plotexample.Snw 20.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
\documentclass[a4paper]{article}
%\VignetteIndexEntry{Writing grid Code}
%\VignettePackage{grid}
\newcommand{\grid}{{\tt grid}}
\newcommand{\grob}{{\tt grob}}
\newcommand{\gTree}{{\tt gTree}}
\newcommand{\R}{{\tt R}}
\setlength{\parindent}{0in}
\setlength{\parskip}{.1in}
\setlength{\textwidth}{140mm}
\setlength{\oddsidemargin}{10mm}

\newcommand{\aside}[1]{\begin{list}{}
                                   {\setlength{\leftmargin}{1in}
                                    \setlength{\rightmargin}{1in}
                                    \setlength{\itemindent}{0in}}
                       \item {\sc Aside:} {\it #1}
                       \end{list}}

\title{Writing \grid{} Code}
\author{Paul Murrell}

\begin{document}
\maketitle

<<echo=FALSE, results=hide>>=
library(grDevices)
library(stats) # for runif()
library(grid)
ps.options(pointsize=12)
options(width=60)

@
The \grid{} system contains a degree of complexity in order
to allow things like editing graphical objects, ``packing'' graphical
objects, and so on.  This means that many of the
predefined Grid graphics functions are
relatively complicated\footnote{Although there are exceptions;  some
functions, such as {\tt grid.show.viewport}, are purely for producing
illustrative diagrams and remain simple and procedural.}.

One design aim of \grid{} is to allow users to create simple 
graphics simply and not to force them to use  complicated concepts or
write complicated code
 unless they actually need to.  Along similar lines, it is 
intended that people should be able to prototype even complex graphics
very simply and then refine the implementation into a more 
sophisticated form if necessary.  

With the predefined graphics
functions being fully-developed and complicated implementations,
 there is a lack of examples of simple, prototype code.
Furthermore, given that the aim is to allow a range of ways to produce the same
graphical output, there is a need for examples which demonstrate the
various stages, from simple to complex, 
that a piece of \grid{} code can go through.

This document describes the
construction of a scatterplot object, like that shown below,
going from the simplest, prototype
implementation to the most complex and sophisticated.  
It demonstrates that if you
only want simple graphics output then you can do it pretty 
simply and quickly.  It also demonstrates how to write functions 
that allow your graphics to be used by other people.  Finally, it
demonstrates how to make your graphics fully interactive (or at least
as interactive as Grid will let you make it).

@
This document should be read {\em after} the \grid{} Users'
Guide.  Here we are assuming that the reader has an understanding
of viewports, layouts, and units.  For the later sections of the
document, it will also be helpful to have an understanding of
\R{}'s {\tt S3} object system.

\section*{Procedural \grid{}}

The simplest way to produce graphical output in Grid is just 
like producing standard R graphical output.  You simply issue a
series of graphics commands and each command adds more ink to the
plot.    
The purpose of the commands is simply to produce
graphics output;  in particular, we are not concerned with any
values returned by the plotting functions.  I will call this
{\it procedural graphics}. 

In order to draw a simple scatterplot, we can  issue a series
of commands which draw the various components of the plot.

Here are some random data to plot.

<<>>=
x <- runif(10)
y <- runif(10)

@
\noindent
The first step in creating the plot involves defining a ``data'' region.
This is a region which has sensible scales on the axes for plotting the
data and margins around the outside
for the axes to fit in, with a space for a title at the top.

<<datavp>>=
data.vp <- viewport(x=unit(5, "lines"),
                    y=unit(4, "lines"),
                    width=unit(1, "npc") - unit(7, "lines"),
                    height=unit(1, "npc") - unit(7, "lines"),
		    just=c("left", "bottom"),
		    xscale=range(x) + c(-.05, .05)*diff(range(x)),
		    yscale=range(y) + c(-.05, .05)*diff(range(y)))

@
\noindent
Now we create the data region and 
draw the components of the plot relative to it:  
points, axes, labels, and a 
title.

<<procplot>>=
pushViewport(data.vp)
grid.points(x, y)
grid.rect()
grid.xaxis()
grid.yaxis()
grid.text("x axis", y=unit(-3, "lines"), 
	  gp=gpar(fontsize=14))
grid.text("y axis", x=unit(-4, "lines"), 
	  gp=gpar(fontsize=14), rot=90)
grid.text("A Simple Plot", 
          y=unit(1, "npc") + unit(1.5, "lines"),
          gp=gpar(fontsize=16))
popViewport()

<<fig=TRUE, echo=FALSE, results=hide>>=
<<procplot>>

@
\section*{Facilitating Annotation}

Issuing a series of commands to produce a plot, like in the previous 
section, allows the user to have a great deal of flexibility.
It is always possible to recreate viewports in order to add 
further annotations.  For example, the following code
recreates the data region in order to place the date
at the bottom right corner.

