clut_raycasting.py 26.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
#--------------------------------------------------------------------------
# Software:     InVesalius - Software de Reconstrucao 3D de Imagens Medicas
# Copyright:    (C) 2001  Centro de Pesquisas Renato Archer
# Homepage:     http://www.softwarepublico.gov.br
# Contact:      invesalius@cti.gov.br
# License:      GNU - GPL 2 (LICENSE.txt/LICENCA.txt)
#--------------------------------------------------------------------------
#    Este programa e software livre; voce pode redistribui-lo e/ou
#    modifica-lo sob os termos da Licenca Publica Geral GNU, conforme
#    publicada pela Free Software Foundation; de acordo com a versao 2
#    da Licenca.
#
#    Este programa eh distribuido na expectativa de ser util, mas SEM
#    QUALQUER GARANTIA; sem mesmo a garantia implicita de
#    COMERCIALIZACAO ou de ADEQUACAO A QUALQUER PROPOSITO EM
#    PARTICULAR. Consulte a Licenca Publica Geral GNU para obter mais
#    detalhes.
#--------------------------------------------------------------------------

import bisect
import math
import os
import sys

import numpy
import wx
from pubsub import pub as Publisher

import invesalius.gui.dialogs as dialog
import invesalius.constants as const

from invesalius import inv_paths

FONT_COLOUR = (1, 1, 1)
LINE_COLOUR = (128, 128, 128)
LINE_WIDTH = 2
HISTOGRAM_LINE_WIDTH = 1
HISTOGRAM_LINE_COLOUR = (128, 128, 128)
HISTOGRAM_FILL_COLOUR = (64, 64, 64)
BACKGROUND_TEXT_COLOUR_RGBA = (255, 0, 0, 128)
TEXT_COLOUR = (255, 255, 255)
GRADIENT_RGBA = 0.75 * 255
RADIUS = 5
SELECTION_SIZE = 10
TOOLBAR_SIZE = 30
TOOLBAR_COLOUR = (25 , 25, 25)
RANGE = 10
PADDING = 2

class Node(object):
    """
    Represents the points in the raycasting preset. Contains its colour,
    graylevel (hounsfield scale), opacity, x and y position in the widget.
    """
    def __init__(self):
        self.colour = None
        self.x = 0
        self.y = 0
        self.graylevel = 0
        self.opacity = 0


class Curve(object):
    """
    Represents the curves in the raycasting preset. It contains the point nodes from
    the curve and its window width & level.
    """
    def __init__(self):
        self.wl = 0
        self.ww = 0
        self.wl_px = 0
        self.nodes = []

    def CalculateWWWl(self):
        """
        Called when the curve width(ww) or position(wl) is modified.
        """
        self.ww = self.nodes[-1].graylevel - self.nodes[0].graylevel
        self.wl = self.nodes[0].graylevel + self.ww / 2.0


class Histogram(object):
    def __init__(self):
        self.init = -1024
        self.end = 2000
        self.points = ()


class Button(object):
    """
    The button in the clut raycasting.
    """
    def __init__(self):
        self.image = None
        self.position = (0, 0)
        self.size = (24, 24)

    def HasClicked(self, position):
        """
        Test if the button was clicked.
        """
        print(self.position)
        print(self.size)
        m_x, m_y = position
        i_x, i_y = self.position
        w, h = self.size
        if i_x < m_x < i_x + w and \
           i_y < m_y < i_y + h:
            return True
        else:
            return False


class CLUTRaycastingWidget(wx.Panel):
    """
    This class represents the frame where images is showed
    """

    def __init__(self, parent, id):
        """
        Constructor.
        
