/*************************************************************************** * Copyright (C) 2005 by Jeff Ferr * * root@sat * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ #include "jframe.h" #include #define SCREEN_WIDTH 1920 #define SCREEN_HEIGHT 1080 #define texWidth 64 #define texHeight 64 #define mapWidth 24 #define mapHeight 24 int worldMap[mapWidth][mapHeight] = { {8,8,8,8,8,8,8,8,8,8,8,4,4,6,4,4,6,4,6,4,4,4,6,4}, {8,0,0,0,0,0,0,0,0,0,8,4,0,0,0,0,0,0,0,0,0,0,0,4}, {8,0,3,3,0,0,0,0,0,8,8,4,0,0,0,0,0,0,0,0,0,0,0,6}, {8,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6}, {8,0,3,3,0,0,0,0,0,8,8,4,0,0,0,0,0,0,0,0,0,0,0,4}, {8,0,0,0,0,0,0,0,0,0,8,4,0,0,0,0,0,6,6,6,0,6,4,6}, {8,8,8,8,0,8,8,8,8,8,8,4,4,4,4,4,4,6,0,0,0,0,0,6}, {7,7,7,7,0,7,7,7,7,0,8,0,8,0,8,0,8,4,0,4,0,6,0,6}, {7,7,0,0,0,0,0,0,7,8,0,8,0,8,0,8,8,6,0,0,0,0,0,6}, {7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,6,0,0,0,0,0,4}, {7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,6,0,6,0,6,0,6}, {7,7,0,0,0,0,0,0,7,8,0,8,0,8,0,8,8,6,4,6,0,6,6,6}, {7,7,7,7,0,7,7,7,7,8,8,4,0,6,8,4,8,3,3,3,0,3,3,3}, {2,2,2,2,0,2,2,2,2,4,6,4,0,0,6,0,6,3,0,0,0,0,0,3}, {2,2,0,0,0,0,0,2,2,4,0,0,0,0,0,0,4,3,0,0,0,0,0,3}, {2,0,0,0,0,0,0,0,2,4,0,0,0,0,0,0,4,3,0,0,0,0,0,3}, {1,0,0,0,0,0,0,0,1,4,4,4,4,4,6,0,6,3,3,0,0,0,3,3}, {2,0,0,0,0,0,0,0,2,2,2,1,2,2,2,6,6,0,0,5,0,5,0,5}, {2,2,0,0,0,0,0,2,2,2,0,0,0,2,2,0,5,0,5,0,0,0,5,5}, {2,0,0,0,0,0,0,0,2,0,0,0,0,0,2,5,0,5,0,5,0,5,0,5}, {1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5}, {2,0,0,0,0,0,0,0,2,0,0,0,0,0,2,5,0,5,0,5,0,5,0,5}, {2,2,0,0,0,0,0,2,2,2,0,0,0,2,2,0,5,0,5,0,0,0,5,5}, {2,2,2,2,1,2,2,2,2,2,2,1,2,2,2,5,5,5,5,5,5,5,5,5} }; struct Sprite { double x; double y; int texture; }; #define numSprites 19 Sprite sprite[numSprites] = { {20.5, 11.5, 10}, //green light in front of playerstart //green lights in every room {18.5,4.5, 10}, {10.0,4.5, 10}, {10.0,12.5,10}, {3.5, 6.5, 10}, {3.5, 20.5,10}, {3.5, 14.5,10}, {14.5,20.5,10}, //row of pillars in front of wall: fisheye test {18.5, 10.5, 9}, {18.5, 11.5, 9}, {18.5, 12.5, 9}, //some barrels around the map {21.5, 1.5, 8}, {15.5, 1.5, 8}, {16.0, 1.8, 8}, {16.2, 1.2, 8}, {3.5, 2.5, 8}, {9.5, 15.5, 8}, {10.0, 15.1,8}, {10.5, 15.8,8}, }; uint32_t buffer[SCREEN_HEIGHT][SCREEN_WIDTH]; //1D Zbuffer double ZBuffer[SCREEN_WIDTH]; //arrays used to sort the sprites int spriteOrder[numSprites]; double spriteDistance[numSprites]; //function used to sort the sprites //sort algorithm void combSort(int* order, double* dist, int amount) { int gap = amount; bool swapped = false; while(gap > 1 || swapped) { //shrink factor 1.3 gap = (gap * 10) / 13; if (gap == 9 || gap == 10) { gap = 11; } if (gap < 1) { gap = 1; } swapped = false; for (int i = 0; i < amount - gap; i++) { int j = i + gap; if (dist[i] < dist[j]) { std::swap(dist[i], dist[j]); std::swap(order[i], order[j]); swapped = true; } } } } int loadFile(std::vector& buffer, const std::string& filename) //designed for loading files from hard disk in an std::vector { std::ifstream file(filename.c_str(), std::ios::in|std::ios::binary|std::ios::ate); //get filesize std::streamsize size = 0; if (file.seekg(0, std::ios::end).good()) { size = file.tellg(); } if (file.seekg(0, std::ios::beg).good()) { size -= file.tellg(); } //read contents of the file into the vector buffer.resize(size_t(size)); if (size > 0) { file.read((char*)(&buffer[0]), size); } return true; } int decodePNG(std::vector& out_image_32bit, unsigned long& image_width, unsigned long& image_height, const uint8_t* in_png, unsigned long in_size) { static const unsigned long lengthbase[29] = {3,4,5,6,7,8,9,10,11,13,15,17,19,23,27,31,35,43,51,59,67,83,99,115,131,163,195,227,258}; static const unsigned long lengthextra[29] = {0,0,0,0,0,0,0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0}; static const unsigned long distancebase[30] = {1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193,257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577}; static const unsigned long distanceextra[30] = {0,0,0,0,1,1,2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13}; static const unsigned long clcl[19] = {16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; //code length code lengths struct Zlib //nested functions for zlib decompression { static unsigned long readBitFromStream(size_t& bitp, const uint8_t* bits) { unsigned long result = (bits[bitp >> 3] >> (bitp & 0x7)) & 1; bitp++; return result;} static unsigned long readBitsFromStream(size_t& bitp, const uint8_t* bits, size_t nbits) { unsigned long result = 0; for(size_t i = 0; i < nbits; i++) result += (readBitFromStream(bitp, bits)) << i; return result; } struct HuffmanTree { int makeFromLengths(const std::vector& bitlen, unsigned long maxbitlen) { //make tree given the lengths unsigned long numcodes = (unsigned long)(bitlen.size()), treepos = 0, nodefilled = 0; std::vector tree1d(numcodes), blcount(maxbitlen + 1, 0), nextcode(maxbitlen + 1, 0); for(unsigned long bits = 0; bits < numcodes; bits++) blcount[bitlen[bits]]++; //count number