proj4phpCommon.php
10.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
<?php
/**
* Author : Julien Moquet
*
* Inspired by Proj4js from Mike Adair madairATdmsolutions.ca
* and Richard Greenwood rich@greenwoodmap.com
* License: LGPL as per: http://www.gnu.org/copyleft/lesser.html
*/
class Proj4phpCommon {
public $PI = M_PI; #3.141592653589793238; //Math.PI,
public $HALF_PI = M_PI_2; #1.570796326794896619; //Math.PI*0.5,
public $TWO_PI = 6.283185307179586477; //Math.PI*2,
public $FORTPI = 0.78539816339744833;
public $R2D = 57.29577951308232088;
public $D2R = 0.01745329251994329577;
public $SEC_TO_RAD = 4.84813681109535993589914102357e-6; /* SEC_TO_RAD = Pi/180/3600 */
public $EPSLN = 1.0e-10;
public $MAX_ITER = 20;
// following constants from geocent.c
public $COS_67P5 = 0.38268343236508977; /* cosine of 67.5 degrees */
public $AD_C = 1.0026000; /* Toms region 1 constant */
/* datum_type values */
public $PJD_UNKNOWN = 0;
public $PJD_3PARAM = 1;
public $PJD_7PARAM = 2;
public $PJD_GRIDSHIFT = 3;
public $PJD_WGS84 = 4; // WGS84 or equivalent
public $PJD_NODATUM = 5; // WGS84 or equivalent
const SRS_WGS84_SEMIMAJOR = 6378137.0; // only used in grid shift transforms
// ellipoid pj_set_ell.c
public $SIXTH = .1666666666666666667; /* 1/6 */
public $RA4 = .04722222222222222222; /* 17/360 */
public $RA6 = .02215608465608465608; /* 67/3024 */
public $RV4 = .06944444444444444444; /* 5/72 */
public $RV6 = .04243827160493827160; /* 55/1296 */
/* meridinal distance for ellipsoid and inverse
* * 8th degree - accurate to < 1e-5 meters when used in conjuction
* * with typical major axis values.
* * Inverse determines phi to EPS (1e-11) radians, about 1e-6 seconds.
*/
protected $C00 = 1.0;
protected $C02 = .25;
protected $C04 = .046875;
protected $C06 = .01953125;
protected $C08 = .01068115234375;
protected $C22 = .75;
protected $C44 = .46875;
protected $C46 = .01302083333333333333;
protected $C48 = .00712076822916666666;
protected $C66 = .36458333333333333333;
protected $C68 = .00569661458333333333;
protected $C88 = .3076171875;
/**
* Function to compute the constant small m which is the radius of
* a parallel of latitude, phi, divided by the semimajor axis.
*
* @param type $eccent
* @param type $sinphi
* @param type $cosphi
* @return type
*/
public function msfnz( $eccent, $sinphi, $cosphi ) {
$con = $eccent * $sinphi;
return $cosphi / (sqrt( 1.0 - $con * $con ));
}
/**
* Function to compute the constant small t for use in the forward
* computations in the Lambert Conformal Conic and the Polar
* Stereographic projections.
*
* @param type $eccent
* @param type $phi
* @param type $sinphi
* @return type
*/
public function tsfnz( $eccent, $phi, $sinphi ) {
$con = $eccent * $sinphi;
$com = 0.5 * $eccent;
$con = pow( ((1.0 - $con) / (1.0 + $con) ), $com );
return (tan( .5 * (M_PI_2 - $phi) ) / $con);
}
/**
* Function to compute the latitude angle, phi2, for the inverse of the
* Lambert Conformal Conic and Polar Stereographic projections.
*
* rise up an assertion if there is no convergence.
*
* @param type $eccent
* @param type $ts
* @return type
*/
public function phi2z( $eccent, $ts ) {
$eccnth = .5 * $eccent;
$phi = M_PI_2 - 2 * atan( $ts );
for( $i = 0; $i <= 15; $i++ ) {
$con = $eccent * sin( $phi );
$dphi = M_PI_2 - 2 * atan( $ts * (pow( ((1.0 - $con) / (1.0 + $con) ), $eccnth )) ) - $phi;
$phi += $dphi;
if( abs( $dphi ) <= .0000000001 )
return $phi;
}
assert( "false; /* phi2z has NoConvergence */" );
return (-9999);
}
/**
* Function to compute constant small q which is the radius of a
* parallel of latitude, phi, divided by the semimajor axis.
