data.py
13.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
#!/usr/bin/env python
"""
data - python module for data sources classes and methods.
"""
__author__ = "Tassia Camoes Araujo <tassia@gmail.com>"
__copyright__ = "Copyright (C) 2011 Tassia Camoes Araujo"
__license__ = """
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
import os
import sys
import gc
import xapian
import logging
import random
import cluster
import shutil
from error import Error
from singleton import Singleton
from dissimilarity import *
def axi_search_pkgs(axi,pkgs_list):
terms = ["XP"+item for item in pkgs_list]
query = xapian.Query(xapian.Query.OP_OR, terms)
enquire = xapian.Enquire(axi)
enquire.set_query(query)
matches = enquire.get_mset(0,axi.get_doccount())
return matches
def axi_search_pkg_tags(axi,pkg):
enquire = xapian.Enquire(axi)
enquire.set_query(xapian.Query("XP"+pkg))
matches = enquire.get_mset(0,1)
if not matches:
logging.debug("Package %s not found in items repository" % pkg)
return []
for m in matches:
tags = [term.term for term in axi.get_document(m.docid).termlist() if
term.term.startswith("XT")]
return tags
def print_index(index):
output = "\n---\n" + xapian.Database.__repr__(index) + "\n---\n"
for term in index.allterms():
output += term.term+"\n"
output += str([index.get_document(posting.docid).get_data()
for posting in index.postlist(term.term)])
output += "\n---"
return output
class AppAptXapianIndex(xapian.WritableDatabase):
"""
Sample data source for packages information, mainly useful for tests.
"""
def __init__(self,axi_path,path):
xapian.WritableDatabase.__init__(self,path,
xapian.DB_CREATE_OR_OVERWRITE)
axi = xapian.Database(axi_path)
logging.info("AptXapianIndex size: %d" % axi.get_doccount())
for docid in range(1,axi.get_lastdocid()+1):
try:
doc = axi.get_document(docid)
allterms = [term.term for term in doc.termlist()]
if "XTrole::program" in allterms:
self.add_document(doc)
logging.info("Added doc %d." % docid)
else:
logging.info("Discarded doc %d." % docid)
except:
logging.info("Doc %d not found in axi." % docid)
logging.info("AppAptXapianIndex size: %d (lastdocid: %d)." %
self.get_doccount(), self.get_lastdocid())
def __str__(self):
return print_index(self)
class SampleAptXapianIndex(xapian.WritableDatabase):
"""
Sample data source for packages information, mainly useful for tests.
"""
def __init__(self,pkgs_list,axi,path):
xapian.WritableDatabase.__init__(self,path,
xapian.DB_CREATE_OR_OVERWRITE)
sample = axi_search_pkgs(axi,pkgs_list)
for package in sample:
doc_id = self.add_document(axi.get_document(package.docid))
def __str__(self):
return print_index(self)
class PopconSubmission():
def __init__(self,path,user_id=0):
self.packages = dict()
self.path = path
self.load()
if user_id:
self.user_id = user_id
def __str__(self):
output = "\nPopularity-contest submission ID "+self.user_id
for pkg, weight in self.packages.items():
output += "\n "+pkg+": "+str(weight)
return output
def load(self,binary=1):
"""
Parse a popcon submission, generating the names of the valid packages
in the vote.
"""
with open(self.path) as submission:
for line in submission:
if line.startswith("POPULARITY"):
self.user_id = line.split()[2].lstrip("ID:")
elif not line.startswith("END-POPULARITY"):
data = line.rstrip('\n').split()
if len(data) > 2:
pkg = data[2]
if len(data) > 3:
exec_file = data[3]
# Binary weight
if binary:
self.packages[pkg] = 1
# Weights inherited from Enrico's anapop
# No executable files to track
elif exec_file == '<NOFILES>':
self.packages[pkg] = 1
# Recently used packages
elif len(data) == 4:
self.packages[pkg] = 10
# Unused packages
elif data[4] == '<OLD>':
self.packages[pkg] = 3
# Recently installed packages
elif data[4] == '<RECENT-CTIME>':
self.packages[pkg] = 8
class PopconXapianIndex(xapian.WritableDatabase):
"""
Data source for popcon submissions defined as a singleton xapian database.
"""
def __init__(self,cfg):
"""
Set initial attributes.
"""
self.axi = xapian.Database(cfg.axi)
self.path = os.path.expanduser(cfg.popcon_index)
self.source_dir = os.path.expanduser(cfg.popcon_dir)
if not cfg.index_mode == "old" or not self.load_index():
if not os.path.exists(cfg.popcon_dir):
os.makedirs(cfg.popcon_dir)
if not os.listdir(cfg.popcon_dir):
logging.critical("Popcon dir seems to be empty.")
raise Error
if cfg.index_mode == "reindex":
self.source_dir = os.path.expanduser(cfg.popcon_dir)
else:
self.source_dir = os.path.expanduser(cfg.clusters_dir)
if not os.path.exists(cfg.clusters_dir):
os.makedirs(cfg.clusters_dir)
if not os.listdir(cfg.clusters_dir) or \
cfg.index_mode == "recluster":
shutil.rmtree(cfg.clusters_dir,1)
os.makedirs(cfg.clusters_dir)
logging.info("Clustering popcon submissions from \'%s\'"
% cfg.popcon_dir)
logging.info("Clusters will be placed at \'%s\'"
% cfg.clusters_dir)
distance = JaccardDistance()
data = self.get_submissions(cfg.popcon_dir)
self.cluster_dispersion = \
self.kmedoids_clustering(data, cfg.clusters_dir,
distance, cfg.k_medoids)
logging.info("Clusters dispersion: %f.2",
self.cluster_dispersion)
else:
logging.info("Using clusters from \'%s\'" %
cfg.clusters_dir)
self.build_index()
def __str__(self):
return print_index(self)
def load_index(self):
"""
Load an existing popcon index.
