runner.py
7.17 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
#!/usr/bin/env python
"""
recommender suite - recommender experiments suite
"""
__author__ = "Tassia Camoes Araujo <tassia@gmail.com>"
__copyright__ = "Copyright (C) 2011 Tassia Camoes Araujo"
__license__ = """
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
import expsuite
import sys
sys.path.insert(0,'../')
from config import Config
from data import PopconXapianIndex, PopconSubmission
from recommender import Recommender
from user import LocalSystem, User
from evaluation import *
import logging
import random
import Gnuplot
class ClusteringSuite(expsuite.PyExperimentSuite):
def reset(self, params, rep):
self.cfg = Config()
self.cfg.popcon_index = "../tests/test_data/.sample_pxi"
self.cfg.popcon_dir = "../tests/test_data/popcon_dir"
self.cfg.clusters_dir = "../tests/test_data/clusters_dir"
if params['name'] == "clustering":
logging.info("Starting 'clustering' experiments suite...")
self.cfg.index_mode = "recluster"
def iterate(self, params, rep, n):
if params['name'] == "clustering":
logging.info("Running iteration %d" % params['medoids'][n])
self.cfg.k_medoids = params['medoids'][n]
pxi = PopconXapianIndex(self.cfg)
result = {'k_medoids': params['medoids'][n],
'dispersion': pxi.cluster_dispersion}
else:
result = {}
return result
class ContentBasedSuite(expsuite.PyExperimentSuite):
def reset(self, params, rep):
if params['name'].startswith("content"):
cfg = Config()
#if the index was not built yet
#app_axi = AppAptXapianIndex(cfg.axi,"results/arnaldo/AppAxi")
cfg.axi = "data/AppAxi"
cfg.index_mode = "old"
cfg.weight = params['weight']
self.rec = Recommender(cfg)
self.rec.set_strategy(params['strategy'])
self.repo_size = self.rec.items_repository.get_doccount()
self.user = LocalSystem()
self.user.app_pkg_profile(self.rec.items_repository)
self.user.no_auto_pkg_profile()
self.sample_size = int(len(self.user.pkg_profile)*params['sample'])
# iteration should be set to 10 in config file
#self.profile_size = range(10,101,10)
def iterate(self, params, rep, n):
if params['name'].startswith("content"):
item_score = dict.fromkeys(self.user.pkg_profile,1)
# Prepare partition
sample = {}
for i in range(self.sample_size):
key = random.choice(item_score.keys())
sample[key] = item_score.pop(key)
# Get full recommendation
user = User(item_score)
recommendation = self.rec.get_recommendation(user,self.repo_size)
# Write recall log
recall_file = "results/content/recall/%s-%s-%.2f-%d" % \
(params['strategy'],params['weight'],params['sample'],n)
output = open(recall_file,'w')
output.write("# weight=%s\n" % params['weight'])
output.write("# strategy=%s\n" % params['strategy'])
output.write("# sample=%f\n" % params['sample'])
output.write("\n%d %d %d\n" % \
(self.repo_size,len(item_score),self.sample_size))
notfound = []
ranks = []
for pkg in sample.keys():
if pkg in recommendation.ranking:
ranks.append(recommendation.ranking.index(pkg))
else:
notfound.append(pkg)
for r in sorted(ranks):
output.write(str(r)+"\n")
if notfound:
output.write("Out of recommendation:\n")
for pkg in notfound:
output.write(pkg+"\n")
output.close()
# Plot metrics summary
accuracy = []
precision = []
recall = []
f1 = []
g = Gnuplot.Gnuplot()
g('set style data lines')
g.xlabel('Recommendation size')
for size in range(1,len(recommendation.ranking)+1,100):
predicted = RecommendationResult(dict.fromkeys(recommendation.ranking[:size],1))
real = RecommendationResult(sample)
evaluation = Evaluation(predicted,real,self.repo_size)
accuracy.append([size,evaluation.run(Accuracy())])
precision.append([size,evaluation.run(Precision())])
recall.append([size,evaluation.run(Recall())])
f1.append([size,evaluation.run(F1())])
g.plot(Gnuplot.Data(accuracy,title="Accuracy"),
Gnuplot.Data(precision,title="Precision"),
Gnuplot.Data(recall,title="Recall"),
Gnuplot.Data(f1,title="F1"))
g.hardcopy(recall_file+"-plot.ps", enhanced=1, color=1)
# Iteration log
result = {'iteration': n,
'weight': params['weight'],
'strategy': params['strategy'],
'accuracy': accuracy[20],
'precision': precision[20],
'recall:': recall[20],
'f1': f1[20]}
return result
#class CollaborativeSuite(expsuite.PyExperimentSuite):
# def reset(self, params, rep):
# if params['name'].startswith("collaborative"):
#
# def iterate(self, params, rep, n):
# if params['name'].startswith("collaborative"):
# for root, dirs, files in os.walk(self.source_dir):
# for popcon_file in files:
# submission = PopconSubmission(os.path.join(root,popcon_file))
# user = User(submission.packages)
# user.maximal_pkg_profile()
# rec.get_recommendation(user)
# precision = 0
# result = {'weight': params['weight'],
# 'strategy': params['strategy'],
# 'profile_size': self.profile_size[n],
# 'accuracy': accuracy,
# 'precision': precision,
# 'recall:': recall,
# 'f1': }
# else:
# result = {}
# return result
if __name__ == '__main__':
if "clustering" in sys.argv or len(sys.argv)<3:
ClusteringSuite().start()
if "content" in sys.argv or len(sys.argv)<3:
ContentBasedSuite().start()
#if "collaborative" in sys.argv or len(sys.argv)<3:
#CollaborativeSuite().start()