*
* @param type $eccent
* @param type $sinphi
* @return type
*/
public function qsfnz( $eccent, $sinphi ) {
if( $eccent > 1.0e-7 ) {
$con = $eccent * $sinphi;
return (( 1.0 - $eccent * $eccent) * ($sinphi / (1.0 - $con * $con) - (.5 / $eccent) * log( (1.0 - $con) / (1.0 + $con) )));
}
return (2.0 * $sinphi);
}
/**
* Function to eliminate roundoff errors in asin
*
* @param type $x
* @return type
*/
public function asinz( $x ) {
return asin(
abs( $x ) > 1.0 ? ($x > 1.0 ? 1.0 : -1.0) : $x
);
#if( abs( $x ) > 1.0 ) {
# $x = ($x > 1.0) ? 1.0 : -1.0;
#}
#return asin( $x );
}
/**
* following functions from gctpc cproj.c for transverse mercator projections
*
* @param type $x
* @return type
*/
public function e0fn( $x ) {
return (1.0 - 0.25 * $x * (1.0 + $x / 16.0 * (3.0 + 1.25 * $x)));
}
/**
*
* @param type $x
* @return type
*/
public function e1fn( $x ) {
return (0.375 * $x * (1.0 + 0.25 * $x * (1.0 + 0.46875 * $x)));
}
/**
*
* @param type $x
* @return type
*/
public function e2fn( $x ) {
return (0.05859375 * $x * $x * (1.0 + 0.75 * $x));
}
/**
*
* @param type $x
* @return type
*/
public function e3fn( $x ) {
return ($x * $x * $x * (35.0 / 3072.0));
}
/**
*
* @param type $e0
* @param type $e1
* @param type $e2
* @param type $e3
* @param type $phi
* @return type
*/
public function mlfn( $e0, $e1, $e2, $e3, $phi ) {
return ($e0 * $phi - $e1 * sin( 2.0 * $phi ) + $e2 * sin( 4.0 * $phi ) - $e3 * sin( 6.0 * $phi ));
}
/**
*
* @param type $esinp
* @param type $exp
* @return type
*/
public function srat( $esinp, $exp ) {
return (pow( (1.0 - $esinp) / (1.0 + $esinp), $exp ));
}
/**
* Function to return the sign of an argument
*
* @param type $x
* @return type
*/
public function sign( $x ) {
return $x < 0.0 ? -1 : 1;
}
/**
* Function to adjust longitude to -180 to 180; input in radians
*
* @param type $x
* @return type
*/
public function adjust_lon( $x ) {
return (abs( $x ) < M_PI) ? $x : ($x - ($this->sign( $x ) * $this->TWO_PI) );
}
/**
* IGNF - DGR : algorithms used by IGN France
* Function to adjust latitude to -90 to 90; input in radians
*
* @param type $x
* @return type
*/
public function adjust_lat( $x ) {
$x = (abs( $x ) < M_PI_2) ? $x : ($x - ($this->sign( $x ) * M_PI) );
return $x;
}
/**
* Latitude Isometrique - close to tsfnz ...
*
* @param type $eccent
* @param float $phi
* @param type $sinphi
* @return string
*/
public function latiso( $eccent, $phi, $sinphi ) {
if( abs( $phi ) > M_PI_2 )
return +NaN;
if( $phi == M_PI_2 )
return INF;
if( $phi == -1.0 * M_PI_2 )
return -1.0 * INF;
$con = $eccent * $sinphi;
return log( tan( (M_PI_2 + $phi) / 2.0 ) ) + $eccent * log( (1.0 - $con) / (1.0 + $con) ) / 2.0;
}
/**
*
* @param type $x
* @param type $L
* @return type
*/
public function fL( $x, $L ) {
return 2.0 * atan( $x * exp( $L ) ) - M_PI_2;
}
/**
* Inverse Latitude Isometrique - close to ph2z
*
* @param type $eccent
* @param type $ts
* @return type
*/
public function invlatiso( $eccent, $ts ) {
$phi = $this->fL( 1.0, $ts );
$Iphi = 0.0;
$con = 0.0;
do {
$Iphi = $phi;
$con = $eccent * sin( $Iphi );
$phi = $this->fL( exp( $eccent * log( (1.0 + $con) / (1.0 - $con) ) / 2.0 ), $ts );
} while( abs( $phi - $Iphi ) > 1.0e-12 );
return $phi;
}
/**
* Grande Normale
*
* @param type $a
* @param type $e
* @param type $sinphi
* @return type
*/
public function gN( $a, $e, $sinphi ) {
$temp = $e * $sinphi;
return $a / sqrt( 1.0 - $temp * $temp );
}
/**
* code from the PROJ.4 pj_mlfn.c file; this may be useful for other projections
*
* @param type $es
* @return type
*/
public function pj_enfn( $es ) {
$en = array( );
$en[0] = $this->C00 - $es * ($this->C02 + $es * ($this->C04 + $es * ($this->C06 + $es * $this->C08)));
$en[1] = es * ($this->C22 - $es * ($this->C04 + $es * ($this->C06 + $es * $this->C08)));
$t = $es * $es;
$en[2] = $t * ($this->C44 - $es * ($this->C46 + $es * $this->C48));
$t *= $es;
$en[3] = $t * ($this->C66 - $es * $this->C68);
$en[4] = $t * $es * $this->C88;
return $en;
}
/**
*
* @param type $phi
* @param type $sphi
* @param type $cphi
* @param type $en
* @return type
*/
public function pj_mlfn( $phi, $sphi, $cphi, $en ) {
$cphi *= $sphi;
$sphi *= $sphi;
return ($en[0] * $phi - $cphi * ($en[1] + $sphi * ($en[2] + $sphi * ($en[3] + $sphi * $en[4]))));
}
/**
*
* @param type $arg
* @param type $es
* @param type $en
* @return type
*/
public function pj_inv_mlfn( $arg, $es, $en ) {
$k = (float) 1 / (1 - $es);
$phi = $arg;
for( $i = Proj4php::$common->MAX_ITER; $i; --$i ) { /* rarely goes over 2 iterations */
$s = sin( $phi );
$t = 1. - $es * $s * $s;
//$t = $this->pj_mlfn($phi, $s, cos($phi), $en) - $arg;
//$phi -= $t * ($t * sqrt($t)) * $k;
$t = ($this->pj_mlfn( $phi, $s, cos( $phi ), $en ) - $arg) * ($t * sqrt( $t )) * $k;
$phi -= $t;
if( abs( $t ) < Proj4php::$common->EPSLN )
return $phi;
}
Proj4php::reportError( "cass:pj_inv_mlfn: Convergence error" );
return $phi;
}
}