalArgumentException

 ○ This method converts the encrypted text string to the Java object string based on
ARIB STD-B10:2008 Part 2, Appendix A. This method inherited from java.lang.Object class.

B.2.2.35 SIException() class

The SIException() class is based on the SI exception hierarchy. This class extends java.lang.Exception.

The public method for the SIException() is:

 ● SIException()

 ○ Standard exception constructor.

 ● SIException(String message)

 ○ Constructor with parameter (String) to indicate the exception reason.

B.2.2.36 SIIllegalArgumentException() class

The SIIllegalArgumentException() class is launched when more than one improper argument is passed
on (for example, out-of-space numerical values). This class extends br.sbtvd.si.SIException.

The public method for the SIIllegalArgumentException() class is:

 ● SIIllegalArgumentException()

 ○ Standard exception constructor.

 ● SIIllegalArgumentException (String message)

 ○ Constructor with parameter (String) to indicate the exception reason.

B.2.2.37 SIInvalidPeriodException class

The SIInvalidPeriodException class occurs when the specifi ed time extension is improper, for example,
initialization time is further delayed. This class extends br.org.sbtvd.si.SIException.

The public methods for the SIInvalidPeriodException class are:

 ● SIInvalidPeriodException()

 ○ Standard exception constructor.

 ● SIInvalidPeriodException(java.lang.String reason)

 ○ Exception constructor that has a reason to be specifi ed.

© ABNT 2010 - All rights reserved 81

ABNT NBR 15606-4:2010

Annex C
(normative)

API extension specifi cation for tuning –
Package br.org.sbtvd.net.tuning

C.1 ChannelManager class

The ChannelManager class specifi es an object responsible for the zapping activity (changing) of channels
through the network interface (land, cable, satellite, IPTV) that exists in the digital television receiver.

The public methods are:

 ● static ChannelManager getInstance ()

 ○ Returns an object (instance) ChannelManager.

 ● int getNumberofChannels ()

 ○ Returns the number of channels found in all network interfaces available in the system.

 ● Channel [] getChannels ()

 ○ Returns the number of channels found in all network interfaces available in the system.

 ● void tuneChannel (Channel ch, com.sun.dtv.tuner.TunerListener lis) throws com.sun.dtv.tuner.
TuningException

 ○ Asynchronically tunes in the channel provided by the whole parameter num. This method
launches an exception of the com.sun.dtv.tuner.TuningException type in the case of tuning
failure.

 ● void tuneNextChannel (com.sun.dtv.tuner.TunerListener lis) throws com.sun.dtv.tuner.
TuningException

 ○ Asynchronically tunes in the next channel on the table TransportStream generated during the
sweep. This method launches an exception of the com.sun.dtv.tuner.TuningException type in
the case of tuning failure.

 ● void tunePreviousChannel (com.sun.dtv.tuner.TunerListener lis) throws com.sun.dtv.tuner.
TuningException

 ○ Asynchronously tunes in the previous channel on the table TransportStream generated during
the sweep. This method launches an exception of the com.sun.dtv.tuner.TuningException type
in the case of tuning failure.

© ABNT 2010 - All rights reserved82

ABNT NBR 15606-4:2010

C.2 Channel class

The Channel class represents an object that contains channel data detected during the sweep. For
example, from this class' information, it is possible to tune in a channel from its virtual number (remote
control key id).

The public methods are:

 ● com.sun.dtv.transport.TransportStream getTransportStream ()

 ○ Returns the object that contains the channel.

 ● String getNetworkName ()

 ○ Returns the description of the network in which the channel is now.

 ● String getITransportStreamName ()

 ○ Returns the description of the transport stream in which the channel is now.

 ● int getRemoteControlKeyId()

 ○ Returns the channel’s virtual number.

© ABNT 2010 - All rights reserved 83

ABNT NBR 15606-4:2010

Annex D
(normative)

NCL Bridge API Specifi cation

D.1 General considerations

The br.org.sbtvd.bridge and br.org.sbtvd.bridge.ncl packages have a set of available classes for the
bridge between applications written in NCL and Java languages in a Ginga environment. The functions
available in the classes described in D.2.1 permit development of Ginga-J applications, including Ginga-
NCL applications, as well as Ginga-NCL applications development, including Java Xlets.

This NCL Ginga-J bridge API makes it possible to present and manipulate a NCL document in a Java
application, through NCLPlayer class, preserving the original document throughout the entire exhibition
process. The classes that bring such functionalities together are provided by the br.org.sbtvd.bridge
package.