<<ann1>>=
pushViewport(data.vp)
grid.text(date(), x=unit(1, "npc"),
  y = 0, just=c("right", "bottom"), gp=gpar(col="grey"))
popViewport()

<<fig=TRUE, echo=FALSE, results=hide>>=
<<procplot>>
<<ann1>>

@

When more complex arrangements of viewports are involved, there may be 
a bewildering array of viewports created, which may make it difficult
for other users to revisit a particular region of a plot.  A {\tt lattice}
plot is a good example.
In such cases, it will be more cooperative to use {\tt upViewport()}
rather than {\tt popViewport()} and leave the viewports that were
created during the drawing of the plot.  Other users can then use
{\tt vpPath}s to navigate to the desired region.  For example, here
is a slight modification of the original series of commands, where
the original data viewport is given a name and 
{\tt upViewport()} is used at the end.

<<results=hide>>=
data.vp <- viewport(name="dataregion",
                    x=unit(5, "lines"),
                    y=unit(4, "lines"),
                    width=unit(1, "npc") - unit(7, "lines"),
                    height=unit(1, "npc") - unit(7, "lines"),
		    just=c("left", "bottom"),
		    xscale=range(x) + c(-.05, .05)*diff(range(x)),
		    yscale=range(y) + c(-.05, .05)*diff(range(y)))
pushViewport(data.vp)
grid.points(x, y)
grid.rect()
grid.xaxis()
grid.yaxis()
grid.text("x axis", y=unit(-3, "lines"), 
	  gp=gpar(fontsize=14))
grid.text("y axis", x=unit(-4, "lines"), 
	  gp=gpar(fontsize=14), rot=90)
grid.text("A Simple Plot", 
          y=unit(1, "npc") + unit(1.5, "lines"),
          gp=gpar(fontsize=16))
upViewport()

@

The date is now added
using {\tt downViewport()} to get to the data region.

<<results=hide>>=
downViewport("dataregion")
grid.text(date(), x=unit(1, "npc"),
  y = 0, just=c("right", "bottom"), gp=gpar(col="grey"))
upViewport()

@
\section*{Writing a \grid{} Function}

Here is the scatterplot code wrapped up as a simple function.

<<funcplot>>=
splot <- function(x=runif(10), y=runif(10), title="A Simple Plot") {
data.vp <- viewport(name="dataregion",
                    x=unit(5, "lines"),
                    y=unit(4, "lines"),
                    width=unit(1, "npc") - unit(7, "lines"),
                    height=unit(1, "npc") - unit(7, "lines"),
		    just=c("left", "bottom"),
		    xscale=range(x) + c(-.05, .05)*diff(range(x)),
		    yscale=range(y) + c(-.05, .05)*diff(range(y)))
pushViewport(data.vp)
grid.points(x, y)
grid.rect()
grid.xaxis()
grid.yaxis()
grid.text("y axis", x=unit(-4, "lines"), 
	  gp=gpar(fontsize=14), rot=90)
grid.text(title, 
          y=unit(1, "npc") + unit(1.5, "lines"),
          gp=gpar(fontsize=16))
upViewport()
}

@
There are several advantages to creating a 
function:
\begin{enumerate}
\item We get the standard advantages of a function:  
we can reuse and maintain the plot code more easily.
\item We can slightly generalise the plot.  In this case, we can use it for 
different data and have a different title.  We could
add more arguments to allow different margins, control over
the axis scales, and so on.
\item The plot can be embedded in other graphics output.
\end{enumerate}
Here is an example which uses the {\tt splot()} function to
create a slightly modified scatterplot, embedded within 
other \grid{} output.

<<embed, fig=TRUE, results=hide>>=
grid.rect(gp=gpar(fill="grey"))
message <- paste("I could draw all sorts",
  "of stuff over here",
  "then create a viewport",
  "over there and stick",
  "a scatterplot in it.", sep="\n")
grid.text(message, x=0.25)
grid.lines(x=unit.c(unit(0.25, "npc") + 0.5*stringWidth(message) +
  unit(2, "mm"),
  unit(0.5, "npc") - unit(2, "mm")), 
  y=0.5,
  arrow=arrow(angle=15, type="closed"),
  gp=gpar(lwd=3, fill="black"))
pushViewport(viewport(x=0.5, height=0.5, width=0.45, just="left", 
  gp=gpar(cex=0.5)))
grid.rect(gp=gpar(fill="white"))
splot(1:10, 1:10, title="An Embedded Plot")
upViewport()

@

It is still straightforward to annotate the scatterplot as long as 
we have enough information about the viewports.  In this case,
a non-strict {\tt downViewport()} will still work (though note
that {\tt upViewport({\bf 0})} is required to get right back to the 
top level).

