cy_mesh.pyx 14.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
# distutils: language = c++
# cython: language_level=3str
#cython: boundscheck=False
#cython: wraparound=False
#cython: initializedcheck=False
#cython: cdivision=True
#cython: nonecheck=False

import sys
import time
cimport numpy as np

from libc.math cimport sin, cos, acos, exp, sqrt, fabs, M_PI
from libc.stdlib cimport abs as cabs
from cython.operator cimport dereference as deref, preincrement as inc
from libcpp.map cimport map
from libcpp.unordered_map cimport unordered_map
from libcpp.set cimport set
from libcpp.vector cimport vector
from libcpp.pair cimport pair
from libcpp cimport bool
from libcpp.deque cimport deque as cdeque
from cython.parallel import prange

from .cy_my_types cimport vertex_t, normal_t, vertex_id_t

import numpy as np
import vtk

from vtk.util import numpy_support

ctypedef float weight_t

cdef struct Point:
    vertex_t x
    vertex_t y
    vertex_t z

ctypedef pair[vertex_id_t, vertex_id_t] key


cdef class Mesh:
    cdef vertex_t[:, :] vertices
    cdef vertex_id_t[:, :] faces
    cdef normal_t[:, :] normals

    cdef unordered_map[int, vector[vertex_id_t]] map_vface
    cdef unordered_map[vertex_id_t, int] border_vertices

    cdef bool _initialized

    def __cinit__(self, pd=None, other=None):
        cdef int i
        cdef map[key, int] edge_nfaces
        cdef map[key, int].iterator it
        if pd:
            self._initialized = True
            _vertices = numpy_support.vtk_to_numpy(pd.GetPoints().GetData())
            _vertices.shape = -1, 3

            _faces = numpy_support.vtk_to_numpy(pd.GetPolys().GetData())
            _faces.shape = -1, 4

            _normals = numpy_support.vtk_to_numpy(pd.GetCellData().GetArray("Normals"))
            _normals.shape = -1, 3

            self.vertices = _vertices
            self.faces = _faces
            self.normals = _normals

            for i in xrange(_faces.shape[0]):
                self.map_vface[self.faces[i, 1]].push_back(i)
                self.map_vface[self.faces[i, 2]].push_back(i)
                self.map_vface[self.faces[i, 3]].push_back(i)

                edge_nfaces[key(min(self.faces[i, 1], self.faces[i, 2]), max(self.faces[i, 1], self.faces[i, 2]))] += 1
                edge_nfaces[key(min(self.faces[i, 2], self.faces[i, 3]), max(self.faces[i, 2], self.faces[i, 3]))] += 1
                edge_nfaces[key(min(self.faces[i, 1], self.faces[i, 3]), max(self.faces[i, 1], self.faces[i, 3]))] += 1

            it = edge_nfaces.begin()

            while it != edge_nfaces.end():
                if deref(it).second == 1:
                    self.border_vertices[deref(it).first.first] = 1
                    self.border_vertices[deref(it).first.second] = 1

                inc(it)

        elif other:
            _other = <Mesh>other
            self._initialized = True
            self.vertices = _other.vertices.copy()
            self.faces = _other.faces.copy()
            self.normals = _other.normals.copy()
            self.map_vface = unordered_map[int, vector[vertex_id_t]](_other.map_vface)
            self.border_vertices = unordered_map[vertex_id_t, int](_other.border_vertices)
        else:
            self._initialized = False

    cdef void copy_to(self, Mesh other):
        """
        Copies self content to other.
        """
        if self._initialized:
            other.vertices[:] = self.vertices
            other.faces[:] = self.faces
            other.normals[:] = self.normals
            other.map_vface = unordered_map[int, vector[vertex_id_t]](self.map_vface)
            other.border_vertices = unordered_map[vertex_id_t, int](self.border_vertices)
        else:
            other.vertices = self.vertices.copy()
            other.faces = self.faces.copy()
            other.normals = self.normals.copy()

            other.map_vface = self.map_vface
            other.border_vertices = self.border_vertices