        parent -- parent of this frame
        """
        super(CLUTRaycastingWidget, self).__init__(parent, id)
        self.points = []
        self.colours = []
        self.curves = []
        self.init = -1024
        self.end = 2000
        self.Histogram = Histogram()
        self.padding = 5
        self.previous_wl = 0
        self.to_render = False
        self.dragged = False
        self.middle_drag = False
        self.to_draw_points = 0
        self.point_dragged = None
        self.curve_dragged = None
        self.histogram_array = [100,100]
        self.CalculatePixelPoints()
        self.__bind_events_wx()
        self._build_buttons()
        self.Show()

    def SetRange(self, range):
        """
        Se the range from hounsfield
        """
        self.init, self.end = range
        print("Range", range)
        self.CalculatePixelPoints()

    def SetPadding(self, padding):
        self.padding = padding

    def __bind_events_wx(self):
        self.Bind(wx.EVT_ERASE_BACKGROUND, self.OnEraseBackground)
        self.Bind(wx.EVT_LEFT_DOWN , self.OnClick)
        self.Bind(wx.EVT_LEFT_DCLICK , self.OnDoubleClick)
        self.Bind(wx.EVT_LEFT_UP , self.OnRelease)
        self.Bind(wx.EVT_RIGHT_DOWN , self.OnRighClick)
        self.Bind(wx.EVT_MOTION, self.OnMotion)
        self.Bind(wx.EVT_PAINT, self.OnPaint)
        self.Bind(wx.EVT_SIZE, self.OnSize)
        self.Bind(wx.EVT_MOUSEWHEEL, self.OnWheel)
        self.Bind(wx.EVT_MIDDLE_DOWN, self.OnMiddleClick)
        self.Bind(wx.EVT_MIDDLE_UP, self.OnMiddleRelease)

    def OnEraseBackground(self, evt):
        pass

    def OnClick(self, evt):
        x, y = evt.GetPosition()
        if self.save_button.HasClicked((x, y)):
            print("Salvando")
            filename = dialog.ShowSavePresetDialog()
            if filename:
                Publisher.sendMessage('Save raycasting preset', preset_name=filename)
        point = self._has_clicked_in_a_point((x, y))
        # A point has been selected. It can be dragged.
        if point:
            self.dragged = True
            self.point_dragged = point
            self.Refresh()
            return
        curve = self._has_clicked_in_selection_curve((x, y))
        if curve is not None:
            self.dragged = True
            self.previous_wl = x
            self.curve_dragged = curve
            evt = CLUTEvent(myEVT_CLUT_CURVE_SELECT, self.GetId(), curve)
            self.GetEventHandler().ProcessEvent(evt)
            return
        else:
            p = self._has_clicked_in_line((x, y))
            # The user clicked in the line. Insert a new point.
            if p:
                n, p = p
                self.points[n].insert(p, {'x': 0, 'y': 0})
                self.colours[n].insert(p, {'red': 0, 'green': 0, 'blue': 0})
                self.points[n][p]['x'] = self.PixelToHounsfield(x)
                self.points[n][p]['y'] = self.PixelToOpacity(y)

                node = Node()
                node.colour = (0, 0, 0)
                node.x = x
                node.y = y
                node.graylevel = self.points[n][p]['x']
                node.opacity = self.points[n][p]['y']
                self.curves[n].nodes.insert(p, node)

                self.Refresh()
                nevt = CLUTEvent(myEVT_CLUT_POINT_RELEASE, self.GetId(), n)
                self.GetEventHandler().ProcessEvent(nevt)
                return
        evt.Skip()

    def OnDoubleClick(self, evt):
        """
        Used to change the colour of a point
        """
        point = self._has_clicked_in_a_point(evt.GetPosition())
        if point:
            i, j = point
            actual_colour = self.curves[i].nodes[j].colour
            colour_dialog = wx.GetColourFromUser(self, actual_colour)
            if colour_dialog.IsOk():
                i,j = point
                r, g, b = colour_dialog.Get()
                self.colours[i][j]['red'] = r / 255.0
                self.colours[i][j]['green'] = g / 255.0
                self.colours[i][j]['blue'] = b / 255.0
                self.curves[i].nodes[j].colour = (r, g, b)
                self.Refresh()
                nevt = CLUTEvent(myEVT_CLUT_POINT_RELEASE, self.GetId(), i)
                self.GetEventHandler().ProcessEvent(nevt)
                return
        evt.Skip()