A NCL document is also capable of including Ginga-J Xlets as one of its media nodes (element
<media>). An element <media> with Java code can defi ne anchors (through elements <area>), and
attributes (through elements <property>). The transitions applied to Xlet will invoke the methods of the
javax.microedition.xlet.Xlet interface (see PBP 1.1:2008), representing the transitions of the machine
states. The transitions applied to anchors shall generate NCLAchorEvent class events that encapsulate
the transition and the anchor identifi er in question. D.2.2 presents the classes that are responsible for
Ginga-NCL communication with the Ginga-J environment when an NCL document includes a Ginga-J
application. These classes comprise the br.org.sbtvd.bridge.ncl package.

Complementary information can be obtained in ABNT NBR 15606-2:2007, 10.3.4.3 and 11.2.

D.2 NCL bridge API

D.2.1 br.org.sbtvd.net.tuning package

D.2.1.1 NCLPlayer class

The NCLPlayer class is a class that represents a display for an NCL document, a graphic component
that extends java.awt.Component. Input events (keys, for example) will be handled by the NCL display
(the events are repassed by the Ginga-J environment to the Ginga-NCL) while the NCLPlayer has the
interaction focus, among the graphic components being used in the Xlet in question.

The NCLPlayer class' public static constants are:

 ● static int PLAYING

 ○ Identifi cation for the document in execution.

 ● static int PAUSED

 ○ Identifi cation for the paused document.

© ABNT 2010 - All rights reserved84

ABNT NBR 15606-4:2010

 ● static int STOPPED

 ○ Identifi cation for the stopped document.

The public methods for the NCLPlayer class are:

 ● NCLPlayer(java.net.URL documentURL)

 ○ Constructor method for the NCLPlayer, which receives a java.net.URL class instance as a
parameter for document locator.

 ● voidaddNCLPlayerEventListener(NCLPlayerEventListener listener, long
nclPlayerEventPlayerMask)

 ○ This method registers an NCLPlayerEventListener to receive all NCLPlayerEvents distributed
by the machine associated to the node linked to the long eventMask value supplied.

 ● void removeNCLPlayerEventListener(NCLPlayerEventListener listener)

 ○ Removes an NCLPlayerEventListener from the distributed NCLPlayerEvents reception class.

 ● NCLPlayerEventListener[] getANCLPlayerEventListeners()

 ○ Returns a list of all NCLPlayerEventListeners registered in this NCLPlayer. Observes that the
listener objects added several times appear only once on the returned list.

 ● NCLPlayerEventListener[] getANCLPlayerEventListeners(long nclPlayerEventMask)

 ○ Returns a list of all NCLPlayerEventListeners registered in this NCLPlayer that listens to all
types of events indicated in the long eventMask value. The listener objects added several
times appear only once on the returned list.

 ● java.net.URL getDocumentURL()

 ○ Returns a class object java.net.URL that is the NCL document locator being manipulated by
the NCLPlayer object in question.

 ● java.lang.String getPropertyValue(java.lang.String propertyId)

 ○ Returns a String instance with the property value defi ned by the String propertyIdparameter.

 ● int getStatus()

 ○ Returns an integer that represents the status of the NCLPlayer object (PLAYING – in execution,
PAUSED – paused, STOPPED – stopped).

 ● void setDocument(java.net.URL documentURL)

 ○ Defi nes the NCL document to be manipulated by the NCLPlayer, receiving an object from the
java.net.URL class as document identifi er. The new execution status for the NCLPlayer shall
be defi ned as stopped (STOPPED).

 ● boolean startDocument(java.lang.String interfaceId)

 ○ It begins reproduction of an NCL document starting the presentation at the document interface
specifi ed by the String interfaceId instance. Returns true if successful, and false if otherwise.

© ABNT 2010 - All rights reserved 85

ABNT NBR 15606-4:2010

 ● boolean stopDocument()

 ○ Stops the presentation of an NCL document. All document events in execution shall obligatorily
be stopped. Returns true if successful, and false if otherwise.

 ● boolean pauseDocument()

 ○ Pauses the presentation of an NCL document. All document events in execution shall
obligatorily be paused. Returns true if successful, and false if otherwise.