    def to_vtk(self):
        """
        Converts Mesh to vtkPolyData.
        """
        vertices = np.asarray(self.vertices)
        faces = np.asarray(self.faces)
        normals = np.asarray(self.normals)

        points = vtk.vtkPoints()
        points.SetData(numpy_support.numpy_to_vtk(vertices))

        id_triangles = numpy_support.numpy_to_vtkIdTypeArray(faces)
        triangles = vtk.vtkCellArray()
        triangles.SetCells(faces.shape[0], id_triangles)

        pd = vtk.vtkPolyData()
        pd.SetPoints(points)
        pd.SetPolys(triangles)

        return pd

    cdef vector[vertex_id_t]* get_faces_by_vertex(self, int v_id) nogil:
        """
        Returns the faces whose vertex `v_id' is part.
        """
        return &self.map_vface[v_id]

    cdef set[vertex_id_t]* get_ring1(self, vertex_id_t v_id) nogil:
        """
        Returns the ring1 of vertex `v_id'
        """
        cdef vertex_id_t f_id
        cdef set[vertex_id_t]* ring1 = new set[vertex_id_t]()
        cdef vector[vertex_id_t].iterator it = self.map_vface[v_id].begin()

        while it != self.map_vface[v_id].end():
            f_id = deref(it)
            inc(it)
            if self.faces[f_id, 1] != v_id:
                ring1.insert(self.faces[f_id, 1])
            if self.faces[f_id, 2] != v_id:
                ring1.insert(self.faces[f_id, 2])
            if self.faces[f_id, 3] != v_id:
                ring1.insert(self.faces[f_id, 3])

        return ring1

    cdef bool is_border(self, vertex_id_t v_id) nogil:
        """
        Check if vertex `v_id' is a vertex border.
        """
        return self.border_vertices.find(v_id) != self.border_vertices.end()

    cdef vector[vertex_id_t]* get_near_vertices_to_v(self, vertex_id_t v_id, float dmax) nogil:
        """
        Returns all vertices with distance at most `d' to the vertex `v_id'

        Params:
            v_id: id of the vertex
            dmax: the maximum distance.
        """
        cdef vector[vertex_id_t]* idfaces
        cdef vector[vertex_id_t]* near_vertices = new vector[vertex_id_t]()

        cdef cdeque[vertex_id_t] to_visit
        cdef unordered_map[vertex_id_t, bool] status_v
        cdef unordered_map[vertex_id_t, bool] status_f

        cdef vertex_t *vip
        cdef vertex_t *vjp

        cdef float distance
        cdef int nf, nid, j
        cdef vertex_id_t f_id, vj

        vip = &self.vertices[v_id, 0]
        to_visit.push_back(v_id)
        while(not to_visit.empty()):
            v_id = to_visit.front()
            to_visit.pop_front()

            status_v[v_id] = True

            idfaces = self.get_faces_by_vertex(v_id)
            nf = idfaces.size()

            for nid in xrange(nf):
                f_id = deref(idfaces)[nid]
                if status_f.find(f_id) == status_f.end():
                    status_f[f_id] = True

                    for j in xrange(3):
                        vj = self.faces[f_id, j+1]
                        if status_v.find(vj) == status_v.end():
                            status_v[vj] = True
                            vjp = &self.vertices[vj, 0]
                            distance = sqrt((vip[0] - vjp[0]) * (vip[0] - vjp[0]) \
                                          + (vip[1] - vjp[1]) * (vip[1] - vjp[1]) \
                                          + (vip[2] - vjp[2]) * (vip[2] - vjp[2]))
                            if distance <= dmax:
                                near_vertices.push_back(vj)
                                to_visit.push_back(vj)

        return near_vertices


cdef vector[weight_t]* calc_artifacts_weight(Mesh mesh, vector[vertex_id_t]& vertices_staircase, float tmax, float bmin) nogil:
    """
    Calculate the artifact weight based on distance of each vertex to its
    nearest staircase artifact vertex.