    def OnRighClick(self, evt):
        """
        Used to remove a point
        """
        point = self._has_clicked_in_a_point(evt.GetPosition())
        if point:
            i, j = point
            print("RightClick", i, j)
            self.RemovePoint(i, j)
            self.Refresh()
            nevt = CLUTEvent(myEVT_CLUT_POINT_RELEASE, self.GetId(), i)
            self.GetEventHandler().ProcessEvent(nevt)
            return
        n_curve = self._has_clicked_in_selection_curve(evt.GetPosition())
        if n_curve is not None:
            print("Removing a curve")
            self.RemoveCurve(n_curve)
            self.Refresh()
            nevt = CLUTEvent(myEVT_CLUT_POINT_RELEASE, self.GetId(), n_curve)
            self.GetEventHandler().ProcessEvent(nevt)
        evt.Skip()

    def OnRelease(self, evt):
        """
        Generate a EVT_CLUT_POINT_CHANGED event indicating that a change has
        been occurred in the preset points.
        """
        if self.to_render:
            evt = CLUTEvent(myEVT_CLUT_POINT_RELEASE, self.GetId(), 0)
            self.GetEventHandler().ProcessEvent(evt)
        self.dragged = False
        self.curve_dragged = None
        self.point_dragged = None
        self.to_render = False
        self.previous_wl = 0

    def OnWheel(self, evt):
        """
        Increase or decrease the range from hounsfield scale showed. It
        doesn't change values in preset, only to visualization.
        """
        direction = evt.GetWheelRotation() / evt.GetWheelDelta()
        init = self.init - RANGE * direction
        end = self.end + RANGE * direction
        print(direction, init, end)
        self.SetRange((init, end))
        self.Refresh()

    def OnMiddleClick(self, evt):
        self.middle_drag = True
        self.last_position = evt.GetX()

    def OnMiddleRelease(self, evt):
        self.middle_drag = False

    def OnMotion(self, evt):
        # User dragging a point
        x = evt.GetX()
        y = evt.GetY()
        if self.dragged and self.point_dragged:
            self._move_node(x, y)
        elif self.dragged and self.curve_dragged is not None:
            self._move_curve(x, y)
        elif self.middle_drag:
            d = self.PixelToHounsfield(x) - self.PixelToHounsfield(self.last_position)
            self.SetRange((self.init - d, self.end - d))
            self.last_position = x
            self.Refresh()
        else:
            evt.Skip()

    def OnPaint(self, evt):
        dc = wx.BufferedPaintDC(self)
        dc.SetBackground(wx.Brush('Black'))
        dc.Clear()
        if self.to_draw_points:
            self.Render(dc)

    def OnSize(self, evt):
        self.CalculatePixelPoints()
        self.Refresh()

    def _has_clicked_in_a_point(self, position):
        """
        returns the index from the selected point
        """
        for i, curve in enumerate(self.curves):
            for j, node in enumerate(curve.nodes):
                if self._calculate_distance((node.x, node.y), position) <= RADIUS:
                    return (i, j)
        return None

    def distance_from_point_line(self, p1, p2, pc):
        """
        Calculate the distance from point pc to a line formed by p1 and p2.
        """
        # Create a vector pc-p1 and p2-p1
        A = numpy.array(pc) - numpy.array(p1)
        B = numpy.array(p2) - numpy.array(p1)
        # Calculate the size from those vectors
        len_A = numpy.linalg.norm(A)
        len_B = numpy.linalg.norm(B)
        # calculate the angle theta (in radians) between those vector
        theta = math.acos(numpy.dot(A, B) / (len_A * len_B))
        # Using the sin from theta, calculate the adjacent leg, which is the
        # distance from the point to the line
        distance = math.sin(theta) * len_A
        return distance

    def _has_clicked_in_selection_curve(self, position):
        x, y = position
        for i, curve in enumerate(self.curves):
            if self._calculate_distance(curve.wl_px, position) <= RADIUS:
                return i
        return None