of instances of each code length for(unsigned long bits = 1; bits <= maxbitlen; bits++) nextcode[bits] = (nextcode[bits - 1] + blcount[bits - 1]) << 1; for(unsigned long n = 0; n < numcodes; n++) if(bitlen[n] != 0) tree1d[n] = nextcode[bitlen[n]]++; //generate all the codes tree2d.clear(); tree2d.resize(numcodes * 2, 32767); //32767 here means the tree2d isn't filled there yet for(unsigned long n = 0; n < numcodes; n++) //the codes for(unsigned long i = 0; i < bitlen[n]; i++) //the bits for this code { unsigned long bit = (tree1d[n] >> (bitlen[n] - i - 1)) & 1; if(treepos > numcodes - 2) return 55; if(tree2d[2 * treepos + bit] == 32767) //not yet filled in { if(i + 1 == bitlen[n]) { tree2d[2 * treepos + bit] = n; treepos = 0; } //last bit else { tree2d[2 * treepos + bit] = ++nodefilled + numcodes; treepos = nodefilled; } //addresses are encoded as values > numcodes } else treepos = tree2d[2 * treepos + bit] - numcodes; //subtract numcodes from address to get address value } return 0; } int decode(bool& decoded, unsigned long& result, size_t& treepos, unsigned long bit) const { //Decodes a symbol from the tree unsigned long numcodes = (unsigned long)tree2d.size() / 2; if(treepos >= numcodes) return 11; //error: you appeared outside the codetree result = tree2d[2 * treepos + bit]; decoded = (result < numcodes); treepos = decoded ? 0 : result - numcodes; return 0; } std::vector tree2d; //2D representation of a huffman tree: The one dimension is "0" or "1", the other contains all nodes and leaves of the tree. }; struct Inflator { int error; void inflate(std::vector& out, const std::vector& in, size_t inpos = 0) { size_t bp = 0, pos = 0; //bit pointer and byte pointer error = 0; unsigned long BFINAL = 0; while(!BFINAL && !error) { if(bp >> 3 >= in.size()) { error = 52; return; } //error, bit pointer will jump past memory BFINAL = readBitFromStream(bp, &in[inpos]); unsigned long BTYPE = readBitFromStream(bp, &in[inpos]); BTYPE += 2 * readBitFromStream(bp, &in[inpos]); if(BTYPE == 3) { error = 20; return; } //error: invalid BTYPE else if(BTYPE == 0) inflateNoCompression(out, &in[inpos], bp, pos, in.size()); else inflateHuffmanBlock(out, &in[inpos], bp, pos, in.size(), BTYPE); } if(!error) out.resize(pos); //Only now we know the true size of out, resize it to that } void generateFixedTrees(HuffmanTree& tree, HuffmanTree& treeD) //get the tree of a deflated block with fixed tree { std::vector bitlen(288, 8), bitlenD(32, 5);; for(size_t i = 144; i <= 255; i++) bitlen[i] = 9; for(size_t i = 256; i <= 279; i++) bitlen[i] = 7; tree.makeFromLengths(bitlen, 15); treeD.makeFromLengths(bitlenD, 15); } HuffmanTree codetree, codetreeD, codelengthcodetree; //the code tree for Huffman codes, distance codes, and code length codes unsigned long huffmanDecodeSymbol(const uint8_t* in, size_t& bp, const HuffmanTree& codetree, size_t inlength) { //decode a single symbol from given list of bits with given code tree. return value is the symbol bool decoded; unsigned long ct; for(size_t treepos = 0;;) { if((bp & 0x07) == 0 && (bp >> 3) > inlength) { error = 10; return 0; } //error: end reached without endcode error = codetree.decode(decoded, ct, treepos, readBitFromStream(bp, in)); if(error) return 0; //stop, an error happened if(decoded) return ct; } } void getTreeInflateDynamic(HuffmanTree& tree, HuffmanTree& treeD, const uint8_t* in, size_t& bp, size_t inlength) { //get the tree of a deflated block with dynamic tree, the tree itself is also Huffman compressed with a known tree std::vector bitlen(288, 0), bitlenD(32, 0); if(bp >> 3 >= inlength - 2) { error = 49; return; } //the bit pointer is or will go past the memory size_t HLIT = readBitsFromStream(bp, in, 5) + 257; //number of literal/length codes + 257 size_t HDIST = readBitsFromStream(bp, in, 5) + 1; //number of distance codes + 1 size_t HCLEN = readBitsFromStream(bp, in, 4) + 4; //number of code length codes + 4 std::vector codelengthcode(19); //lengths of tree to decode the lengths of the dynamic tree for(size_t i = 0; i < 19; i++) codelengthcode[clcl[i]] = (i < HCLEN) ? readBitsFromStream(bp, in, 3) : 0; error = codelengthcodetree.makeFromLengths(codelengthcode, 7); if(error) return; size_t i = 0, replength; while(i < HLIT + HDIST) { unsigned long code = huffmanDecodeSymbol(in, bp, codelengthcodetree, inlength); if(error) return; if(code <= 15) { if(i < HLIT) bitlen[i++] = code; else bitlenD[i++ - HLIT] = code; } //a length code else if(code == 16) //repeat previous { if(bp >> 3 >= inlength) { error = 50; return; } //error, bit pointer jumps past memory replength = 3 + readBitsFromStream(bp, in, 2); unsigned long value; //set value to the previous code if((i - 1) < HLIT) value = bitlen[i - 1]; else value = bitlenD[i - HLIT - 1]; for(size_t n = 0; n < replength; n++) //repeat this value in the next lengths { if(i >= HLIT + HDIST) { error = 13; return; } //error: i is larger than the amount of codes if(i < HLIT) bitlen[i++] = value; else bitlenD[i++ - HLIT] = value; } } else if(code == 17) //repeat "0" 3-10 times { if(bp >> 3 >= inlength) { error = 50; return; } //error, bit pointer jumps past memory replength = 3 + readBitsFromStream(bp, in, 3); for(size_t n = 0; n < replength; n++) //repeat this value in the next lengths { if(i >= HLIT + HDIST) { error = 14; return; } //error: i is larger than the amount of codes if(i < HLIT) bitlen[i++] = 0; else bitlenD[i++ - HLIT] = 0; } } else if(code == 18) //repeat "0" 11-138 times { if(bp >> 3 >= inlength) { error = 50; return; } //error, bit pointer jumps past memory replength = 11 + readBitsFromStream(bp, in, 7); for(size_t n = 0; n < replength; n++) //repeat this value in the next lengths { if(i >= HLIT + HDIST) { error = 15; return; } //error: i is larger than the amount of codes if(i < HLIT) bitlen[i++] = 0; else bitlenD[i++ - HLIT] = 0; } } else { error = 16; return; } //error: somehow an unexisting code appeared. This can never happen. } if(bitlen[256] == 0) { error = 64; return; } //the length of the end code 256 must be larger than 0 error = tree.makeFromLengths(bitlen, 15); if(error) return; //now we've finally got HLIT and HDIST, so generate the code trees, and the function is done error = treeD.makeFromLengths(bitlenD, 15); if(error) return; } void inflateHuffmanBlock(std::vector& out, const uint8_t* in, size_t& bp, size_t& pos, size_t inlength, unsigned long btype) { if(btype == 1) { generateFixedTrees(codetree, codetreeD); } else if(btype == 2) { getTreeInflateDynamic(codetree, codetreeD, in, bp, inlength); if(error) return; } for(;;) { unsigned long code = huffmanDecodeSymbol(in, bp, codetree, inlength); if(error) return; if(code == 256) return; //end code else if(code <= 255) //literal symbol { if(pos >= out.size()) out.resize((pos + 1) * 2); //reserve more room out[pos++] = (uint8_t)(code); } else if(code >= 257 && code <= 285) //length code { size_t length = lengthbase[code - 257], numextrabits = lengthextra[code - 257]; if((bp >> 3) >= inlength) { error = 51; return; } //error, bit pointer will jump past memory length += readBitsFromStream(bp, in, numextrabits); unsigned long codeD = huffmanDecodeSymbol(in, bp, codetreeD, inlength); if(error) return; if(codeD > 29) { error = 18; return; } //error: invalid distance code (30-31 are never used) unsigned long distance = distancebase[codeD], numextrabitsD = distanceextra[codeD]; if((bp >> 3) >= inlength) { error = 51; return; } //error, bit pointer will jump past memory distance += readBitsFromStream(bp, in, numextrabitsD); size_t start = pos, backward = start - distance; if(pos + length >= out.size()) out.resize((pos + length) * 2); //reserve more room for(size_t forward = 0; forward < length; forward++) { out[pos++] = out[backward++]; if(backward >= start) backward = start - distance; } } } } void inflateNoCompression(std::vector& out, const uint8_t* in, size_t& bp, size_t& pos, size_t inlength) { while((bp & 0x7) != 0) bp++; //go to first boundary of byte size_t p = bp / 8; if(p >= inlength - 4) { error = 52; return; } //error, bit pointer will jump past memory unsigned long LEN = in[p] + 256 * in[p + 1], NLEN = in[p + 2] + 256 * in[p + 3]; p += 4; if(LEN + NLEN != 65535) { error = 21; return; } //error: NLEN is not one's complement of LEN if(pos + LEN >= out.size()) out.resize(pos + LEN); if(p + LEN > inlength) { error = 23; return; } //error: reading outside of in buffer for(unsigned long n = 0; n < LEN; n++) out[pos++] = in[p++]; //read LEN bytes of literal data bp = p * 8; } }; int decompress(std::vector& out, const std::vector& in) //returns error value { Inflator inflator; if(in.size() < 2) { return 53; } //error, size of zlib data too small if((in[0] * 256 + in[1]) % 31 != 0) { return 24; } //error: 256 * in[0] + in[1] must be a multiple of 31, the FCHECK value is supposed to be made that way unsigned long CM = in[0] & 15, CINFO = (in[0] >> 4) & 15, FDICT = (in[1] >> 5) & 1; if(CM != 8 || CINFO > 7) { return 25; } //error: only compression method 8: inflate with sliding window of 32k is supported by the PNG spec if(FDICT != 0) { return 26; } //error: the specification of PNG says about the zlib stream: "The additional flags shall not specify a preset dictionary." inflator.inflate(out, in, 2); return inflator.error; //note: adler32 checksum was skipped and ignored } }; struct PNG //nested functions for PNG decoding { struct Info { unsigned long width, height, colorType, bitDepth, compressionMethod, filterMethod, interlaceMethod, key_r, key_g, key_b; bool key_defined; //is a transparent color key given? std::vector palette; } info; int error; void decode(std::vector& out, const uint8_t* in, unsigned long size) { error = 0; if(size == 0 || in == 0) { error = 48; return; } //the given data is empty readPngHeader(&in[0], size); if(error) return; size_t pos = 33; //first byte of the first chunk after the header std::vector idat; //the data from idat chunks bool IEND = false, known_type = true; info.key_defined = false; while(!IEND) //loop through the chunks, ignoring unknown chunks and stopping at IEND chunk. IDAT data is put at the start of