data.py
27.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
#!/usr/bin/env python
"""
data - python module for data sources classes and methods.
"""
__author__ = "Tassia Camoes Araujo <tassia@gmail.com>"
__copyright__ = "Copyright (C) 2011 Tassia Camoes Araujo"
__license__ = """
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
import os
import sys
import gc
import xapian
import logging
import random
import cluster
import shutil
import apt
import re
import operator
import urllib
import simplejson as json
import socket
from error import Error
from singleton import Singleton
from dissimilarity import *
from config import Config
def axi_get_pkgs(axi):
pkgs_names = []
for docid in range(1,axi.get_lastdocid()+1):
try:
doc = axi.get_document(docid)
except:
pass
docterms_XP = [t.term for t in doc.termlist()
if t.term.startswith("XP")]
pkgs_names.append(docterms_XP[0].lstrip('XP'))
return pkgs_names
def axi_search_pkgs(axi,pkgs_list):
terms = ["XP"+item for item in pkgs_list]
query = xapian.Query(xapian.Query.OP_OR, terms)
enquire = xapian.Enquire(axi)
enquire.set_query(query)
mset = enquire.get_mset(0,axi.get_doccount())
return mset
def axi_search_pkg_tags(axi,pkg):
enquire = xapian.Enquire(axi)
enquire.set_query(xapian.Query("XP"+pkg))
matches = enquire.get_mset(0,1)
if not matches:
logging.debug("Package %s not found in items repository" % pkg)
return False
for m in matches:
tags = [term.term for term in axi.get_document(m.docid).termlist() if
term.term.startswith("XT")]
if not tags:
return "notags"
else:
return tags
def print_index(index):
output = "\n---\n" + xapian.Database.__repr__(index) + "\n---\n"
for term in index.allterms():
output += term.term+"\n"
output += str([index.get_document(posting.docid).get_data()
for posting in index.postlist(term.term)])
output += "\n---"
return output
def tfidf_weighting(index,docs,content_filter,normalized_weigths=0):
"""
Return a dictionary of terms and weights of all terms of a set of
documents, based on the frequency of terms in the selected set (docids).
"""
# Store all terms in one single document
terms_doc = xapian.Document()
for d in docs:
for term in index.get_document(d.docid).termlist():
if content_filter(term.term):
if normalized_weigths:
terms_doc.add_term(term.term,int(math.ceil(normalized_weigths[d.docid])))
else:
terms_doc.add_term(term.term)
# Compute sublinear tfidf for each term
weights = {}
for term in terms_doc.termlist():
try:
# Even if it shouldn't raise error...
# math.log: ValueError: math domain error
tf = 1+math.log(term.wdf)
idf = math.log(index.get_doccount()/
float(index.get_termfreq(term.term)))
weights[term.term] = tf*idf
except:
pass
sorted_weights = list(reversed(sorted(weights.items(),
key=operator.itemgetter(1))))
#print sorted_weights
return sorted_weights
def tfidf_plus(index,docs,content_filter):
"""
Return a dictionary of terms and weights of all terms of a set of
documents, based on the frequency of terms in the selected set (docids).
"""
normalized_weigths = {}
population = [d.weight for d in docs]
mean = sum(population)/len(population)
variance = sum([(p-mean)*(p-mean) for p in population])/len(population)
standard_deviation = math.sqrt(variance)
for d in docs:
if standard_deviation>1:
# values between [0-1] would cause the opposite effect
normalized_weigths[d.docid] = d.weight/standard_deviation
else:
normalized_weigths[d.docid] = d.weight
return tfidf_weighting(index,docs,content_filter,normalized_weigths)
class FilteredXapianIndex(xapian.WritableDatabase):
"""
Filtered Xapian Index
"""
def __init__(self,terms,index_path,path):
xapian.WritableDatabase.__init__(self,path,
xapian.DB_CREATE_OR_OVERWRITE)
index = xapian.Database(index_path)
for docid in range(1,index.get_lastdocid()+1):
try:
doc = index.get_document(docid)
docterms = [term.term for term in doc.termlist()]
tagged = False
for t in terms:
if t in docterms:
tagged = True
if tagged:
self.add_document(doc)
logging.info("Added doc %d." % docid)
else:
logging.info("Discarded doc %d." % docid)
except:
logging.info("Doc %d not found in axi." % docid)
logging.info("Filter: %s" % terms)
logging.info("Index size: %d" % index.get_doccount())
logging.info("Filtered Index size: %d (lastdocid: %d)." %
(self.get_doccount(), self.get_lastdocid()))
def __str__(self):
return print_index(self)
class SampleAptXapianIndex(xapian.WritableDatabase):
"""
Sample data source for packages information, generated from a list of
packages.