    def _has_clicked_in_line(self, clicked_point):
        """ 
        Verify if was clicked in a line. If yes, it returns the insertion
        clicked_point in the point list.
        """
        for n, curve in enumerate(self.curves):
            position = bisect.bisect([node.x for node in curve.nodes],
                              clicked_point[0])
            if position != 0 and position != len(curve.nodes):
                p1 = curve.nodes[position-1].x, curve.nodes[position-1].y
                p2 = curve.nodes[position].x, curve.nodes[position].y
                if self.distance_from_point_line(p1, p2, clicked_point) <= 5:
                    return (n, position)
        return None

    def _has_clicked_in_save(self, clicked_point):
        x, y = clicked_point
        print(x, y)
        if self.padding < x < self.padding + 24 and \
           self.padding < y < self.padding + 24:
            return True
        else:
            return False

    def _calculate_distance(self, p1, p2):
        return ((p1[0]-p2[0])**2 + (p1[1]-p2[1])**2) ** 0.5

    def _move_node(self, x, y):
        self.to_render = True
        i,j = self.point_dragged

        width, height= self.GetVirtualSize()

        if y >= height - self.padding:
            y = height - self.padding

        if y <= self.padding:
            y = self.padding

        if x < 0:
            x = 0

        if x > width:
            x = width

        if x < TOOLBAR_SIZE:
            x = TOOLBAR_SIZE

        # A point must be greater than the previous one, but the first one
        if j > 0 and x <= self.curves[i].nodes[j-1].x:
            x = self.curves[i].nodes[j-1].x + 1

        # A point must be lower than the previous one, but the last one
        if j < len(self.curves[i].nodes) -1 \
           and x >= self.curves[i].nodes[j+1].x:
            x = self.curves[i].nodes[j+1].x - 1

        graylevel = self.PixelToHounsfield(x)
        opacity = self.PixelToOpacity(y)
        self.points[i][j]['x'] = graylevel
        self.points[i][j]['y'] = opacity
        self.curves[i].nodes[j].x = x
        self.curves[i].nodes[j].y = y
        self.curves[i].nodes[j].graylevel = graylevel
        self.curves[i].nodes[j].opacity = opacity
        for curve in self.curves:
            curve.CalculateWWWl()
            curve.wl_px = (self.HounsfieldToPixel(curve.wl),
                           self.OpacityToPixel(0))
        self.Refresh()

        # A point in the preset has been changed, raising a event
        evt = CLUTEvent(myEVT_CLUT_POINT_MOVE , self.GetId(), i)
        self.GetEventHandler().ProcessEvent(evt)

    def _move_curve(self, x, y):
        curve = self.curves[self.curve_dragged]
        curve.wl = self.PixelToHounsfield(x)
        curve.wl_px = x, self.OpacityToPixel(0)
        for node in curve.nodes:
            node.x += (x - self.previous_wl)
            node.graylevel = self.PixelToHounsfield(node.x)

        self.previous_wl = x
        self.to_draw_points = True
        self.Refresh()

        # The window level has been changed, raising a event!
        evt = CLUTEvent(myEVT_CLUT_CURVE_WL_CHANGE, self.GetId(),
                        self.curve_dragged)
        self.GetEventHandler().ProcessEvent(evt)

    def RemovePoint(self, i, j):
        """
        The point the point in the given i,j index
        """
        self.points[i].pop(j)
        self.colours[i].pop(j)

        self.curves[i].nodes.pop(j)
        # If the point to removed is that was selected before and have a
        # textbox, then remove the point and the textbox
        if (i, j) == self.point_dragged:
            self.point_dragged = None
        # If there is textbox and the point to remove is before it, then
        # decrement the index referenced to point that have the textbox.
        elif self.point_dragged and i == self.point_dragged[0] \
                and j < self.point_dragged[1]:
            new_i = self.point_dragged[0]
            new_j = self.point_dragged[1] - 1
            self.point_dragged = (new_i, new_j)
        # Can't have only one point in the curve
        if len(self.points[i]) == 1:
            self.RemoveCurve(i)
        else:
            curve = self.curves[i]
            curve.CalculateWWWl()
            curve.wl_px = (self.HounsfieldToPixel(curve.wl),
                           self.OpacityToPixel(0))