the in buffer { if(pos + 8 >= size) { error = 30; return; } //error: size of the in buffer too small to contain next chunk size_t chunkLength = read32bitInt(&in[pos]); pos += 4; if(chunkLength > 2147483647) { error = 63; return; } if(pos + chunkLength >= size) { error = 35; return; } //error: size of the in buffer too small to contain next chunk if(in[pos + 0] == 'I' && in[pos + 1] == 'D' && in[pos + 2] == 'A' && in[pos + 3] == 'T') //IDAT chunk, containing compressed image data { idat.insert(idat.end(), &in[pos + 4], &in[pos + 4 + chunkLength]); pos += (4 + chunkLength); } else if(in[pos + 0] == 'I' && in[pos + 1] == 'E' && in[pos + 2] == 'N' && in[pos + 3] == 'D') { pos += 4; IEND = true; } else if(in[pos + 0] == 'P' && in[pos + 1] == 'L' && in[pos + 2] == 'T' && in[pos + 3] == 'E') //palette chunk (PLTE) { pos += 4; //go after the 4 letters info.palette.resize(4 * (chunkLength / 3)); if(info.palette.size() > (4 * 256)) { error = 38; return; } //error: palette too big for(size_t i = 0; i < info.palette.size(); i += 4) { for(size_t j = 0; j < 3; j++) info.palette[i + j] = in[pos++]; //RGB info.palette[i + 3] = 255; //alpha } } else if(in[pos + 0] == 't' && in[pos + 1] == 'R' && in[pos + 2] == 'N' && in[pos + 3] == 'S') //palette transparency chunk (tRNS) { pos += 4; //go after the 4 letters if(info.colorType == 3) { if(4 * chunkLength > info.palette.size()) { error = 39; return; } //error: more alpha values given than there are palette entries for(size_t i = 0; i < chunkLength; i++) info.palette[4 * i + 3] = in[pos++]; } else if(info.colorType == 0) { if(chunkLength != 2) { error = 40; return; } //error: this chunk must be 2 bytes for greyscale image info.key_defined = 1; info.key_r = info.key_g = info.key_b = 256 * in[pos] + in[pos + 1]; pos += 2; } else if(info.colorType == 2) { if(chunkLength != 6) { error = 41; return; } //error: this chunk must be 6 bytes for RGB image info.key_defined = 1; info.key_r = 256 * in[pos] + in[pos + 1]; pos += 2; info.key_g = 256 * in[pos] + in[pos + 1]; pos += 2; info.key_b = 256 * in[pos] + in[pos + 1]; pos += 2; } else { error = 42; return; } //error: tRNS chunk not allowed for other color models } else //it's not an implemented chunk type, so ignore it: skip over the data { if(!(in[pos + 0] & 32)) { error = 69; return; } //error: unknown critical chunk (5th bit of first byte of chunk type is 0) pos += (chunkLength + 4); //skip 4 letters and uninterpreted data of unimplemented chunk known_type = false; } pos += 4; //step over CRC (which is ignored) } unsigned long bpp = getBpp(info); std::vector scanlines(((info.width * (info.height * bpp + 7)) / 8) + info.height); //now the out buffer will be filled Zlib zlib; //decompress with the Zlib decompressor error = zlib.decompress(scanlines, idat); if(error) return; //stop if the zlib decompressor returned an error size_t bytewidth = (bpp + 7) / 8, outlength = (info.height * info.width * bpp + 7) / 8; out.resize(outlength); //time to fill the out buffer uint8_t* out_ = outlength ? &out[0] : 0; //use a regular pointer to the std::vector for faster code if compiled without optimization if(info.interlaceMethod == 0) //no interlace, just filter { size_t linestart = 0, linelength = (info.width * bpp + 7) / 8; //length in bytes of a scanline, excluding the filtertype byte if(bpp >= 8) //byte per byte for(unsigned long y = 0; y < info.height; y++) { unsigned long filterType = scanlines[linestart]; const uint8_t* prevline = (y == 0) ? 0 : &out_[(y - 1) * info.width * bytewidth]; unFilterScanline(&out_[linestart - y], &scanlines[linestart + 1], prevline, bytewidth, filterType, linelength); if(error) return; linestart += (1 + linelength); //go to start of next scanline } else //less than 8 bits per pixel, so fill it up bit per bit { std::vector templine((info.width * bpp + 7) >> 3); //only used if bpp < 8 for(size_t y = 0, obp = 0; y < info.height; y++) { unsigned long filterType = scanlines[linestart]; const uint8_t* prevline = (y == 0) ? 0 : &out_[(y - 1) * info.width * bytewidth]; unFilterScanline(&templine[0], &scanlines[linestart + 1], prevline, bytewidth, filterType, linelength); if(error) return; for(size_t bp = 0; bp < info.width * bpp;) setBitOfReversedStream(obp, out_, readBitFromReversedStream(bp, &templine[0])); linestart += (1 + linelength); //go to start of next scanline } } } else //interlaceMethod is 1 (Adam7) { size_t passw[7] = { (info.width + 7) / 8, (info.width + 3) / 8, (info.width + 3) / 4, (info.width + 1) / 4, (info.width + 1) / 2, (info.width + 0) / 2, (info.width + 0) / 1 }; size_t passh[7] = { (info.height + 7) / 8, (info.height + 7) / 8, (info.height + 3) / 8, (info.height + 3) / 4, (info.height + 1) / 4, (info.height + 1) / 2, (info.height + 0) / 2 }; size_t passstart[7] = {0}; size_t pattern[28] = {0, 4, 0, 2, 0, 1, 0, 0, 0, 4, 0, 2, 0, 1, 8, 8, 4, 4, 2, 2, 1, 8, 8, 8, 4, 4, 2, 2}; //values for the adam7 passes for(int i = 0; i < 6; i++) passstart[i + 1] = passstart[i] + passh[i] * ((passw[i] ? 