<<ann2, echo=FALSE, eval=FALSE>>=
downViewport("dataregion")
grid.text(date(), x=unit(1, "npc"),
  y = 0, just=c("right", "bottom"), gp=gpar(col="grey"))
upViewport(0)

<<echo=FALSE, results=hide>>=
<<embed>>
<<ann2>>

@
\section*{Creating \grid{} Graphical Objects}

A \grid{} function like the one in the previous section provides 
output which is very flexible and can be annotated in arbitrary ways
and can be embedded within other output.  This is likely
to satisfy most uses.

However, there are some things that cannot be done (or at least would
be extremely hard to do) with such a function.  The output produced by
the function cannot be addressed as a coherent whole.  It is
not possible, for example, to 
to change the {\tt x}
and {\tt y} data used in the plot and have the points and axes update
automatically.  There is no scatterplot object to save;  the individual
components exist, but they are not bound together as a whole.  If/when
these sorts of issues become important, it becomes necessary to 
create a \grid{} graphical object (a \grob{}) to represent the plot.

The first step is to write a function which will create a \grob{}
-- a {\it constructor} function.  In most cases, this will involve
creating a special sort of \grob{} called a \gTree{};  this is just
a \grob{} that can have other \grob{}s as children.  Here's an example
for creating an {\tt splot} \grob{}.  I have put bits of the 
construction into separate functions, for reasons which will become 
apparent later.

<<>>=
splot.data.vp <- function(x, y) {
  viewport(name="dataregion",
                    x=unit(5, "lines"),
                    y=unit(4, "lines"),
                    width=unit(1, "npc") - unit(7, "lines"),
                    height=unit(1, "npc") - unit(7, "lines"),
		    just=c("left", "bottom"),
		    xscale=range(x) + c(-.05, .05)*diff(range(x)),
		    yscale=range(y) + c(-.05, .05)*diff(range(y)))
}

splot.title <- function(title) {
      textGrob(title, name="title",
          y=unit(1, "npc") + unit(1.5, "lines"),
          gp=gpar(fontsize=16), vp="dataregion")
}

splot <- function(x, y, title, name=NULL, draw=TRUE, gp=gpar(), vp=NULL) {
  spg <- gTree(
    x=x, y=y, title=title,
    name=name,
    childrenvp = splot.data.vp(x, y),
    children=gList(rectGrob(name="border", vp="dataregion"), 
      xaxisGrob(name="xaxis", vp="dataregion"), 
      yaxisGrob(name="yaxis", vp="dataregion"),
      pointsGrob(x, y, name="points", vp="dataregion"),
      textGrob("x axis", y=unit(-3, "lines"), name="xlab",
	  gp=gpar(fontsize=14), vp="dataregion"),
      textGrob("y axis", x=unit(-4, "lines"), name="ylab",
	  gp=gpar(fontsize=14), rot=90, vp="dataregion"),
      splot.title(title)),
    gp=gp, vp=vp,
    cl="splot")
  if (draw)
    grid.draw(spg)
  spg
}

@

There are four important additions to the argument list compared
to the original {\tt splot()} function:
\begin{enumerate}
\item The {\tt name} argument allows a string identifier to be
associated with the scatterplot object we create.  This is 
important for being able to specify the scatterplot when we try to edit
it after drawing it and/or when it is part of a larger \grob{} 
(see later examples).
\item The {\tt draw} argument
 makes it possible to use the function in a procedural 
manner as before:

<<splotgrob, eval=FALSE, echo=FALSE>>=
sg <- splot(1:10, 1:10, "Same as Before", name="splot", draw=FALSE)

<<>>=
splot(1:10, 1:10, "Same as Before", name="splot")
downViewport("dataregion")
grid.text(date(), x=unit(1, "npc"),
  y = 0, just=c("right", "bottom"), gp=gpar(col="grey"))
upViewport(0)

@
\item The {\tt gp} argument allows the user to supply {\tt gpar()} 
settings for the scatterplot as a whole.
\item The {\tt vp} argument allows the user to supply a viewport
for the {\tt splot} \grob{} to be drawn in.  This is especially 
useful for specifying a {\tt vpPath} when the {\tt splot} is
used as a component of another \grob{} (see scatterplot matrix
example
below).
\end{enumerate}