    def RemoveCurve(self, n_curve):
        self.points.pop(n_curve)
        self.colours.pop(n_curve)
        self.point_dragged = None

        self.curves.pop(n_curve)


    def _draw_gradient(self, ctx, height):
        #The gradient
        height += self.padding
        for curve in self.curves:
            for nodei, nodej in zip(curve.nodes[:-1], curve.nodes[1:]):
                path = ctx.CreatePath()
                path.MoveToPoint(int(nodei.x), height)
                path.AddLineToPoint(int(nodei.x), height)
                path.AddLineToPoint(int(nodei.x), nodei.y)
                path.AddLineToPoint(int(nodej.x), nodej.y)
                path.AddLineToPoint(int(nodej.x), height)

                colouri = nodei.colour[0],nodei.colour[1],nodei.colour[2], GRADIENT_RGBA
                colourj = nodej.colour[0],nodej.colour[1],nodej.colour[2], GRADIENT_RGBA
                b = ctx.CreateLinearGradientBrush(int(nodei.x), height,
                                                  int(nodej.x), height,
                                                  colouri, colourj)
                ctx.SetBrush(b)
                ctx.SetPen(wx.TRANSPARENT_PEN)
                ctx.FillPath(path)

    def _draw_curves(self, ctx):
        path = ctx.CreatePath()
        ctx.SetPen(wx.Pen(LINE_COLOUR, LINE_WIDTH))
        for curve in self.curves:
            path.MoveToPoint(curve.nodes[0].x, curve.nodes[0].y)
            for node in curve.nodes:
                path.AddLineToPoint(node.x, node.y)
            ctx.StrokePath(path)

    def _draw_points(self, ctx):
        for curve in self.curves:
            for node in curve.nodes:
                path = ctx.CreatePath()
                ctx.SetPen(wx.Pen(LINE_COLOUR, LINE_WIDTH))
                ctx.SetBrush(wx.Brush(node.colour))
                path.AddCircle(node.x, node.y, RADIUS)
                ctx.DrawPath(path)

    def _draw_selected_point_text(self, ctx):
        i,j = self.point_dragged
        node = self.curves[i].nodes[j]
        x,y = node.x, node.y
        value = node.graylevel
        alpha = node.opacity
        widget_width, widget_height = self.GetVirtualSize()

        font = wx.SystemSettings.GetFont(wx.SYS_DEFAULT_GUI_FONT)
        font.SetWeight(wx.BOLD)
        font = ctx.CreateFont(font, TEXT_COLOUR)
        ctx.SetFont(font)

        text1 = _("Value: %-6d" % value)
        text2 = _("Alpha: %-.3f" % alpha)

        if ctx.GetTextExtent(text1)[0] > ctx.GetTextExtent(text2)[0]:
            wt, ht = ctx.GetTextExtent(text1)
        else:
            wt, ht = ctx.GetTextExtent(text2)

        wr, hr = wt + 2 * PADDING, ht * 2 + 2 * PADDING
        xr, yr = x + RADIUS, y - RADIUS - hr
        
        if xr + wr > widget_width:
            xr = x - RADIUS - wr
        if yr < 0:
            yr = y + RADIUS

        xf, yf = xr + PADDING, yr + PADDING

        ctx.SetBrush(wx.Brush(BACKGROUND_TEXT_COLOUR_RGBA))
        ctx.SetPen(wx.Pen(BACKGROUND_TEXT_COLOUR_RGBA))
        ctx.DrawRectangle(xr, yr, wr, hr)
        ctx.DrawText(text1, xf, yf)
        ctx.DrawText(text2, xf, yf + ht)

    def _draw_histogram(self, ctx, height):
        # The histogram
        x,y = self.Histogram.points[0]
        print("=>", x,y)

        ctx.SetPen(wx.Pen(HISTOGRAM_LINE_COLOUR, HISTOGRAM_LINE_WIDTH))
        ctx.SetBrush(wx.Brush(HISTOGRAM_FILL_COLOUR))

