evaluation.py
8.38 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
#!/usr/bin/env python
"""
evaluation - python module for classes and methods related to recommenders
evaluation.
"""
__author__ = "Tassia Camoes Araujo <tassia@gmail.com>"
__copyright__ = "Copyright (C) 2011 Tassia Camoes Araujo"
__license__ = """
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
import math
import random
from collections import defaultdict
import logging
from user import *
from recommender import *
from singleton import Singleton
class Metric(Singleton):
"""
Base class for metrics. Strategy design pattern.
"""
def get_errors(self,evaluation):
"""
Compute prediction errors.
"""
keys = evaluation.predicted_item_scores.keys()
keys.extend(evaluation.real_item_scores.keys())
errors = []
for k in keys:
if k not in evaluation.real_item_scores:
evaluation.real_item_scores[k] = 0.0
if k not in evaluation.predicted_item_scores:
evaluation.predicted_item_scores[k] = 0.0
errors.append(float(evaluation.predicted_item_scores[k]-
evaluation.real_item_scores[k]))
return errors
class Precision(Metric):
"""
Classification accuracy metric defined as the percentage of relevant itens
among the predicted ones.
"""
def __init__(self):
"""
Set metric description.
"""
self.desc = " Precision "
def run(self,evaluation):
"""
Compute metric.
"""
return float(len(evaluation.predicted_real))/len(evaluation.predicted_relevant)
class Recall(Metric):
"""
Classification ccuracy metric defined as the percentage of relevant itens
which were predicted as so.
"""
def __init__(self):
"""
Set metric description.
"""
self.desc = " Recall "
def run(self,evaluation):
"""
Compute metric.
"""
return float(len(evaluation.predicted_real))/len(evaluation.real_relevant)
class F1(Metric):
"""
Classification accuracy metric which correlates precision and recall into an
unique measure.
"""
def __init__(self):
"""
Set metric description.
"""
self.desc = " F1 "
def run(self,evaluation):
"""
Compute metric.
"""
p = Precision().run(evaluation)
r = Recall().run(evaluation)
return float((2*p*r))/(p+r)
class MAE(Metric):
"""
Prediction accuracy metric defined as the mean absolute error.
"""
def __init__(self):
"""
Set metric description.
"""
self.desc = " MAE "
def run(self,evaluation):
"""
Compute metric.
"""
errors = self.get_errors(evaluation)
return sum(errors)/len(errors)
class MSE(Metric):
"""
Prediction accuracy metric defined as the mean square error.
"""
def __init__(self):
"""
Set metric description.
"""
self.desc = " MSE "
def run(self,evaluation):
"""
Compute metric.
"""
errors = self.get_errors(evaluation)
square_errors = [pow(x,2) for x in errors]
return sum(square_errors)/len(square_errors)
class RMSE(MSE):
"""
Prediction accuracy metric defined as the root mean square error.
"""
def __init__(self):
"""
Set metric description.
"""
self.desc = " RMSE "
def run(self,evaluation):
"""
Compute metric.
"""
return math.sqrt(MSE.run(evaluation))
class Coverage(Metric):
"""
Evaluation metric defined as the percentage of itens covered by the
recommender (have been recommended at least once).
"""
def __init__(self,repository_size):
"""
Set initial parameters.
"""
self.desc = " Coverage "
self.repository_size = repository_size
self.covered = set()
def save_covered(self,recommended_list):
"""
Register that a list of itens has been recommended.
"""
self.covered.update(set(recommended_list))
def run(self,evaluation):
"""
Compute metric.
"""
return float(self.covered.size)/self.repository_size
class Evaluation:
"""
Class designed to perform prediction evaluation, given data and metric.
"""
def __init__(self,predicted_result,real_result):
"""
Set initial parameters.
"""
self.predicted_item_scores = predicted_result.item_score
self.predicted_relevant = predicted_result.get_prediction()
self.real_item_scores = real_result.item_score
self.real_relevant = real_result.get_prediction()
self.predicted_real = [v for v in self.predicted_relevant if v in
self.real_relevant]
#print len(self.predicted_relevant)
#print len(self.real_relevant)
#print len(self.predicted_real)
def run(self,metric):
"""
Perform the evaluation with the given metric.
"""
return metric.run(self)
class CrossValidation:
"""
Class designed to perform cross-validation process.
"""
def __init__(self,partition_proportion,rounds,rec,metrics_list):
"""
Set initial parameters.
"""
if partition_proportion<1 and partition_proportion>0:
self.partition_proportion = partition_proportion
else:
logging.critical("Partition proportion must be a value in the interval [0,1].")
raise Error
self.rounds = rounds
self.recommender = rec
self.metrics_list = metrics_list
self.cross_results = defaultdict(list)
def __str__(self):
"""
String representation of the object.
"""
str = "\n"
metrics_desc = ""
for metric in self.metrics_list:
metrics_desc += "%s|" % (metric.desc)
str += "| Round |%s\n" % metrics_desc
for r in range(self.rounds):
metrics_result = ""
for metric in self.metrics_list:
metrics_result += (" %2.1f%% |" %
(self.cross_results[metric.desc][r]*100))
str += "| %d |%s\n" % (r,metrics_result)
metrics_mean = ""
for metric in self.metrics_list:
mean = float(sum(self.cross_results[metric.desc]) /
len(self.cross_results[metric.desc]))
metrics_mean += " %2.1f%% |" % (mean*100)
str += "| Mean |%s\n" % (metrics_mean)
return str
def run(self,user):
"""
Perform cross-validation.
"""
cross_item_score = dict.fromkeys(user.pkg_profile,1)
partition_size = int(len(cross_item_score)*self.partition_proportion)
for r in range(self.rounds):
round_partition = {}
for j in range(partition_size):
if len(cross_item_score)>0:
random_key = random.choice(cross_item_score.keys())
else:
logging.critical("Empty cross_item_score.")
raise Error
round_partition[random_key] = cross_item_score.pop(random_key)
round_user = User(cross_item_score)
predicted_result = self.recommender.get_recommendation(round_user)
real_result = RecommendationResult(round_partition,len(round_partition))
evaluation = Evaluation(predicted_result,real_result)
for metric in self.metrics_list:
result = evaluation.run(metric)
self.cross_results[metric.desc].append(result)
while len(round_partition)>0:
item,score = round_partition.popitem()
cross_item_score[item] = score