The important parts of the \gTree{}  definition are:
\begin{enumerate}
\item The {\tt children} argument provides a list of \grob{}s which are
part of the scatterplot.  When the scatterplot is drawn, all children
will be drawn.  Notice that instead of the procedural {\tt grid.*()} functions
we use {\tt *Grob()} functions which just produce \grob{}s and do not
perform any drawing.  Also notice that I have given each of the
children a name;  this will make it possible to access the components
of the scatterplot (see later examples).
\item The {\tt childrenvp} argument provides a viewport (or 
{\tt vpStack}, {\tt vpList}, or {\tt vpTree}) which will be pushed before
the children are drawn.  The difference between this argument and the
{\tt vp} argument common to all \grob{}s is that the {\tt vp} is pushed before
drawing the children and then popped after, whereas the {\tt childrenvp}
gets pushed {\it and} then a call to {\tt upViewport()} is made
before the children are drawn.  This allows the children to simply 
specify the viewport they should be drawn in by way of a {\tt vpPath}
in their {\tt vp} argument.  In this way, viewports remain available
for further annotation such as we have already seen in procedural code.
\item The {\tt gp} and {\tt vp} arguments are automatically handled by
the \gTree{} drawing methods so that {\tt gpar()} settings will be 
enforced and the viewport will be pushed when the {\tt splot} is drawn.
\item The {\tt cl} argument means that the \grob{} created is a special
sort of \grob{} called {\tt splot}.  This will allow us to write methods
specifically for our scatterplot (see later examples).
\end{enumerate}


@

Now that we have a \grob{}, there are some more interesting things that
we can do with it.
First of all, the {\tt splot} \grob{} provides a container for the 
\grob{}s which make up the scatterplot.
If we modify the {\tt splot} \grob{}, it affects all of the children.

<<results=hide>>=
splot(1:10, 1:10, "Same as Before", name="splot")
grid.edit("splot", gp=gpar(cex=0.5))

<<fig=TRUE, echo=FALSE, results=hide>>=
<<splotgrob>>
sg <- editGrob(sg, gp=gpar(cex=0.5))
grid.draw(sg)

@ 

We can access elements of the {\tt splot} \grob{} to edit them 
individually.

<<results=hide>>=
splot(1:10, 1:10, "Same as Before", name="splot")
grid.edit(gPath("splot", "points"), gp=gpar(col=1:10))

<<fig=TRUE, echo=FALSE, results=hide>>=
<<splotgrob>>
sg <- editGrob(sg, gPath="points", gp=gpar(col=1:10))
grid.draw(sg)

@

With a little more work we can make the scatterplot a bit more dynamic.
The following describes a {\tt editDetails()} method for the 
{\tt splot} \grob{}.  This will be called whenever a scatterplot 
is edited and will update the components of the scatterplot.

<<>>=
editDetails.splot <- function(x, specs) {
  if (any(c("x", "y") %in% names(specs))) {
    if (is.null(specs$x))
      xx <- x$x
    else
      xx <- specs$x
    if (is.null(specs$y))
      yy <- x$y
    else
      yy <- specs$y
    x$childrenvp <- splot.data.vp(xx, yy)
    x <- addGrob(x, pointsGrob(xx, yy, name="points", vp="dataregion"))
  }
  x
}
splot(1:10, 1:10, "Same as Before", name="splot")
grid.edit("splot", x=1:100, y=(1:100)^2)

<<fig=TRUE, echo=FALSE, results=hide>>=
<<splotgrob>>
sg <- editGrob(sg, x=1:100, y=(1:100)^2)
grid.draw(sg)

@

The {\tt splot} \grob{} can also be used in the construction of
other \grob{}s.  Here's a simple scatterplot matrix 
\grob{}\footnote{{\bf Warning:}  As the number of \grob{}s in a \gTree{} gets
larger the construction of the \gTree{} will get slow.  If this happens,
the best solution is to just use a \grid{} function rather than
a \gTree{}, and wait for me to implement some ideas for speeding things
up!}.

