poly.php
6.48 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
<?php
/**
* Author : Julien Moquet
*
* Inspired by Proj4php from Mike Adair madairATdmsolutions.ca
* and Richard Greenwood rich@greenwoodma$p->com
* License: LGPL as per: http://www.gnu.org/copyleft/lesser.html
*/
/* Function to compute, phi4, the latitude for the inverse of the
Polyconic projection.
------------------------------------------------------------ */
function phi4z( $eccent, $e0, $e1, $e2, $e3, $a, $b, &$c, $phi ) {
/*
$sinphi;
$sin2ph;
$tanph;
$ml;
$mlp;
$con1;
$con2;
$con3;
$dphi;
$i;
*/
$phi = $a;
for( $i = 1; $i <= 15; $i++ ) {
$sinphi = sin( $phi );
$tanphi = tan( $phi );
$c = $tanphi * sqrt( 1.0 - $eccent * $sinphi * $sinphi );
$sin2ph = sin( 2.0 * $phi );
/*
ml = e0 * *phi - e1 * sin2ph + e2 * sin (4.0 * *phi);
mlp = e0 - 2.0 * e1 * cos (2.0 * *phi) + 4.0 * e2 * cos (4.0 * *phi);
*/
$ml = $e0 * $phi - $e1 * $sin2ph + $e2 * sin( 4.0 * $phi ) - $e3 * sin( 6.0 * $phi );
$mlp = $e0 - 2.0 * $e1 * cos( 2.0 * $phi ) + 4.0 * $e2 * cos( 4.0 * $phi ) - 6.0 * $e3 * cos( 6.0 * $phi );
$con1 = 2.0 * $ml + $c * ($ml * $ml + $b) - 2.0 * $a * ($c * $ml + 1.0);
$con2 = $eccent * $sin2ph * ($ml * $ml + $b - 2.0 * $a * $ml) / (2.0 * $c);
$con3 = 2.0 * ($a - $ml) * ($c * $mlp - 2.0 / $sin2ph) - 2.0 * $mlp;
$dphi = $con1 / ($con2 + $con3);
$phi += $dphi;
if( abs( $dphi ) <= .0000000001 )
return($phi);
}
Proj4php::reportError( "phi4z: No convergence" );
return null;
}
/* Function to compute the constant e4 from the input of the eccentricity
of the spheroid, x. This constant is used in the Polar Stereographic
projection.
-------------------------------------------------------------------- */
function e4fn( $x ) {
#$con;
#$com;
$con = 1.0 + $x;
$com = 1.0 - $x;
return (sqrt( (pow( $con, $con )) * (pow( $com, $com )) ));
}
/* * *****************************************************************************
NAME POLYCONIC
PURPOSE: Transforms input longitude and latitude to Easting and
Northing for the Polyconic projection. The
longitude and latitude must be in radians. The Easting
and Northing values will be returned in meters.
PROGRAMMER DATE
---------- ----
T. Mittan Mar, 1993
ALGORITHM REFERENCES
1. Snyder, John P., "Map Projections--A Working Manual", U.S. Geological
Survey Professional Paper 1395 (Supersedes USGS Bulletin 1532), United
State Government Printing Office, Washington D.C., 1987.
2. Snyder, John P. and Voxland, Philip M., "An Album of Map Projections",
U.S. Geological Survey Professional Paper 1453 , United State Government
Printing Office, Washington D.C., 1989.
* ***************************************************************************** */
class Proj4phpProjPoly {
/* Initialize the POLYCONIC projection
---------------------------------- */
public function init() {
#$temp; /* temporary variable */
if( $this->lat0 == 0 )
$this->lat0 = 90; //$this->lat0 ca
/* Place parameters in static storage for common use
------------------------------------------------- */
$this->temp = $this->b / $this->a;
$this->es = 1.0 - pow( $this->temp, 2 ); // devait etre dans tmerc.js mais n y est pas donc je commente sinon retour de valeurs nulles
$this->e = sqrt( $this->es );
$this->e0 = Proj4php::$common->e0fn( $this->es );
$this->e1 = Proj4php::$common->e1fn( $this->es );
$this->e2 = Proj4php::$common->e2fn( $this->es );
$this->e3 = Proj4php::$common->e3fn( $this->es );
$this->ml0 = Proj4php::$common->mlfn( $this->e0, $this->e1, $this->e2, $this->e3, $this->lat0 ); //si que des zeros le calcul ne se fait pas
//if (!$this->ml0) {$this->ml0=0;}
}
/* Polyconic forward equations--mapping lat,long to x,y
--------------------------------------------------- */
public function forward( $p ) {
/*
$sinphi;
$cosphi; // sin and cos value
$al; // temporary values
$c; // temporary values
$con;
$ml; // cone constant, small m
$ms; // small m
$x;
$y;
*/
$lon = $p->x;
$lat = $p->y;
$con = Proj4php::$common->adjust_lon( $lon - $this->long0 );
if( abs( $lat ) <= .0000001 ) {
$x = $this->x0 + $this->a * $con;
$y = $this->y0 - $this->a * $this->ml0;
} else {
$sinphi = sin( $lat );
$cosphi = cos( $lat );
$ml = Proj4php::$common->mlfn( $this->e0, $this->e1, $this->e2, $this->e3, $lat );
$ms = Proj4php::$common->msfnz( $this->e, $sinphi, $cosphi );
$x = $this->x0 + $this->a * $ms * sin( $sinphi ) / $sinphi;
$y = $this->y0 + $this->a * ($ml - $this->ml0 + $ms * (1.0 - cos( $sinphi )) / $sinphi);
}
$p->x = $x;
$p->y = $y;
return $p;
}
/* Inverse equations
----------------- */
public function inverse( $p ) {
/*
$sin_phi;
$cos_phi; // sin and cos values
$al; // temporary values
$b; // temporary values
$c; // temporary values
$con;
$ml; // cone constant, small m
$iflg; // error flag
$lon;
$lat;
*/
$p->x -= $this->x0;
$p->y -= $this->y0;
$al = $this->ml0 + $p->y / $this->a;
$iflg = 0;
if( abs( $al ) <= .0000001 ) {
$lon = $p->x / $this->a + $this->long0;
$lat = 0.0;
} else {
$b = $al * $al + ($p->x / $this->a) * ($p->x / $this->a);
$iflg = phi4z( $this->es, $this->e0, $this->e1, $this->e2, $this->e3, $this->al, $b, $c, $lat );
if( $iflg != 1 )
return($iflg);
$lon = Proj4php::$common->adjust_lon( (Proj4php::$common->asinz( $p->x * $c / $this->a ) / sin( $lat )) + $this->long0 );
}
$p->x = $lon;
$p->y = $lat;
return $p;
}
}
Proj4php::$proj['poly'] = new Proj4phpProjPoly();