        path = ctx.CreatePath()
        path.MoveToPoint(x,y)
        for x,y in self.Histogram.points:
            print(x,y)
            path.AddLineToPoint(x, y)

        ctx.PushState()
        ctx.StrokePath(path)
        ctx.PopState()
        path.AddLineToPoint(x, height + self.padding)
        path.AddLineToPoint(self.HounsfieldToPixel(self.Histogram.init), height + self.padding)
        x,y = self.Histogram.points[0]
        path.AddLineToPoint(x, y)
        ctx.FillPath(path)

    def _draw_selection_curve(self, ctx, height):
        ctx.SetPen(wx.Pen(LINE_COLOUR, LINE_WIDTH))
        ctx.SetBrush(wx.Brush((0, 0, 0)))
        for curve in self.curves:
            x_center, y_center = curve.wl_px
            ctx.DrawRectangle(x_center-SELECTION_SIZE/2.0, y_center, 
                              SELECTION_SIZE, SELECTION_SIZE)

    def _draw_tool_bar(self, ctx, height):
        ctx.SetPen(wx.TRANSPARENT_PEN)
        ctx.SetBrush(wx.Brush(TOOLBAR_COLOUR))
        ctx.DrawRectangle(0, 0, TOOLBAR_SIZE, height + self.padding * 2)
        image = self.save_button.image
        w, h = self.save_button.size
        x = (TOOLBAR_SIZE - w) / 2.0
        y = self.padding
        self.save_button.position = (x, y)
        ctx.DrawBitmap(image, x, y, w, h)

    def Render(self, dc):
        ctx = wx.GraphicsContext.Create(dc)
        width, height= self.GetVirtualSize()
        height -= (self.padding * 2)
        width -= self.padding

        self._draw_histogram(ctx, height)
        self._draw_gradient(ctx, height)
        self._draw_curves(ctx)
        self._draw_points(ctx)
        self._draw_selection_curve(ctx, height)
        self._draw_tool_bar(ctx, height)
        if self.point_dragged:
            self._draw_selected_point_text(ctx)

    def _build_histogram(self):
        width, height = self.GetVirtualSize()
        width -= self.padding
        height -= (self.padding * 2)
        x_init = self.Histogram.init
        x_end = self.Histogram.end
        y_init = 0
        y_end = math.log(max(self.histogram_array))
        proportion_x = width * 1.0 / (x_end - x_init)
        proportion_y = height * 1.0 / (y_end - y_init)
        self.Histogram.points = []
        for i in range(0, len(self.histogram_array), 5):
            if self.histogram_array[i]:
                y = math.log(self.histogram_array[i])
            else:
                y = 0
            x = self.HounsfieldToPixel(x_init + i)
            y = height - y * proportion_y + self.padding
            self.Histogram.points.append((x, y))

    def _build_buttons(self):
        img = wx.Image(os.path.join(inv_paths.ICON_DIR, 'Floppy.png'))
        width = img.GetWidth()
        height = img.GetHeight()
        self.save_button = Button()
        self.save_button.image = wx.Bitmap(img)
        self.save_button.size = (width, height)

    def __sort_pixel_points(self):
        """
        Sort the pixel points (colours and points) maintaining the reference
        between colours and points. It's necessary mainly in negative window
        width when the user interacts with this widgets.
        """
        for n, (point, colour) in enumerate(zip(self.points, self.colours)):
            point_colour = zip(point, colour)
            point_colour = sorted(point_colour, key=lambda x: x[0]['x'])
            self.points[n] = [i[0] for i in point_colour]
            self.colours[n] = [i[1] for i in point_colour]