 ● boolean resumeDocument()

 ○ Resumes presentation of an NCL document. All document events previously paused by the
pauseDocument() method shall obligatorily be resumed. Returns true if successful, and false
if otherwise.

 ● NCLEdit getNCLEdit()

 ○ Returns an NCLEdit class instance that offers NCL document editing functionalities in
exhibition time.

D.2.1.2 NCLPlayerEvent class

The NCLPlayerEvent class is the root event for all NCL events generated by a NCL encapsulated
application by an instance of the class in question . Event masks defi ned in this class are used to
specify to which types of events an NCLPlayerEventListener shall listen. Additional information can be
obtained from ABNT NBR 15606-2:2007, 10.3.4.3.

The NCLPlayerEvent class' public static constants are:

 ● static int PRESENTATION_START = 1;

 ○ Event mask for presentation events (presentation type) whose action (action fi eld) was the
start of reproduction (start) of a node or anchor.

 ● static int PRESENTATION_STOP = 2;

 ○ Event mask for presentation events (presentation type) whose action (action fi eld) was the
end of reproduction (stop) of a node or anchor.

 ● static int PRESENTATION_ABORT = 4;

 ○ Event mask for presentation events (presentation type) whose action (action fi eld) was the
aborting of reproduction (abort) of a node or anchor.

 ● static int PRESENTATION_PAUSE = 8

 ○ Event mask for presentation events (presentation type) whose action (action fi eld) was the
pausing of reproduction (pause) of a node or anchor.

 ● static int PRESENTATION_RESUME = 16;

 ○ Event mask for presentation events (presentation type) whose action (action fi eld) was the
resumption of reproduction (resume) of a node or anchor.

© ABNT 2010 - All rights reserved86

ABNT NBR 15606-4:2010

 ● static int ATTRIBUTION_SET= 32;

 ○ Event mask for attribution events (attribution type) whose action (action fi eld) was the defi nition
(set) of a parameter for a node or anchor.

 ● protected int id

 ○ Identifi cation of the event.

The public methods for the NCLPlayerEvent class are:

 ● NCLEvent(Object source, int id, String value)

 ● Constructor method for NCLEvent, which receives as parameter a reference (source) of the object
that originated the event, an integral (id), which identifi es the event and an identifi er (value) of the
node or anchor related to the event.int getID()

 ○ Returns the type of event.

 ● String getValue()

 ○ Returns the identifi er of the node or anchor related to the event.

D.2.1.3 NCLPlayerEventListener interface

The Listener interface, which shall be implemented by whoever wants to receive notifi cation of events
distributed to NCLEvent class elements objects. It extends the java.util.EventListener interface.

The application interested in monitoring NCL events of an NCLPlayer implements this interface
registering as the NCLPlayer using the NCLPlayer.addNCLPlayerEventListener() method. When an
event is distributed in the NCLPlayer, the eventDispatched method of this object is executed.

The public method for the NCLPlayerEventListener interface is:

 ● void NCLPlayerEventDispatched(NCLPlayerEvent event)

 ○ Method executed when an event is distributed in the NCLPlayer.

D.2.1.4 NCLGingaSettingsNodes class

The NCLGingaSettingsNodes class is a class that represents an NCL node, whose attributes are
global variables defi ned by the document's author or environment variables that can be manipulated by
NCL document processing. The complete list of these environment variables is shown in ABNT NBR
15606-2.

The public methods for the NCLGingaSettingsNodes class are:

 ● NCLGingaSettingsNodes(java.lang.String nodeId)

 ○ Constructor method for NCLGingaSettingsNodes that receives a single identifying String as
a parameter.

© ABNT 2010 - All rights reserved 87

ABNT NBR 15606-4:2010

 ● String getValue(String value)

 ○ Returns the variable value according to the description of the environment variable
entered as a String. The complete list of environment variables available can be seen in
ABNT NBR 15606-2:2007, Table 12.

D.2.1.5 NCLEdit class

The NCLEdit class offers methods to edit a NCL document, which when encapsulated in a NCLPlayer
class object; instantiates associated NCLEdit class objects (method getNCLEdit). Editing commands from
the NCLEdit instance only alter NCL document presentation (represented by NCLPlayer object) – the
original document is preserved throughout the editing process, as specifi ed for the NCL editing commands
in ABNT NBR 15606-2:2007.

