poly.js 5.09 KB
/* Function to compute, phi4, the latitude for the inverse of the
   Polyconic projection.
------------------------------------------------------------*/
function phi4z (eccent,e0,e1,e2,e3,a,b,c,phi) {
	var sinphi, sin2ph, tanph, ml, mlp, con1, con2, con3, dphi, i;

	phi = a;
	for (i = 1; i <= 15; i++) {
		sinphi = Math.sin(phi);
		tanphi = Math.tan(phi);
		c = tanphi * Math.sqrt (1.0 - eccent * sinphi * sinphi);
		sin2ph = Math.sin (2.0 * phi);
		/*
		ml = e0 * *phi - e1 * sin2ph + e2 * sin (4.0 *  *phi);
		mlp = e0 - 2.0 * e1 * cos (2.0 *  *phi) + 4.0 * e2 *  cos (4.0 *  *phi);
		*/
		ml = e0 * phi - e1 * sin2ph + e2 * Math.sin (4.0 *  phi) - e3 * Math.sin (6.0 * phi);
		mlp = e0 - 2.0 * e1 * Math.cos (2.0 *  phi) + 4.0 * e2 * Math.cos (4.0 *  phi) - 6.0 * e3 * Math.cos (6.0 *  phi);
		con1 = 2.0 * ml + c * (ml * ml + b) - 2.0 * a *  (c * ml + 1.0);
		con2 = eccent * sin2ph * (ml * ml + b - 2.0 * a * ml) / (2.0 *c);
		con3 = 2.0 * (a - ml) * (c * mlp - 2.0 / sin2ph) - 2.0 * mlp;
		dphi = con1 / (con2 + con3);
		phi += dphi;
		if (Math.abs(dphi) <= .0000000001 ) return(phi);   
	}
	Proj4js.reportError("phi4z: No convergence");
	return null;
}


/* Function to compute the constant e4 from the input of the eccentricity
   of the spheroid, x.  This constant is used in the Polar Stereographic
   projection.
--------------------------------------------------------------------*/
function e4fn(x) {
	var con, com;
	con = 1.0 + x;
	com = 1.0 - x;
	return (Math.sqrt((Math.pow(con,con))*(Math.pow(com,com))));
}





/*******************************************************************************
NAME                             POLYCONIC 

PURPOSE:	Transforms input longitude and latitude to Easting and
		Northing for the Polyconic projection.  The
		longitude and latitude must be in radians.  The Easting
		and Northing values will be returned in meters.

PROGRAMMER              DATE
----------              ----
T. Mittan		Mar, 1993

ALGORITHM REFERENCES

1.  Snyder, John P., "Map Projections--A Working Manual", U.S. Geological
    Survey Professional Paper 1395 (Supersedes USGS Bulletin 1532), United
    State Government Printing Office, Washington D.C., 1987.

2.  Snyder, John P. and Voxland, Philip M., "An Album of Map Projections",
    U.S. Geological Survey Professional Paper 1453 , United State Government
    Printing Office, Washington D.C., 1989.
*******************************************************************************/

Proj4js.Proj.poly = {

	/* Initialize the POLYCONIC projection
	  ----------------------------------*/
	init: function() {
		var temp;			/* temporary variable		*/
		if (this.lat0=0) this.lat0=90;//this.lat0 ca

		/* Place parameters in static storage for common use
		  -------------------------------------------------*/
		this.temp = this.b / this.a;
		this.es = 1.0 - Math.pow(this.temp,2);// devait etre dans tmerc.js mais n y est pas donc je commente sinon retour de valeurs nulles 
		this.e = Math.sqrt(this.es);
		this.e0 = Proj4js.common.e0fn(this.es);
		this.e1 = Proj4js.common.e1fn(this.es);
		this.e2 = Proj4js.common.e2fn(this.es);
		this.e3 = Proj4js.common.e3fn(this.es);
		this.ml0 = Proj4js.common.mlfn(this.e0, this.e1,this.e2, this.e3, this.lat0);//si que des zeros le calcul ne se fait pas
		//if (!this.ml0) {this.ml0=0;}
	},


	/* Polyconic forward equations--mapping lat,long to x,y
	  ---------------------------------------------------*/
	forward: function(p) {
		var sinphi, cosphi;	/* sin and cos value				*/
		var al;				/* temporary values				*/
		var c;				/* temporary values				*/
		var con, ml;		/* cone constant, small m			*/
		var ms;				/* small m					*/
		var x,y;

		var lon=p.x;
		var lat=p.y;	

		con = Proj4js.common.adjust_lon(lon - this.long0);
		if (Math.abs(lat) <= .0000001) {
			x = this.x0 + this.a * con;
			y = this.y0 - this.a * this.ml0;
		} else {
			sinphi = Math.sin(lat);
			cosphi = Math.cos(lat);	   

			ml = Proj4js.common.mlfn(this.e0, this.e1, this.e2, this.e3, lat);
			ms = Proj4js.common.msfnz(this.e,sinphi,cosphi);
			con = sinphi;
			x = this.x0 + this.a * ms * Math.sin(con)/sinphi;
			y = this.y0 + this.a * (ml - this.ml0 + ms * (1.0 - Math.cos(con))/sinphi);
		}

		p.x=x;
		p.y=y;   
		return p;
	},


	/* Inverse equations
	-----------------*/
	inverse: function(p) {
		var sin_phi, cos_phi;	/* sin and cos value				*/
		var al;					/* temporary values				*/
		var b;					/* temporary values				*/
		var c;					/* temporary values				*/
		var con, ml;			/* cone constant, small m			*/
		var iflg;				/* error flag					*/
		var lon,lat;
		p.x -= this.x0;
		p.y -= this.y0;
		al = this.ml0 + p.y/this.a;
		iflg = 0;

		if (Math.abs(al) <= .0000001) {
			lon = p.x/this.a + this.long0;
			lat = 0.0;
		} else {
			b = al * al + (p.x/this.a) * (p.x/this.a);
			iflg = phi4z(this.es,this.e0,this.e1,this.e2,this.e3,this.al,b,c,lat);
			if (iflg != 1) return(iflg);
			lon = Proj4js.common.adjust_lon((Proj4js.common.asinz(p.x * c / this.a) / Math.sin(lat)) + this.long0);
		}

		p.x=lon;
		p.y=lat;
		return p;
	}
};