1 : 0) + (passw[i] * bpp + 7) / 8); std::vector scanlineo((info.width * bpp + 7) / 8), scanlinen((info.width * bpp + 7) / 8); //"old" and "new" scanline for(int i = 0; i < 7; i++) adam7Pass(&out_[0], &scanlinen[0], &scanlineo[0], &scanlines[passstart[i]], info.width, pattern[i], pattern[i + 7], pattern[i + 14], pattern[i + 21], passw[i], passh[i], bpp); } if(info.colorType != 6 || info.bitDepth != 8) //conversion needed { std::vector data = out; error = convert(out, &data[0], info, info.width, info.height); } } void readPngHeader(const uint8_t* in, size_t inlength) //read the information from the header and store it in the Info { if(inlength < 29) { error = 27; return; } //error: the data length is smaller than the length of the header if(in[0] != 137 || in[1] != 80 || in[2] != 78 || in[3] != 71 || in[4] != 13 || in[5] != 10 || in[6] != 26 || in[7] != 10) { error = 28; return; } //no PNG signature if(in[12] != 'I' || in[13] != 'H' || in[14] != 'D' || in[15] != 'R') { error = 29; return; } //error: it doesn't start with a IHDR chunk! info.width = read32bitInt(&in[16]); info.height = read32bitInt(&in[20]); info.bitDepth = in[24]; info.colorType = in[25]; info.compressionMethod = in[26]; if(in[26] != 0) { error = 32; return; } //error: only compression method 0 is allowed in the specification info.filterMethod = in[27]; if(in[27] != 0) { error = 33; return; } //error: only filter method 0 is allowed in the specification info.interlaceMethod = in[28]; if(in[28] > 1) { error = 34; return; } //error: only interlace methods 0 and 1 exist in the specification error = checkColorValidity(info.colorType, info.bitDepth); } void unFilterScanline(uint8_t* recon, const uint8_t* scanline, const uint8_t* precon, size_t bytewidth, unsigned long filterType, size_t length) { switch(filterType) { case 0: for(size_t i = 0; i < length; i++) recon[i] = scanline[i]; break; case 1: for(size_t i = 0; i < bytewidth; i++) recon[i] = scanline[i]; for(size_t i = bytewidth; i < length; i++) recon[i] = scanline[i] + recon[i - bytewidth]; break; case 2: if(precon) for(size_t i = 0; i < length; i++) recon[i] = scanline[i] + precon[i]; else for(size_t i = 0; i < length; i++) recon[i] = scanline[i]; break; case 3: if(precon) { for(size_t i = 0; i < bytewidth; i++) recon[i] = scanline[i] + precon[i] / 2; for(size_t i = bytewidth; i < length; i++) recon[i] = scanline[i] + ((recon[i - bytewidth] + precon[i]) / 2); } else { for(size_t i = 0; i < bytewidth; i++) recon[i] = scanline[i]; for(size_t i = bytewidth; i < length; i++) recon[i] = scanline[i] + recon[i - bytewidth] / 2; } break; case 4: if(precon) { for(size_t i = 0; i < bytewidth; i++) recon[i] = (uint8_t)(scanline[i] + paethPredictor(0, precon[i], 0)); for(size_t i = bytewidth; i < length; i++) recon[i] = (uint8_t)(scanline[i] + paethPredictor(recon[i - bytewidth], precon[i], precon[i - bytewidth])); } else { for(size_t i = 0; i < bytewidth; i++) recon[i] = scanline[i]; for(size_t i = bytewidth; i < length; i++) recon[i] = (uint8_t)(scanline[i] + paethPredictor(recon[i - bytewidth], 0, 0)); } break; default: error = 36; return; //error: unexisting filter type given } } void adam7Pass(uint8_t* out, uint8_t* linen, uint8_t* lineo, const uint8_t* in, unsigned long w, size_t passleft, size_t passtop, size_t spacex, size_t spacey, size_t passw, size_t passh, unsigned long bpp) { //filter and reposition the pixels into the output when the image is Adam7 interlaced. This function can only do it after the full image is already decoded. The out buffer must have the correct allocated memory size already. if(passw == 0) return; size_t bytewidth = (bpp + 7) / 8, linelength = 1 + ((bpp * passw + 7) / 8); for(unsigned long y = 0; y < passh; y++) { uint8_t filterType = in[y * linelength], *prevline = (y == 0) ? 0 : lineo; unFilterScanline(linen, &in[y * linelength + 1], prevline, bytewidth, filterType, (w * bpp + 7) / 8); if(error) return; if(bpp >= 8) for(size_t i = 0; i < passw; i++) for(size_t b = 0; b < bytewidth; b++) //b = current byte of this pixel out[bytewidth * w * (passtop + spacey * y) + bytewidth * (passleft + spacex * i) + b] = linen[bytewidth * i + b]; else for(size_t i = 0; i < passw; i++) { size_t obp = bpp * w * (passtop + spacey * y) + bpp * (passleft + spacex * i), bp = i * bpp; for(size_t b = 0; b < bpp; b++) setBitOfReversedStream(obp, out, readBitFromReversedStream(bp, &linen[0])); } uint8_t* temp = linen; linen = lineo; lineo = temp; //swap the two buffer pointers "line old" and "line new" } } static unsigned long readBitFromReversedStream(size_t& bitp, const uint8_t* bits) { unsigned long result = ((bits[bitp >> 3] >> (7 - (bitp & 0x7)))) & 1; bitp++; return result; } static unsigned long readBitsFromReversedStream(size_t& bitp, const uint8_t* bits, unsigned long nbits) { unsigned long result = 0; for(size_t i = nbits - 1; i < nbits; i--) result += ((readBitFromReversedStream(bitp, bits)) << i); return result; } void setBitOfReversedStream(size_t& bitp, uint8_t* bits, unsigned long bit) { // bits[bitp >> 3] = bits[bitp >> 3] | (bit << (7 - (bitp & 0x7))); bitp++; bits[bitp >> 3] = bits[bitp >> 3] | (bit << (7 - (bitp & 0x7))); bitp++; } unsigned long read32bitInt(const uint8_t* buffer) { return (buffer[0] << 24) | (buffer[1] << 16) | (buffer[2] << 8) | buffer[3]; } int checkColorValidity(unsigned long colorType, unsigned long bd) //return type is a LodePNG error code { if((colorType == 2 || colorType == 4 || colorType == 6)) { if(!