The public methods for the NCLEdit class are:

 ● boolean addRegion(java.lang.String regionBaseId, java.lang.String regionId, java.lang.String
regionStr)

 ○ Adds an element <region> in the NCL document, like a member of the region base identifi ed
by the String regionBaseId, like a child element identifi ed by the String regionId and defi ned
in the String regionStr. Returns true if successful, and false if otherwise.

 ● boolean removeRegion(java.lang.String regionId)

 ○ Removes the element <region> identifi ed by the NCL document’s regionId String. Returns
true if successful, and false if otherwise.

 ● boolean addRegionBase(java.lang.String regionBaseStr)

 ○ Adds the element <regionBase> described in the String regionBaseStr to the element <head>
in the NCL document. Returns true if successful, and false if otherwise.

 ● boolean removeRegionBase(java.lang.String regionBaseId)

 ○ Removes the element <regionBase> identifi ed by the NCL document’s regionBaseId String.
Returns true if successful, and false if otherwise.

 ● boolean addRule(java.lang.String ruleStr)

 ○ Adds an element <rule> described in the String ruleStr as part of the NCL document <ruleBase>
element. Returns true if successful, and false if otherwise.

 ● boolean removeRule(java.lang.String ruleId)

 ○ Removes the element <rule> identifi ed in the String ruleId of the NCL document <ruleBase>
element. Returns true if successful, and false if otherwise.

 ● boolean addRuleBase(java.lang.String ruleBaseStr)

 ○ Adds an element <ruleBase> described in the String ruleBaseStr as part of the NCL document
<head> element. Returns true if successful, and false if otherwise.

© ABNT 2010 - All rights reserved88

ABNT NBR 15606-4:2010

 ● boolean removeRuleBase(java.lang.String ruleBaseId)

 ○ Removes the element <ruleBase> identifi ed in the String ruleBaseId of the NCL document
<head> element. Returns true if successful, and false if otherwise.

 ● boolean addConnector(java.lang.String connectorStr)

 ○ Adds an element <connector> described in the String connectorStr as part of the NCL
document <connectorBase> element. Returns true if successful, and false if otherwise.

 ● boolean removeConnector(java.lang.String connectorId)

 ○ Removes the element <connector> identifi ed in the String connectorId of the NCL document
<connectorBase> element. Returns true if successful, and false if otherwise.

 ● boolean addConnectorBase(java.lang.String connectorBaseStr)

 ○ Adds an element <connectorBase> described in the String connectorBaseStr as part of the
NCL document <head> element. Returns true if successful, and false if otherwise.

 ● boolean removeConnectorBase(java.lang.String connectorBaseId)

 ○ Removes the element <connectorBase> identifi ed in the String connectorBaseId of the NCL
document <head> element. Returns true if successful, and false if otherwise.

 ● boolean addDescriptor(java.lang.String descriptorStr)

 ○ Adds an element <descriptor> described in the String descriptorStr as a part of the NCL
document <descriptorBase> element. Returns true if successful, and false if otherwise.

 ● boolean removeDescriptor(java.lang.String descriptorId)

 ○ Removes the element <descriptor> identifi ed in the String descriptorId of the NCL document
<descriptorBase> element. Returns true if successful, and false if otherwise.

 ● boolean addDescriptorSwitch(java.lang.String descriptorSwitchStr)

 ○ Adds an element <descriptorSwitch> described in the String descriptorSwitchStr as a part
of the NCL document <descriptorBase> element. Returns true if successful, and false if
otherwise.

 ● boolean removeDescriptorSwitch(java.lang.String descriptorSwitchId)

 ○ Removes the element <descriptorSwitch> identifi ed in the String descriptorSwitchId of the
NCL document <descriptorBase> element. Returns true if successful, and false if otherwise.

 ● boolean addDescriptorBase(java.lang.String descriptorBaseStr)

 ○ Adds an element <descriptorBase> described in the String descriptorStr as a part of the NCL
document <head> element. Returns true if successful, and false if otherwise.

 ● boolean removeDescriptorBase(java.lang.String descriptorBaseId)

 ○ Removes the element <descriptorBase> identifi ed in the String descriptorBaseId of the NCL
document <head> element. Returns true if successful, and false if otherwise.

© ABNT 2010 - All rights reserved 89

ABNT NBR 15606-4:2010

 ● boolean addTransition(java.lang.String transitionStr)

 ○ Adds an element <transition> described in the String transitionStr as a part of the NCL
document <transitionBase> element. Returns true if successful, and false if otherwise.