    def CalculatePixelPoints(self):
        """
        Create a list with points (in pixel x, y coordinate) to draw based in
        the preset points (Hounsfield scale, opacity).
        """
        self.curves = []
        self.__sort_pixel_points()
        for points, colours in zip(self.points, self.colours):
            curve = Curve()
            for point, colour in zip(points, colours):
                x = self.HounsfieldToPixel(point['x'])
                y = self.OpacityToPixel(point['y'])
                node = Node()
                node.x = x
                node.y = y
                node.graylevel = point['x']
                node.opacity = point['y']
                node.colour = (int(colour['red'] * 255), 
                               int(colour['green'] * 255),
                               int(colour['blue'] * 255))
                curve.nodes.append(node)
            curve.CalculateWWWl()
            curve.wl_px = (self.HounsfieldToPixel(curve.wl),
                           self.OpacityToPixel(0))
            self.curves.append(curve)
        self._build_histogram()

    def HounsfieldToPixel(self, graylevel):
        """
        Given a Hounsfield point returns a pixel point in the canvas.
        """
        width,height = self.GetVirtualSize()
        width -= (TOOLBAR_SIZE)
        proportion = width * 1.0 / (self.end - self.init)
        x = (graylevel - self.init) * proportion + TOOLBAR_SIZE
        return x

    def OpacityToPixel(self, opacity):
        """
        Given a Opacity point returns a pixel point in the canvas.
        """
        width,height = self.GetVirtualSize()
        height -= (self.padding * 2)
        y = height - (opacity * height) + self.padding
        return y

    def PixelToHounsfield(self, x):
        """
        Translate from pixel point to Hounsfield scale.
        """
        width, height= self.GetVirtualSize()
        width -= (TOOLBAR_SIZE)
        proportion = width * 1.0 / (self.end - self.init)
        graylevel = (x - TOOLBAR_SIZE) / proportion - abs(self.init)
        return graylevel

    def PixelToOpacity(self, y):
        """
        Translate from pixel point to opacity.
        """
        width, height= self.GetVirtualSize()
        height -= (self.padding * 2)
        opacity = (height - y + self.padding) * 1.0 / height
        return opacity

    def SetRaycastPreset(self, preset):
        if not preset:
            self.to_draw_points = 0
        elif preset['advancedCLUT']:
            self.to_draw_points = 1
            self.points = preset['16bitClutCurves']
            self.colours = preset['16bitClutColors']
            self.CalculatePixelPoints()
        else:
            self.to_draw_points = 0
        self.Refresh()

    def SetHistogramArray(self, h_array, range):
        self.histogram_array = h_array
        self.Histogram.init = range[0]
        self.Histogram.end = range[1]

    def GetCurveWWWl(self, curve):
        return (self.curves[curve].ww, self.curves[curve].wl)

class CLUTEvent(wx.PyCommandEvent):
    def __init__(self , evtType, id, curve):
        wx.PyCommandEvent.__init__(self, evtType, id)
        self.curve = curve
    def GetCurve(self):
        return self.curve


# Occurs when CLUT is sliding
myEVT_CLUT_SLIDER = wx.NewEventType()
EVT_CLUT_SLIDER = wx.PyEventBinder(myEVT_CLUT_SLIDER, 1)

# Occurs when CLUT was slided
myEVT_CLUT_SLIDER_CHANGE = wx.NewEventType()
EVT_CLUT_SLIDER_CHANGE = wx.PyEventBinder(myEVT_CLUT_SLIDER_CHANGE, 1)

# Occurs when CLUT point is changing
myEVT_CLUT_POINT_MOVE = wx.NewEventType()
EVT_CLUT_POINT_MOVE = wx.PyEventBinder(myEVT_CLUT_POINT_MOVE, 1)

# Occurs when a CLUT point was changed
myEVT_CLUT_POINT_RELEASE = wx.NewEventType()
EVT_CLUT_POINT_RELEASE = wx.PyEventBinder(myEVT_CLUT_POINT_RELEASE, 1)

# Selected a curve
myEVT_CLUT_CURVE_SELECT = wx.NewEventType()
EVT_CLUT_CURVE_SELECT = wx.PyEventBinder(myEVT_CLUT_CURVE_SELECT, 1)

# Changed the wl from a curve
myEVT_CLUT_CURVE_WL_CHANGE = wx.NewEventType()
EVT_CLUT_CURVE_WL_CHANGE = wx.PyEventBinder(myEVT_CLUT_CURVE_WL_CHANGE, 1)