(bd == 8 || bd == 16)) { return 37; } } else if(colorType == 0) { if(!(bd == 1 || bd == 2 || bd == 4 || bd == 8 || bd == 16)) { return 37; } } else if(colorType == 3) { if(!(bd == 1 || bd == 2 || bd == 4 || bd == 8)) { return 37; } else { return 31; //unexisting color type } } return 0; //allowed color type / bits combination } unsigned long getBpp(const Info& info) { if(info.colorType == 2) return (3 * info.bitDepth); else if(info.colorType >= 4) return (info.colorType - 2) * info.bitDepth; else return info.bitDepth; } int convert(std::vector& out, const uint8_t* in, Info& infoIn, unsigned long w, unsigned long h) { //converts from any color type to 32-bit. return value = LodePNG error code size_t numpixels = w * h, bp = 0; out.resize(numpixels * 4); uint8_t* out_ = out.empty() ? 0 : &out[0]; //faster if compiled without optimization if(infoIn.bitDepth == 8 && infoIn.colorType == 0) //greyscale for(size_t i = 0; i < numpixels; i++) { out_[4 * i + 0] = out_[4 * i + 1] = out_[4 * i + 2] = in[i]; out_[4 * i + 3] = (infoIn.key_defined && in[i] == infoIn.key_r) ? 0 : 255; } else if(infoIn.bitDepth == 8 && infoIn.colorType == 2) //RGB color for(size_t i = 0; i < numpixels; i++) { for(size_t c = 0; c < 3; c++) out_[4 * i + c] = in[3 * i + c]; out_[4 * i + 3] = (infoIn.key_defined == 1 && in[3 * i + 0] == infoIn.key_r && in[3 * i + 1] == infoIn.key_g && in[3 * i + 2] == infoIn.key_b) ? 0 : 255; } else if(infoIn.bitDepth == 8 && infoIn.colorType == 3) //indexed color (palette) for(size_t i = 0; i < numpixels; i++) { if(4U * in[i] >= infoIn.palette.size()) return 46; for(size_t c = 0; c < 4; c++) out_[4 * i + c] = infoIn.palette[4 * in[i] + c]; //get rgb colors from the palette } else if(infoIn.bitDepth == 8 && infoIn.colorType == 4) //greyscale with alpha for(size_t i = 0; i < numpixels; i++) { out_[4 * i + 0] = out_[4 * i + 1] = out_[4 * i + 2] = in[2 * i + 0]; out_[4 * i + 3] = in[2 * i + 1]; } else if(infoIn.bitDepth == 8 && infoIn.colorType == 6) for(size_t i = 0; i < numpixels; i++) for(size_t c = 0; c < 4; c++) out_[4 * i + c] = in[4 * i + c]; //RGB with alpha else if(infoIn.bitDepth == 16 && infoIn.colorType == 0) //greyscale for(size_t i = 0; i < numpixels; i++) { out_[4 * i + 0] = out_[4 * i + 1] = out_[4 * i + 2] = in[2 * i]; out_[4 * i + 3] = (infoIn.key_defined && 256U * in[i] + in[i + 1] == infoIn.key_r) ? 0 : 255; } else if(infoIn.bitDepth == 16 && infoIn.colorType == 2) //RGB color for(size_t i = 0; i < numpixels; i++) { for(size_t c = 0; c < 3; c++) out_[4 * i + c] = in[6 * i + 2 * c]; out_[4 * i + 3] = (infoIn.key_defined && 256U*in[6*i+0]+in[6*i+1] == infoIn.key_r && 256U*in[6*i+2]+in[6*i+3] == infoIn.key_g && 256U*in[6*i+4]+in[6*i+5] == infoIn.key_b) ? 0 : 255; } else if(infoIn.bitDepth == 16 && infoIn.colorType == 4) //greyscale with alpha for(size_t i = 0; i < numpixels; i++) { out_[4 * i + 0] = out_[4 * i + 1] = out_[4 * i + 2] = in[4 * i]; //most significant byte out_[4 * i + 3] = in[4 * i + 2]; } else if(infoIn.bitDepth == 16 && infoIn.colorType == 6) for(size_t i = 0; i < numpixels; i++) for(size_t c = 0; c < 4; c++) out_[4 * i + c] = in[8 * i + 2 * c]; //RGB with alpha else if(infoIn.bitDepth < 8 && infoIn.colorType == 0) //greyscale for(size_t i = 0; i < numpixels; i++) { unsigned long value = (readBitsFromReversedStream(bp, in, infoIn.bitDepth) * 255) / ((1 << infoIn.bitDepth) - 1); //scale value from 0 to 255 out_[4 * i + 0] = out_[4 * i + 1] = out_[4 * i + 2] = (uint8_t)(value); out_[4 * i + 3] = (infoIn.key_defined && value && ((1U << infoIn.bitDepth) - 1U) == infoIn.key_r && ((1U << infoIn.bitDepth) - 1U)) ? 0 : 255; } else if(infoIn.bitDepth < 8 && infoIn.colorType == 3) //palette for(size_t i = 0; i < numpixels; i++) { unsigned long value = readBitsFromReversedStream(bp, in, infoIn.bitDepth); if(4 * value >= infoIn.palette.size()) return 47; for(size_t c = 0; c < 4; c++) out_[4 * i + c] = infoIn.palette[4 * value + c]; //get rgb colors from the palette } return 0; } long paethPredictor(long a, long b, long c) //Paeth predicter, used by PNG filter type 4 { long p = a + b - c, pa = p > a ? p - a : a - p, pb = p > b ? p - b : b - p, pc = p > c ? p - c : c - p; return (pa <= pb && pa <= pc) ? a : pb <= pc ? b : c; } }; PNG decoder; decoder.decode(out_image_32bit, in_png, in_size); image_width = decoder.info.width; image_height = decoder.info.height; return decoder.error; } int decodePNG(std::vector& out_image_32bit, unsigned long& image_width, unsigned long& image_height, const std::vector& in_png) { return decodePNG(out_image_32bit, image_width, image_height, in_png.size() ? &in_png[0] : 0, in_png.size()); } int loadImage(std::vector& out, unsigned