 ● boolean removeTransition(java.lang.String transitionId)

 ○ Removes the element <transition> identifi ed in the String transitionId of the NCL document
<transitionBase> element. Returns true if successful, and false if otherwise.

 ● boolean addTransitionBase(java.lang.String transitionBaseStr)

 ○ Adds an element <transitionBase> described in the String transitionBaseStr as a part of the
NCL document <head> element. Returns true if successful, and false if otherwise.

 ● boolean removeTransitionBase(java.lang.String transitionBaseId)

 ○ Removes the element <transitionBase> identifi ed in the String transitionBaseId of the NCL
document <head> element. Returns true if successful, and false if otherwise.

 ● boolean addImportBase(java.lang.String docBaseId, java.lang.String importBaseStr)

 ○ Adds an NCL base element identifi ed in the String docBaseId (<regionBase>, <descriptorBase>,
<ruleBase>, <transitionBase> or <connectorBase>) to the defi nition of the element
<importBase> contained in the String importBaseStr in the NCL document. Returns true if
successful, and false if otherwise.

 ● boolean removeImportBase(java.lang.String docBaseId, java.lang.String importBaseId)

 ○ Removes the element <importBase> identifi ed in the String importBaseId for an NCL base
element identifi ed in the String docBaseId (<regionBase>, <descriptorBase>, <ruleBase>,
<transitionBase> or <connectorBase>) of the NCL document. Returns true if successful, and
false if otherwise.

 ● boolean addImportedDocumentBase(java.lang.String importedDocumentBaseStr)

 ○ Adds the defi nition of the element <importedDocumentBase> contained in the String
importedDocumentBaseStr to the NCL document <head> element. Returns true if successful,
and false if otherwise.

 ● boolean removeImportedDocumentBase(java.lang.String importedDocumentBaseId)

 ○ Removes the element <importedDocumentBase> identifi ed by the String
importedDocumentBaseId from the NCL document <head> element.

 ● boolean addImportNCL (java.lang.String importNCLStr)

 ○ Adds the defi nition of the element <importNCL> contained in the String importNCLStr to the
NCL document <importedDocumentBase> element. Returns true if successful, and false if
otherwise. Returns true if successful, and false if otherwise.

© ABNT 2010 - All rights reserved90

ABNT NBR 15606-4:2010

 ● boolean removeImportNCL(java.lang.String importNCLId)

 ○ Removes the element <importNCL> identifi ed by the String importNCLId from the NCL
document <importedDocumentBase> element. Returns true if successful, and false if
otherwise.

 ● boolean addNode(java.lang.String compositeId, java.lang.String nodeStr)

 ○ Adds the defi nition of an NCL node (<media>, <context> or <switch>) contained in the String
nodeStr to an NCL composition node identifi ed in the String compositeId (<body>, <context>
or <switch>). Returns true if successful, and false if otherwise.

 ● boolean removeNode(java.lang.String compositeId, java.lang.String nodeId)

 ○ Removes the defi nition of an NCL node (<media>, <context> or <switch>) identifi ed in the
String nodeId from an NCL composition node identifi ed in the String compositeId (<body>,
<context> or <switch>). Returns true if successful, and false if otherwise.

 ● boolean addInterface(java.lang.String nodeId, java.lang.String interfaceStr)

 ○ Adds an NCL interface (element <port>, <area>, <property> or <switchPort>) described in the
String interfaceStr to a node (element <media>, <body>, <context> or <switch>) identifi ed by
the NCL document nodeId String. Returns true if successful, and false if otherwise.

 ● boolean removeInterface(java.lang.String nodeId, java.lang.String interfaceId)

 ○ Removes an NCL interface (element <port>, <area>, <property> or <switchPort>) described
in the String interfaceStr from a node (element <media>, <body>, <context> or <switch>)
identifi ed by the NCL document nodeId String. Returns true if successful, and false if otherwise.

 ● boolean addLink(java.lang.String compositeId, java.lang.String linkStr)

 ○ Adds the defi nition of an NCL <link> element contained in the linkStr String to an NCL
composition node identifi ed in the compositeId (<body>, <context> or <switch>) String.
Returns true if successful, and false if otherwise.

 ● boolean removeLink(java.lang.String compositeId, java.lang.String linkId)

 ○ Removes the defi nition of an NCL (<media>, <context> or <switch>) element identifi ed in the
String linkId from an NCL composition node identifi ed in the compositeId (<body>, <context>
or <switch>) String. Returns true if successful, and false if otherwise.