<<fig=TRUE>>=
cellname <- function(i, j) {
  paste("cell", i, j, sep="")
}

splom.vpTree <- function(n) {
  vplist <- vector("list", n^2)
  for (i in 1:n)
    for (j in 1:n)
      vplist[[(i - 1)*n + j]] <- 
        viewport(layout.pos.row=i, layout.pos.col=j,
          name=cellname(i, j))
  vpTree(viewport(layout=grid.layout(n, n), name="cellgrid"),
    do.call("vpList", vplist))
}
    
cellpath <- function(i, j) {
  vpPath("cellgrid", cellname(i, j))
}

splom <- function(df, name=NULL, draw=TRUE) {
  n <- dim(df)[2]
  glist <- vector("list", n*n)
  for (i in 1:n)
    for (j in 1:n)
      if (i == j)
        glist[[(i - 1)*n + j]] <- textGrob(paste("diag", i, sep=""),
          gp=gpar(col="grey"), vp=cellpath(i, j))
      else if (j > i)
        glist[[(i - 1)*n + j]] <- textGrob(cellname(i, j),
	  name=cellname(i, j),
          gp=gpar(col="grey"), vp=cellpath(i, j))
      else
        glist[[(i - 1)*n + j]] <- splot(df[,j], df[,i], "", 
          name=paste("plot", i, j, sep=""), vp=cellpath(i, j),
          gp=gpar(cex=0.5), draw=FALSE)
  smg <- gTree(name=name, 
    childrenvp=splom.vpTree(n), 
    children=do.call("gList", glist))		
  if (draw)
    grid.draw(smg)
  smg
}

df <- data.frame(x=rnorm(10), y=rnorm(10), z=rnorm(10))
splom(df)

@

This \grob{} can be edited as usual:

<<>>=
splom(df)
grid.edit("plot21::xlab", label="", redraw=FALSE)
grid.edit("plot32::ylab", label="", redraw=FALSE)
grid.edit("plot21::xaxis", label=FALSE, redraw=FALSE)
grid.edit("plot32::yaxis", label=FALSE)

<<splomgrob, eval=FALSE, echo=FALSE>>=
smg <- splom(df, draw=FALSE)

<<fig=TRUE, echo=FALSE, results=hide>>=
<<splomgrob>>
smg <- editGrob(smg, gPath="plot21::xaxis", label=FALSE)
smg <- editGrob(smg, gPath="plot21::xlab", label="")
smg <- editGrob(smg, gPath="plot32::yaxis", label=FALSE)
smg <- editGrob(smg, gPath="plot32::ylab", label="")
grid.draw(smg)

@

But of more interest, because this is a \grob{}, is the {\it programmatic}
interface.  With a \grob{} (as opposed to a function) it is possible
to modify the description of what is being drawn via an API (as opposed
to having to edit the original code).  In  the following, we
remove one of the ``spare'' cell labels and put in its place the
current date.

<<>>=
splom(df, name="splom")
grid.remove("cell12")
grid.add("splom", textGrob(date(), name="date", gp=gpar(fontface="italic"),
  vp="cellgrid::cell12"))

<<fig=TRUE, echo=FALSE, results=hide>>=
<<splomgrob>>
smg <- removeGrob(smg, "cell12")
smg <- addGrob(smg, textGrob(date(), name="date", gp=gpar(fontface="italic"),
  vp="cellgrid::cell12"))
grid.draw(smg)

@

With the date added as a component of the scatterplot matrix, it is
saved as part of the matrix.  The next sequence saves the scatterplot
matrix, loads it again, extracts the bottom-left plot and the date 
and just draws those two objects together.

<<>>=
splom(df, name="splom")
grid.remove("cell12")
grid.add("splom", textGrob(date(), name="date", gp=gpar(fontface="italic"),
  vp="cellgrid::cell12"))
smg <- grid.get("splom")
save(smg, file="splom.RData")
load("splom.RData")
plot <- getGrob(smg, "plot31")
date <- getGrob(smg, "date")
plot <- editGrob(plot, vp=NULL, gp=gpar(cex=1))
date <- editGrob(date, y=unit(1, "npc") - unit(1, "lines"), vp=NULL)
grid.newpage()
grid.draw(plot)
grid.draw(date)

<<fig=TRUE, echo=FALSE, results=hide>>=
<<splomgrob>>
smg <- removeGrob(smg, "cell12")
smg <- addGrob(smg, textGrob(date(), name="date", gp=gpar(fontface="italic"),
  vp="cellgrid::cell12"))
save(smg, file="splom.RData")
load("splom.RData")
plot <- getGrob(smg, "plot31")
date <- getGrob(smg, "date")
plot <- editGrob(plot, vp=NULL, gp=gpar(cex=1))
date <- editGrob(date, y=unit(1, "npc") - unit(1, "lines"), vp=NULL)
grid.draw(plot)
grid.draw(date)

@

All of this may seem a bit irrelevant to interactive use, but it
does provide a basis for creating an editable plot interface like 
M Kondrin's {\tt Rgrace} package.

% Start a new page
% Not echoed, not evaluated
% ONLY here for checkVignettes so that all output doesn't
% end up on one enormous page

<<eval=FALSE, echo=FALSE>>=
grid.newpage()

@
\end{document}