long& w, unsigned long& h, const std::string& filename) { std::vector file, image; loadFile(file, filename); if(decodePNG(image, w, h, file)) return 1; out.resize(image.size() / 4); for(size_t i = 0; i < out.size(); i++) { out[i] = (image[i*4+3]<<24) + (image[i*4+0]<<16) + (image[i*4+1]<<8) + (image[i*4+2]<<0); } return 0; } class GraphicsTeste : public jgui::Frame{ private: jthread::Mutex teste_mutex; double posX, posY, //x and y start position dirX, dirY, //initial direction vector planeX, planeY; //the 2d raycaster version of camera plane uint32_t **rgb; std::vector texture[11]; public: GraphicsTeste(): jgui::Frame("Graphics Teste", 0, 0, SCREEN_WIDTH, SCREEN_HEIGHT) { posX = 22.0; posY = 11.5; //x and y start position dirX = -1.0; dirY = 0.0; //initial direction vector planeX = 0.0; planeY = 0.66; //the 2d raycaster version of camera plane for(int i = 0; i < 11; i++) { texture[i].resize(texWidth * texHeight); } //load some textures unsigned long tw, th, error = 0; error |= loadImage(texture[0], tw, th, "pics/eagle.png"); error |= loadImage(texture[1], tw, th, "pics/redbrick.png"); error |= loadImage(texture[2], tw, th, "pics/purplestone.png"); error |= loadImage(texture[3], tw, th, "pics/greystone.png"); error |= loadImage(texture[4], tw, th, "pics/bluestone.png"); error |= loadImage(texture[5], tw, th, "pics/mossy.png"); error |= loadImage(texture[6], tw, th, "pics/wood.png"); error |= loadImage(texture[7], tw, th, "pics/colorstone.png"); //load some sprite textures error |= loadImage(texture[8], tw, th, "pics/barrel.png"); error |= loadImage(texture[9], tw, th, "pics/pillar.png"); error |= loadImage(texture[10], tw, th, "pics/greenlight.png"); if(error) { exit(1); } } virtual ~GraphicsTeste() { jthread::AutoLock lock(&teste_mutex); Hide(); } virtual void Paint(jgui::Graphics *g) { // jgui::Frame::Paint(g); int w = _size.width, h = _size.height; g->SetDrawingFlags(jgui::JDF_NOFX); //start the main loop for(int x = 0; x < w; x++) { //calculate ray position and direction double cameraX = 2 * x / double(w) - 1; //x-coordinate in camera space double rayPosX = posX; double rayPosY = posY; double rayDirX = dirX + planeX * cameraX; double rayDirY = dirY + planeY * cameraX; //length of ray from current position to next x or y-side double sideDistX; double sideDistY; //length of ray from one x or y-side to next x or y-side double deltaDistX = sqrt(1 + (rayDirY * rayDirY) / (rayDirX * rayDirX)); double deltaDistY = sqrt(1 + (rayDirX * rayDirX) / (rayDirY * rayDirY)); double perpWallDist; //which box of the map we're in int mapX = int(rayPosX); int mapY = int(rayPosY); //what direction to step in x or y-direction (either +1 or -1) int stepX; int stepY; int hit = 0; //was there a wall hit? int side; //was a NS or a EW wall hit? //calculate step and initial sideDist if (rayDirX < 0) { stepX = -1; sideDistX = (rayPosX - mapX) * deltaDistX; } else { stepX = 1; sideDistX = (mapX + 1.0 - rayPosX) * deltaDistX; } if (rayDirY < 0) { stepY = -1; sideDistY = (rayPosY - mapY) * deltaDistY; } else { stepY = 1; sideDistY = (mapY + 1.0 - rayPosY) * deltaDistY; } //perform DDA while (hit == 0) { //jump to next map square, OR in x-direction, OR in y-direction if (sideDistX < sideDistY) { sideDistX += deltaDistX; mapX += stepX; side = 0; } else { sideDistY += deltaDistY; mapY += stepY; side = 1; } //Check if ray has hit a wall if (worldMap[mapX][mapY] > 0) hit = 1; } //Calculate distance of perpendicular ray (oblique distance will give fisheye effect!) if (side == 0) { perpWallDist = fabs((mapX - rayPosX + (1 - stepX) / 2) / rayDirX); } else { perpWallDist = fabs((mapY - rayPosY + (1 - stepY) / 2) / rayDirY); } //Calculate height of line to draw on screen int lineHeight = abs(int(h / perpWallDist)); //calculate lowest and highest pixel to fill in current stripe int drawStart = -lineHeight / 2 + h / 2; if(drawStart < 0) drawStart = 0; int drawEnd = lineHeight / 2 + h / 2; if(drawEnd >= h) drawEnd = h - 1; //texturing calculations int texNum = worldMap[mapX][mapY] - 1; //1 subtracted from it so that texture 0 can be used! //calculate value of wallX double wallX; //where exactly the wall was hit if (side == 1) { wallX = rayPosX + ((mapY - rayPosY + (1 - stepY) / 2) / rayDirY) * rayDirX; } else { wallX = rayPosY + ((mapX - rayPosX + (1 - stepX) / 2) / rayDirX) * rayDirY; } wallX -= floor((wallX)); //x coordinate on the texture int texX = int(wallX * double(texWidth)); if (side == 0 && rayDirX > 0) { texX = texWidth - texX - 1; } if (side == 1 && rayDirY < 0) { texX = texWidth - texX - 1; } for(int y = drawStart; y < drawEnd; y++) { int d = 128*((y << 1) - h + lineHeight), //256 and 128 factors to avoid floats texY = ((d * texHeight) / lineHeight) >> 8, color = texture[texNum][texWidth * texY + texX]; //make color darker for y-sides: R, G and B byte each divided through two with a "shift" and an "and" if (side == 1) { color = (color >> 1) & 0xff7f7f7f; // 8355711; } buffer[y][x] = color; } //SET THE ZBUFFER FOR THE SPRITE CASTING ZBuffer[x] = perpWallDist; //perpendicular distance