 ● boolean setPropertyValue(java.lang.String propertyId, java.land.String value)

 ○ Attributes the value of the String value to a property identifi ed by propertyId. The instance value
for String propertyId shall obligatorily identify an attribute name for an element <property> or
an element id attribute <switchPort>. The <property> or <switchPort> shall obligatorily belong
to an NCL document (element <body>, <context>, <switch> or <media>) node. Returns true
if successful, and false if otherwise.

© ABNT 2010 - All rights reserved 91

ABNT NBR 15606-4:2010

D.2.2 br.org.sbtvd.net.bridge.ncl package

D.2.2.1 NodeManager class

The NodeManager static class has all the methods for NCLEventListeners registration in a way that
a Xlet Ginga-J, associated to a media node (element <media>) can receive events (encapsulated in
NCLEvent class instances) of the Ginga-NCL environment. Additional information can be obtained
from ABNT NBR 15606-2:2007, 10.3.4.3 and 11.2.

The public methods for the NodeManager class are:

 ● static void addNCLEventListener(NCLEventListener listener)

 ○ This method registers a NCLEventListener to receive all the NCLEvent instances distributed
by the Ginga-NCL environment to the Xlet associated to a media node (element <media>) in
a Ginga-NCL. Application.

 ● static void removeNCLEventListener(NCLEventListener listener)

 ○ Removes a NCLEventListener previously registered.

 ● static NCLEventListener[] getNCLEventListeners()

 ○ Returns a list of all NCLEventListener instances registered with the Node Manager. The
listener objects added various times appear only once in the returned list.

D.2.2.2 NCLEvent class

The NCLEvent class extends java.util.EventObject and is the root event class for all events generated
by the NCL formatter that manipulates a document including a Xlet Ginga-J. Event masks defi ned
in this class are used to specify which types of events a NCLEventListener shall listen. Additional
information can be obtained from ABNT NBR 15606-2:2007, 10.3.4.3 and 11.2.

The NCLEvent class' public static constants are:

 ● static int PRESENTATION_START

 ○ Event mask for presentation events (presentation type) whose action (action fi eld) was the
start of the reproduction (start) of an anchor defi ned for the media node (element <media>)
that includes Xlet Ginga-J.

 ● static int PRESENTATION_STOP

 ○ Event mask for presentation events (presentation type) whose action (action fi eld) was the
end of the reproduction (stop) of an anchor defi ned for the media node (element <media>)
that includes Xlet Ginga-J.

 ● static int PRESENTATION_ABORT

 ○ Event mask for presentation events (presentation type) whose action (action fi eld) was
the abortion of the reproduction (abort) of an anchor defi ned for the media node (element
<media>) that includes Xlet Ginga-J.

© ABNT 2010 - All rights reserved92

ABNT NBR 15606-4:2010

 ● static int PRESENTATION_PAUSE

 ○ Event mask for presentation events (presentation type) whose action (action fi eld) was
the pausing of the reproduction (pause) of an anchor defi ned for the media node (element
<media>) that includes Xlet Ginga-J.

 ● static int PRESENTATION_RESUME

 ○ Event mask for presentation events (presentation type) whose action (action fi eld) was the
resumption of the reproduction (resume) of an anchor defi ned for the media node (element
<media>) that includes Xlet Ginga-J.

 ● static int ATTRIBUTION_SET

 ○ Event mask for attribution events (attribution type) whose action (action fi eld) was the defi nition
(set) of a parameter defi ned for the media node (element <media>) that includes Xlet Ginga-J.

 ● protected int id

 ○ Identifi cation of the event.

The public methods for the NCLEvent class are:

 ● NCLEvent(Object source, int id, String value)

 ○ Constructor method for NCLEvent, which receives as parameter a reference (source) of the
object that originated the event, an integral (id), which identifi es the event and an identifi er
(value) of the node or anchor related to the event.

 ● int getID()

 ○ Returns the type of event.

 ● String getValue()

 ○ Returns the identifi er of the node or anchor related to the event.

D.2.2.3 NCLEventListener interface

The Listener interface shall be implemented by whoever wants to receive notifi cation of events distributed
by the NCL formatter manipulating an NCL document that includes an Xlet Ginga-J, which are objects
that are NCLEvent class elements. It extends the java.util.EventListener interface

The application you want to monitor the events, generated by the NCL formatter shall implement this
interface.