    Params:
        mesh: Mesh
        vertices_staircase: the identified staircase artifact vertices
        tmax: max distance the vertex must be to its nearest artifact vertex
              to considered to calculate the weight
        bmin: The minimum weight.
    """
    cdef int vi_id, vj_id, nnv, n_ids, i, j
    cdef vector[vertex_id_t]* near_vertices
    cdef weight_t value
    cdef float d
    n_ids = vertices_staircase.size()

    cdef vertex_t* vi
    cdef vertex_t* vj
    cdef size_t msize

    msize = mesh.vertices.shape[0]
    cdef vector[weight_t]* weights = new vector[weight_t](msize)
    weights.assign(msize, bmin)

    for i in prange(n_ids, nogil=True):
        vi_id = vertices_staircase[i]
        deref(weights)[vi_id] = 1.0

        vi = &mesh.vertices[vi_id, 0]
        near_vertices = mesh.get_near_vertices_to_v(vi_id, tmax)
        nnv = near_vertices.size()

        for j in xrange(nnv):
            vj_id = deref(near_vertices)[j]
            vj = &mesh.vertices[vj_id, 0]

            d = sqrt((vi[0] - vj[0]) * (vi[0] - vj[0])\
                   + (vi[1] - vj[1]) * (vi[1] - vj[1])\
                   + (vi[2] - vj[2]) * (vi[2] - vj[2]))
            value = (1.0 - d/tmax) * (1.0 - bmin) + bmin

            if value > deref(weights)[vj_id]:
                deref(weights)[vj_id] = value

        del near_vertices

    #  for i in xrange(msize):
        #  if mesh.is_border(i):
            #  deref(weights)[i] = 0.0

    #  cdef vertex_id_t v0, v1, v2
    #  for i in xrange(mesh.faces.shape[0]):
        #  for j in xrange(1, 4):
            #  v0 = mesh.faces[i, j]
            #  vi = &mesh.vertices[v0, 0]
            #  if mesh.is_border(v0):
                #  deref(weights)[v0] = 0.0
                #  v1 = mesh.faces[i, (j + 1) % 3 + 1]
                #  if mesh.is_border(v1):
                    #  vi = &mesh.vertices[v1, 0]
                    #  deref(weights)[v0] = 0.0

    return weights


cdef inline Point calc_d(Mesh mesh, vertex_id_t v_id) nogil:
    cdef Point D
    cdef int nf, f_id, nid
    cdef float n=0
    cdef int i
    cdef vertex_t* vi
    cdef vertex_t* vj
    cdef set[vertex_id_t]* vertices
    cdef set[vertex_id_t].iterator it
    cdef vertex_id_t vj_id

    D.x = 0.0
    D.y = 0.0
    D.z = 0.0

    vertices = mesh.get_ring1(v_id)
    vi = &mesh.vertices[v_id, 0]

    if mesh.is_border(v_id):
        it = vertices.begin()
        while it != vertices.end():
            vj_id = deref(it)
            if mesh.is_border(vj_id):
                vj = &mesh.vertices[vj_id, 0]

                D.x = D.x + (vi[0] - vj[0])
                D.y = D.y + (vi[1] - vj[1])
                D.z = D.z + (vi[2] - vj[2])
                n += 1.0

            inc(it)
    else:
        it = vertices.begin()
        while it != vertices.end():
            vj_id = deref(it)
            vj = &mesh.vertices[vj_id, 0]

            D.x = D.x + (vi[0] - vj[0])
            D.y = D.y + (vi[1] - vj[1])
            D.z = D.z + (vi[2] - vj[2])
            n += 1.0

            inc(it)

    del vertices

    D.x = D.x / n
    D.y = D.y / n
    D.z = D.z / n
    return D

cdef vector[vertex_id_t]* find_staircase_artifacts(Mesh mesh, double[3] stack_orientation, double T) nogil:
    """
    This function is used to find vertices at staircase artifacts, which are
    those vertices whose incident faces' orientation differences are
    greater than T.