is used //FLOOR CASTING double floorXWall, floorYWall; //x, y position of the floor texel at the bottom of the wall //4 different wall directions possible if(side == 0 && rayDirX > 0) { floorXWall = mapX; floorYWall = mapY + wallX; } else if(side == 0 && rayDirX < 0) { floorXWall = mapX + 1.0; floorYWall = mapY + wallX; } else if(side == 1 && rayDirY > 0) { floorXWall = mapX + wallX; floorYWall = mapY; } else { floorXWall = mapX + wallX; floorYWall = mapY + 1.0; } double distWall, distPlayer, currentDist, weight = (currentDist - distPlayer) / (distWall - distPlayer), currentFloorX = weight * floorXWall + (1.0 - weight) * posX, currentFloorY = weight * floorYWall + (1.0 - weight) * posY; int floorTexX, floorTexY, index; distWall = perpWallDist; distPlayer = 0.0; if (drawEnd < 0) drawEnd = h; //becomes < 0 when the integer overflows draw the floor from drawEnd to the bottom of the screen for(int y = drawEnd + 1; y < h; y++) { currentDist = h / (2.0 * y - h); //you could make a small lookup table for this instead weight = (currentDist - distPlayer) / (distWall - distPlayer); currentFloorX = weight * floorXWall + (1.0 - weight) * posX; currentFloorY = weight * floorYWall + (1.0 - weight) * posY; floorTexX = int(currentFloorX * texWidth) % texWidth; floorTexY = int(currentFloorY * texHeight) % texHeight; index = texWidth * floorTexY + floorTexX; //floor buffer[y][x] = (texture[3][index] >> 1) & 0xff7f7f7f; // 8355711; //ceiling (symmetrical!) buffer[h-y][x] = texture[6][index]; } } //SPRITE CASTING //sort sprites from far to close for(int i = 0; i < numSprites; i++) { spriteOrder[i] = i; spriteDistance[i] = ((posX - sprite[i].x) * (posX - sprite[i].x) + (posY - sprite[i].y) * (posY - sprite[i].y)); //sqrt not taken, unneeded } combSort(spriteOrder, spriteDistance, numSprites); //after sorting the sprites, do the projection and draw them for(int i=0; i= h) drawEndY = h - 1; //calculate width of the sprite int spriteWidth = abs( int (h / (transformY))) / uDiv; int drawStartX = -spriteWidth / 2 + spriteScreenX; if(drawStartX < 0) drawStartX = 0; int drawEndX = spriteWidth / 2 + spriteScreenX; if(drawEndX >= w) drawEndX = w - 1; //loop through every vertical stripe of the sprite on screen for(int stripe = drawStartX; stripe < drawEndX; stripe++) { int texX = int(256 * (stripe - (-spriteWidth / 2 + spriteScreenX)) * texWidth / spriteWidth) / 256; //the conditions in the if are: //1) it's in front of camera plane so you don't see things behind you //2) it's on the screen (left) //3) it's on the screen (right) //4) ZBuffer, with perpendicular distance if(transformY > 0 && stripe > 0 && stripe < w && transformY < ZBuffer[stripe]) for(int y = drawStartY; y < drawEndY; y++) //for every pixel of the current stripe { int d = (y-vMoveScreen) * 256 - h * 128 + spriteHeight * 128, //256 and 128 factors to avoid floats texY = ((d * texHeight) / spriteHeight) / 256; uint32_t color = texture[sprite[spriteOrder[i]].texture][texWidth * texY + texX]; //get current color from the texture if ((color & 0x00ffffff) != 0) { buffer[y][stripe] = color; //paint pixel if it isn't black, black is the invisible color } } } } g->SetRGB((uint32_t *)buffer, 0, 0, SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_WIDTH); } virtual bool ProcessEvent(jgui::KeyEvent *event) { jthread::AutoLock lock(&teste_mutex); if (event->GetType() != jgui::JKT_PRESSED) { return false; } double frameTime = 0.1; //frameTime is the time this frame has taken, in seconds //speed modifiers double moveSpeed = frameTime * 2.0; //the constant value is in squares/second double rotSpeed = frameTime * 1.0; //the constant value is in radians/second if (event->GetSymbol() == jgui::JKS_CURSOR_UP) { if (worldMap[int(posX + dirX * moveSpeed)][int(posY)] == false) { posX += dirX * moveSpeed; } if (worldMap[int(posX)][int(posY + dirY * moveSpeed)] == false) { posY += dirY * moveSpeed; } } else if (event->GetSymbol() == jgui::JKS_CURSOR_DOWN) { if (worldMap[int(posX - dirX * moveSpeed)][int(posY)] == false) { posX -= dirX * moveSpeed; } if (worldMap[int(posX)][int(posY - dirY * moveSpeed)] == false) { posY -= dirY * moveSpeed; } } else if (event->GetSymbol() == jgui::JKS_CURSOR_LEFT) { //both camera direction and camera plane must be rotated double oldDirX = dirX; dirX = dirX * cos(rotSpeed) - dirY * sin(rotSpeed); dirY = oldDirX * sin(rotSpeed) + dirY * cos(rotSpeed); double oldPlaneX = planeX; planeX = planeX * cos(rotSpeed) - planeY * sin(rotSpeed); planeY = oldPlaneX * sin(rotSpeed) + planeY * cos(rotSpeed); } else if (event->GetSymbol() == jgui::JKS_CURSOR_RIGHT) { //both camera direction and camera plane must be rotated double oldDirX = dirX; dirX = dirX * cos(-rotSpeed) - dirY * sin(-rotSpeed); dirY = oldDirX * sin(-rotSpeed) + dirY * cos(-rotSpeed); double oldPlaneX = planeX; planeX = planeX * cos(-rotSpeed) - planeY * sin(-rotSpeed); planeY = oldPlaneX * sin(-rotSpeed) + planeY * cos(-rotSpeed); } Repaint(); return true; } }; int main( int argc, char *argv[] ) { GraphicsTeste test; test.Show(); return 0; }