lcc.js
5.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
/*******************************************************************************
NAME LAMBERT CONFORMAL CONIC
PURPOSE: Transforms input longitude and latitude to Easting and
Northing for the Lambert Conformal Conic projection. The
longitude and latitude must be in radians. The Easting
and Northing values will be returned in meters.
ALGORITHM REFERENCES
1. Snyder, John P., "Map Projections--A Working Manual", U.S. Geological
Survey Professional Paper 1395 (Supersedes USGS Bulletin 1532), United
State Government Printing Office, Washington D.C., 1987.
2. Snyder, John P. and Voxland, Philip M., "An Album of Map Projections",
U.S. Geological Survey Professional Paper 1453 , United State Government
*******************************************************************************/
//<2104> +proj=lcc +lat_1=10.16666666666667 +lat_0=10.16666666666667 +lon_0=-71.60561777777777 +k_0=1 +x0=-17044 +x0=-23139.97 +ellps=intl +units=m +no_defs no_defs
// Initialize the Lambert Conformal conic projection
// -----------------------------------------------------------------
//Proj4js.Proj.lcc = Class.create();
Proj4js.Proj.lcc = {
init : function() {
// array of: r_maj,r_min,lat1,lat2,c_lon,c_lat,false_east,false_north
//double c_lat; /* center latitude */
//double c_lon; /* center longitude */
//double lat1; /* first standard parallel */
//double lat2; /* second standard parallel */
//double r_maj; /* major axis */
//double r_min; /* minor axis */
//double false_east; /* x offset in meters */
//double false_north; /* y offset in meters */
if (!this.lat2){this.lat2=this.lat0;}//if lat2 is not defined
if (!this.k0) this.k0 = 1.0;
// Standard Parallels cannot be equal and on opposite sides of the equator
if (Math.abs(this.lat1+this.lat2) < Proj4js.common.EPSLN) {
Proj4js.reportError("lcc:init: Equal Latitudes");
return;
}
var temp = this.b / this.a;
this.e = Math.sqrt(1.0 - temp*temp);
var sin1 = Math.sin(this.lat1);
var cos1 = Math.cos(this.lat1);
var ms1 = Proj4js.common.msfnz(this.e, sin1, cos1);
var ts1 = Proj4js.common.tsfnz(this.e, this.lat1, sin1);
var sin2 = Math.sin(this.lat2);
var cos2 = Math.cos(this.lat2);
var ms2 = Proj4js.common.msfnz(this.e, sin2, cos2);
var ts2 = Proj4js.common.tsfnz(this.e, this.lat2, sin2);
var ts0 = Proj4js.common.tsfnz(this.e, this.lat0, Math.sin(this.lat0));
if (Math.abs(this.lat1 - this.lat2) > Proj4js.common.EPSLN) {
this.ns = Math.log(ms1/ms2)/Math.log(ts1/ts2);
} else {
this.ns = sin1;
}
this.f0 = ms1 / (this.ns * Math.pow(ts1, this.ns));
this.rh = this.a * this.f0 * Math.pow(ts0, this.ns);
if (!this.title) this.title = "Lambert Conformal Conic";
},
// Lambert Conformal conic forward equations--mapping lat,long to x,y
// -----------------------------------------------------------------
forward : function(p) {
var lon = p.x;
var lat = p.y;
// convert to radians
if ( lat <= 90.0 && lat >= -90.0 && lon <= 180.0 && lon >= -180.0) {
//lon = lon * Proj4js.common.D2R;
//lat = lat * Proj4js.common.D2R;
} else {
Proj4js.reportError("lcc:forward: llInputOutOfRange: "+ lon +" : " + lat);
return null;
}
var con = Math.abs( Math.abs(lat) - Proj4js.common.HALF_PI);
var ts, rh1;
if (con > Proj4js.common.EPSLN) {
ts = Proj4js.common.tsfnz(this.e, lat, Math.sin(lat) );
rh1 = this.a * this.f0 * Math.pow(ts, this.ns);
} else {
con = lat * this.ns;
if (con <= 0) {
Proj4js.reportError("lcc:forward: No Projection");
return null;
}
rh1 = 0;
}
var theta = this.ns * Proj4js.common.adjust_lon(lon - this.long0);
p.x = this.k0 * (rh1 * Math.sin(theta)) + this.x0;
p.y = this.k0 * (this.rh - rh1 * Math.cos(theta)) + this.y0;
return p;
},
// Lambert Conformal Conic inverse equations--mapping x,y to lat/long
// -----------------------------------------------------------------
inverse : function(p) {
var rh1, con, ts;
var lat, lon;
x = (p.x - this.x0)/this.k0;
y = (this.rh - (p.y - this.y0)/this.k0);
if (this.ns > 0) {
rh1 = Math.sqrt (x * x + y * y);
con = 1.0;
} else {
rh1 = -Math.sqrt (x * x + y * y);
con = -1.0;
}
var theta = 0.0;
if (rh1 != 0) {
theta = Math.atan2((con * x),(con * y));
}
if ((rh1 != 0) || (this.ns > 0.0)) {
con = 1.0/this.ns;
ts = Math.pow((rh1/(this.a * this.f0)), con);
lat = Proj4js.common.phi2z(this.e, ts);
if (lat == -9999) return null;
} else {
lat = -Proj4js.common.HALF_PI;
}
lon = Proj4js.common.adjust_lon(theta/this.ns + this.long0);
p.x = lon;
p.y = lat;
return p;
}
};