"""
try:
logging.info("Opening existing popcon xapian index at \'%s\'"
% self.path)
xapian.Database.__init__(self,self.path)
return 1
except xapian.DatabaseError:
logging.info("Could not open popcon index.")
return 0
def build_index(self):
"""
Create a xapian index for popcon submissions at 'source_dir' and
place it at 'self.path'.
"""
shutil.rmtree(self.path,1)
os.makedirs(self.path)
try:
logging.info("Indexing popcon submissions from \'%s\'" %
self.source_dir)
logging.info("Creating new xapian index at \'%s\'" %
self.path)
xapian.WritableDatabase.__init__(self,self.path,
xapian.DB_CREATE_OR_OVERWRITE)
except xapian.DatabaseError:
logging.critical("Could not create popcon xapian index.")
raise Error
for root, dirs, files in os.walk(self.source_dir):
for popcon_file in files:
submission = PopconSubmission(os.path.join(root, popcon_file))
doc = xapian.Document()
doc.set_data(submission.user_id)
logging.debug("Parsing popcon submission \'%s\'" %
submission.user_id)
for pkg, freq in submission.packages.items():
doc.add_term("XP"+pkg,freq)
if axi_search_pkg_tags(self.axi,pkg):
for tag in axi_search_pkg_tags(self.axi,pkg):
doc.add_term(tag,freq)
doc_id = self.add_document(doc)
logging.debug("Popcon Xapian: Indexing doc %d" % doc_id)
# python garbage collector
gc.collect()
# flush to disk database changes
try:
self.commit()
except:
self.flush() # deprecated function, used for old lib version
def get_submissions(self,submissions_dir):
"""
Get popcon submissions from popcon_dir
"""
submissions = []
for root, dirs, files in os.walk(submissions_dir):
for popcon_file in files:
submission = PopconSubmission(os.path.join(root, popcon_file))
submissions.append(submission)
return submissions
def kmedoids_clustering(self,data,clusters_dir,distance,k_medoids):
clusters = KMedoidsClustering(data,lambda x,y:
distance(x.packages.keys(),
y.packages.keys()))
medoids,dispersion = clusters.getMedoids(k_medoids)
for submission in medoids:
shutil.copyfile(submission.path,os.path.join(clusters_dir,
submission.user_id))
return dispersion
class KMedoidsClustering(cluster.KMeansClustering):
def __init__(self,data,distance,max_data=100):
if len(data)<max_data:
data_sample = data
else:
data_sample = random.sample(data,max_data)
cluster.KMeansClustering.__init__(self, data_sample, distance)
self.distanceMatrix = {}
for submission in self._KMeansClustering__data:
self.distanceMatrix[submission.user_id] = {}
def loadDistanceMatrix(self,cluster):
for i in range(len(cluster)-1):
for j in range(i+1,len(cluster)):
try:
d = self.distanceMatrix[cluster[i].user_id][cluster[j].user_id]
logging.debug("Using d[%d,%d]" % (i,j))
except:
d = self.distance(cluster[i],cluster[j])
self.distanceMatrix[cluster[i].user_id][cluster[j].user_id] = d
self.distanceMatrix[cluster[j].user_id][cluster[i].user_id] = d
logging.debug("d[%d,%d] = %.2f" % (i,j,d))
def getMedoid(self,cluster):
"""
Return the medoid popcon submission of a given a cluster, based on
the distance function.
"""
logging.debug("Cluster size: %d" % len(cluster))
self.loadDistanceMatrix(cluster)
medoidDistance = sys.maxint
for i in range(len(cluster)):
totalDistance = sum(self.distanceMatrix[cluster[i].user_id].values())
logging.debug("totalDistance[%d]=%f" % (i,totalDistance))
if totalDistance < medoidDistance:
medoidDistance = totalDistance
medoid = i
logging.debug("medoidDistance: %f" % medoidDistance)
logging.debug("Cluster medoid: [%d] %s" % (medoid,
cluster[medoid].user_id))
return (cluster[medoid],medoidDistance)
def assign_item(self, item, origin):
"""
Assigns an item from a given cluster to the closest located cluster
"""
closest_cluster = origin
for cluster in self._KMeansClustering__clusters:
if self.distance(item,self.getMedoid(cluster)[0]) < \
self.distance(item,self.getMedoid(closest_cluster)[0]):
closest_cluster = cluster
if closest_cluster != origin:
self.move_item(item, origin, closest_cluster)
logging.debug("Item changed cluster: %s" % item.user_id)
return True
else:
return False
def getMedoids(self,n):
"""
Generate n clusters and return their medoids.
"""
medoids_distances = [self.getMedoid(cluster) for cluster in self.getclusters(n)]
medoids = [m[0] for m in medoids_distances]
dispersion = sum([m[1] for m in medoids_distances])
logging.info("Clustering completed and the following medoids were found: %s" % [c.user_id for c in medoids])
return medoids,dispersion