"""
def __init__(self,pkgs_list,axi,path):
xapian.WritableDatabase.__init__(self,path,
xapian.DB_CREATE_OR_OVERWRITE)
sample = axi_search_pkgs(axi,pkgs_list)
for package in sample:
doc_id = self.add_document(axi.get_document(package.docid))
def __str__(self):
return print_index(self)
class DebianPackage():
"""
Class to load package information.
"""
def __init__(self,pkg_name):
self.name = pkg_name
def connect_to_dde(self,dde_server,dde_port):
try:
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
# just one parameter (a tuple)
s.connect((dde_server,dde_port))
s.close()
return True
except:
logging.debug("Could not connect to DDE")
return False
def load_summary(self):
cfg = Config()
if self.connect_to_dde(cfg.dde_server,cfg.dde_port):
json_data = json.load(urllib.urlopen(cfg.dde_url % self.name))
self.summary = json_data['r']['description']
else:
pkg_version = apt.Cache()[self.name].candidate
self.summary = pkg_version.summary
def load_details(self):
cfg = Config()
if self.connect_to_dde(cfg.dde_server,cfg.dde_port):
self.load_details_from_dde(cfg.dde_url)
else:
self.load_details_from_apt()
def load_details_from_apt(self):
pkg_version = apt.Cache()[self.name].candidate
self.maintainer = pkg_version.record['Maintainer']
self.version = pkg_version.version
self.summary = pkg_version.summary
self.description = self.format_description(pkg_version.description)
self.section = pkg_version.section
if pkg_version.record.has_key('Homepage'):
self.homepage = pkg_version.record['Homepage']
if pkg_version.record.has_key('Tag'):
self.tags = self.debtags_str_to_dict(pkg_version.record['Tag'])
if pkg_version.record.has_key('Depends'):
self.depends = pkg_version.record['Depends']
if pkg_version.record.has_key('Pre-Depends'):
self.predepends = pkg_version.record['Pre-Depends']
if pkg_version.record.has_key('Recommends'):
self.recommends = pkg_version.record['Recommends']
if pkg_version.record.has_key('Suggests'):
self.suggests = pkg_version.record['Suggests']
if pkg_version.record.has_key('Breaks'):
self.breaks = pkg_version.record['Breaks']
if pkg_version.record.has_key('Conflicts'):
self.conflicts = pkg_version.record['Conflicts']
if pkg_version.record.has_key('Replaces'):
self.replaces = pkg_version.record['Replaces']
if pkg_version.record.has_key('Provides'):
self.provides = pkg_version.record['Provides']
def load_details_from_dde(self,dde_url):
json_data = json.load(urllib.urlopen(dde_url % self.name))
self.maintainer = json_data['r']['maintainer']
self.version = json_data['r']['version']
self.summary = json_data['r']['description']
self.description = self.format_description(json_data['r']['long_description'])
self.section = json_data['r']['section']
if json_data['r']['homepage']:
self.homepage = json_data['r']['homepage']
if json_data['r']['tag']:
self.tags = self.debtags_list_to_dict(json_data['r']['tag'])
if json_data['r']['depends']:
self.depends = json_data['r']['depends']
if json_data['r']['pre_depends']:
self.predepends = json_data['r']['pre_depends']
if json_data['r']['recommends']:
self.recommends = json_data['r']['recommends']
if json_data['r']['suggests']:
self.suggests = json_data['r']['suggests']
if json_data['r']['conflicts']:
self.conflicts = json_data['r']['conflicts']
if json_data['r']['replaces']:
self.replaces = json_data['r']['replaces']
if json_data['r']['provides']:
self.provides = json_data['r']['provides']
if json_data['r']['popcon']['insts']:
self.popcon_insts = json_data['r']['popcon']['insts']
def format_description(self,description):
return description.replace(' .\n','<br />').replace('\n','<br />')
def debtags_str_to_dict(self, debtags_str):
debtags_list = [tag.rstrip(",") for tag in debtags_str.split()]
return self.debtags_list_to_dict(debtags_list)
def debtags_list_to_dict(self, debtags_list):