The public method for the NCLEventListener interface is:

 ● void NCLPlayerEventDispatched(NCLEvent event)

 ○ Method executed when an NCLEvent event is generated by the NCL formatter.

© ABNT 2010 - All rights reserved 93

ABNT NBR 15606-4:2010

Annex E
(normative)

API specifi cation for graphic plane support - br.org.sbtvd.ui package

E.1 ColorCoding class

The ColorCoding class holds constants to number the different coding models possible for each plane.
The possible values correspond to those returned in com.sun.dtv.ui.Plane.getColorCodingModel().

The public static constants found in this class are:

 ● public static fi nal int ARGB8888 = 1

 ○ indicates that the color model in the plane is ARGB8888.

 ● public static fi nal int YUV442

 ○ indicates that the color model in the plane is YUV442.

 ● public static fi nal int YUV444 = 3

 ○ indicates that the color model in the plane is YUV444.

 ● public static fi nal int ONE_BPP = 4

 ○ indicates that the color model in the plane is one bit per pixel.

E.2 StillPicture class

The StillPicture class extends the com.sun.dtv.lwuit.Component class. It is the means through which
JPEG images are added to the static image plane. This class shall be declared with the fi nal modifi er.

The public constructors are the following:

 ● StillPicture(String path)

 ○ Constructs a StillPicture object. The passed parameter path shall correspond to the location
of a JPEG image in the application fi le system.

This class’ instances do not support focus or animation functionalities.

The following methods inherited from com.sun.dtv.lwuit.Component shall not be invoked directly by the
applications:

 ● void paint(Graphics g)

 ● void paintBackgrounds(Graphics g)

 ● void paintComponent(Graphics g)

 ● void paintComponent(Graphics g, boolean background)

© ABNT 2010 - All rights reserved94

ABNT NBR 15606-4:2010

E.3 SwitchArea class

The SwitchArea class extends the com.sun.dtv.lwuit.Component class. This class shall be declared
with the fi nal modifi er.

It is a component that defi nes a rectangular area for the video/image selection plane. Each rectangular
area added through the com.sun.dtv.lwuit.Component#addComponent method() corresponds to an
area in which the static image plane will appear over the video plane or vice-versa depending on the
component's (com.sun.dtv.lwuit.plaf.Style) style color.

This class' instances do not support focus or animation functionalities.

The following methods inherited from com.sun.dtv.lwuit.Component shall not be invoked directly by the
applications:

 ● void paint(Graphics g)

 ● void paintBackgrounds(Graphics g)

 ● void paintComponent(Graphics g)

 ● void paintComponent(Graphics g, boolean background)

Through the com.sun.dtv.lwuit.plaf.Style associated to each component, it is possible to defi ne whether
the video will be displayed on the Still Picture Plane or vice-versa. The instances of com.sun.dtv.lwuit.
plaf.Style associated with this component may only contain solid colors (java.awt.Color). The color
black, java.awt.Color. BLACK, represents that the video shall be displayed over the Still Picture Plane.
By using any other color, the Still Picture Plane content will be displayed in the front of the video.

© ABNT 2010 - All rights reserved 95

ABNT NBR 15606-4:2010

Bibliography

[1] SOUZA FILHO, Guido Lemos de; LEITE, Luiz Eduardo Cunha; BATISTA, Carlos Eduardo Coelho
Freire. Ginga-J: The Procedural Middleware for the Brazilian Digital TV System. In: ______ Journal
of the Brazilian Computer Society. No. 4, Vol. 13. p.47-56. ISSN: 0104-6500. Porto Alegre, RS,
2007.

[2] SOARES, Luiz Fernando Gomes; RODRIGUES, Rogério Ferreira; MORENO, Márcio Ferreira.
Ginga-NCL: the Declarative Environment of the Brazilian Digital TV System. In: ______ Journal of
the Brazilian Computer Society. No. 4, Vol. 13. p.37-46. ISSN: 0104-6500. Porto Alegre, RS, 2007.

[3] Sun Microsystems, Java Digital Television (DTV) API:2008, < h t tp : / / j ava .sun .com/ javame/
technology/javatv/index.jsp>

[4] Sun Microsystems, Java TV API:2007, <http://java.sun.com/products/javatv/>

[5] Sun Microsystems, Java Media Framework API (JMF), <http://java.sun.com/products/java-media/
jmf/index.jsp>