    Params:
        mesh: Mesh
        stack_orientation: orientation of slice stacking
        T: Min angle (between vertex faces and stack_orientation) to consider a
           vertex a staircase artifact.
    """
    cdef int nv, nf, f_id, v_id
    cdef double of_z, of_y, of_x, min_z, max_z, min_y, max_y, min_x, max_x;
    cdef vector[vertex_id_t]* f_ids
    cdef normal_t* normal

    cdef vector[vertex_id_t]* output = new vector[vertex_id_t]()
    cdef int i

    nv = mesh.vertices.shape[0]

    for v_id in xrange(nv):
        max_z = -10000
        min_z = 10000
        max_y = -10000
        min_y = 10000
        max_x = -10000
        min_x = 10000

        f_ids = mesh.get_faces_by_vertex(v_id)
        nf = deref(f_ids).size()

        for i in xrange(nf):
            f_id = deref(f_ids)[i]
            normal = &mesh.normals[f_id, 0]

            of_z = 1 - fabs(normal[0]*stack_orientation[0] + normal[1]*stack_orientation[1] + normal[2]*stack_orientation[2]);
            of_y = 1 - fabs(normal[0]*0 + normal[1]*1 + normal[2]*0);
            of_x = 1 - fabs(normal[0]*1 + normal[1]*0 + normal[2]*0);

            if (of_z > max_z):
                max_z = of_z

            if (of_z < min_z):
                min_z = of_z

            if (of_y > max_y):
                max_y = of_y

            if (of_y < min_y):
                min_y = of_y

            if (of_x > max_x):
                max_x = of_x

            if (of_x < min_x):
                min_x = of_x


            if ((fabs(max_z - min_z) >= T) or (fabs(max_y - min_y) >= T) or (fabs(max_x - min_x) >= T)):
                output.push_back(v_id)
                break
    return output


cdef void taubin_smooth(Mesh mesh, vector[weight_t]& weights, float l, float m, int steps):
    """
    Implementation of Taubin's smooth algorithm described in the paper "A
    Signal Processing Approach To Fair Surface Design". His benefeat is it
    avoids surface shrinking.
    """
    cdef int s, i, nvertices
    nvertices = mesh.vertices.shape[0]
    cdef vector[Point] D = vector[Point](nvertices)
    cdef vertex_t* vi
    for s in xrange(steps):
        for i in prange(nvertices, nogil=True):
            D[i] = calc_d(mesh, i)

        for i in prange(nvertices, nogil=True):
            mesh.vertices[i, 0] += weights[i]*l*D[i].x;
            mesh.vertices[i, 1] += weights[i]*l*D[i].y;
            mesh.vertices[i, 2] += weights[i]*l*D[i].z;

        for i in prange(nvertices, nogil=True):
            D[i] = calc_d(mesh, i)

        for i in prange(nvertices, nogil=True):
            mesh.vertices[i, 0] += weights[i]*m*D[i].x;
            mesh.vertices[i, 1] += weights[i]*m*D[i].y;
            mesh.vertices[i, 2] += weights[i]*m*D[i].z;


def ca_smoothing(Mesh mesh, double T, double tmax, double bmin, int n_iters):
    """
    This is a implementation of the paper "Context-aware mesh smoothing for
    biomedical applications". It can be used to smooth meshes generated by
    binary images to remove its staircase artifacts and keep the fine features.

    Params:
        mesh: Mesh
        T: Min angle (between vertex faces and stack_orientation) to consider a
           vertex a staircase artifact
        tmax: max distance the vertex must be to its nearest artifact vertex
              to considered to calculate the weight
        bmin: The minimum weight
        n_iters: Number of iterations.
    """
    cdef double[3] stack_orientation = [0.0, 0.0, 1.0]

    t0 = time.time()
    cdef vector[vertex_id_t]* vertices_staircase =  find_staircase_artifacts(mesh, stack_orientation, T)
    print("vertices staircase", time.time() - t0)

    t0 = time.time()
    cdef vector[weight_t]* weights = calc_artifacts_weight(mesh, deref(vertices_staircase), tmax, bmin)
    print("Weights", time.time() - t0)

    del vertices_staircase

    t0 = time.time()
    taubin_smooth(mesh, deref(weights), 0.5, -0.53, n_iters)
    print("taubin", time.time() - t0)

    del weights