""" input: ['use::editing',
'works-with-format::gif',
'works-with-format::jpg',
'works-with-format::pdf']
output: {'use': [editing],
'works-with-format': ['gif', 'jpg', 'pdf']'}
"""
debtags = {}
subtags = []
for tag in debtags_list:
match = re.search(r'^(.*)::(.*)$', tag)
if not match:
logging.info("Could not parse debtags format from tag: %s", tag)
facet, subtag = match.groups()
subtags.append(subtag)
if facet not in debtags:
debtags[facet] = subtags
else:
debtags[facet].append(subtag)
subtags = []
print "debtags_list",debtags
return debtags
class PopconSubmission():
def __init__(self,path,user_id=0,binary=1):
self.packages = dict()
self.path = path
self.binary = binary
self.load()
if user_id:
self.user_id = user_id
def __str__(self):
output = "\nPopularity-contest submission ID "+self.user_id
for pkg, weight in self.packages.items():
output += "\n "+pkg+": "+str(weight)
return output
def get_filtered(self,filter_list):
filtered = {}
for pkg in self.packages.keys():
if pkg in filter_list:
filtered[pkg] = self.packages[pkg]
return filtered
def load(self,binary=1):
"""
Parse a popcon submission, generating the names of the valid packages
in the vote.
"""
with open(self.path) as submission:
for line in submission:
if line.startswith("POPULARITY"):
self.user_id = line.split()[2].lstrip("ID:")
self.arch = line.split()[3].lstrip("ARCH:")
elif not line.startswith("END-POPULARITY"):
data = line.rstrip('\n').split()
if len(data) > 2:
pkg = data[2]
if len(data) > 3:
exec_file = data[3]
# Binary weight
if self.binary:
self.packages[pkg] = 1
# Weights inherited from Enrico's anapop
# No executable files to track
elif exec_file == '<NOFILES>':
self.packages[pkg] = 1
# Recently used packages
elif len(data) == 4:
self.packages[pkg] = 10
# Unused packages
elif data[4] == '<OLD>':
self.packages[pkg] = 3
# Recently installed packages
elif data[4] == '<RECENT-CTIME>':
self.packages[pkg] = 8
class FilteredPopconXapianIndex(xapian.WritableDatabase):
"""
Data source for popcon submissions defined as a xapian database.
"""
def __init__(self,path,popcon_dir,axi_path,tags_filter):
"""
Set initial attributes.
"""
self.axi = xapian.Database(axi_path)
self.path = os.path.expanduser(path)
self.popcon_dir = os.path.expanduser(popcon_dir)
self.valid_pkgs = axi_get_pkgs(self.axi)
logging.debug("Considering %d valid packages" % len(self.valid_pkgs))
with open(tags_filter) as valid_tags:
self.valid_tags = [line.strip() for line in valid_tags
if not line.startswith("#")]
logging.debug("Considering %d valid tags" % len(self.valid_tags))
if not os.path.exists(self.popcon_dir):
os.makedirs(self.popcon_dir)
if not os.listdir(self.popcon_dir):
logging.critical("Popcon dir seems to be empty.")
raise Error
# set up directory
shutil.rmtree(self.path,1)
os.makedirs(self.path)
try:
logging.info("Indexing popcon submissions from \'%s\'" %
self.popcon_dir)
logging.info("Creating new xapian index at \'%s\'" %
self.path)
xapian.WritableDatabase.__init__(self,self.path,
xapian.DB_CREATE_OR_OVERWRITE)
except xapian.DatabaseError as e:
logging.critical("Could not create popcon xapian index.")
logging.critical(str(e))
raise Error
# build new index
doc_count = 0
for root, dirs, files in os.walk(self.popcon_dir):
for popcon_file in files:
submission = PopconSubmission(os.path.join(root, popcon_file))
doc = xapian.Document()
submission_pkgs = submission.get_filtered(self.valid_pkgs)
if len(submission_pkgs) < 10:
logging.debug("Low profile popcon submission \'%s\' (%d)" %
(submission.user_id,len(submission_pkgs)))
else:
doc.set_data(submission.user_id)
doc.add_term("ID"+submission.user_id)
doc.add_term("ARCH"+submission.arch)
logging.debug("Parsing popcon submission \'%s\'" %
submission.user_id)
for pkg,freq in submission_pkgs.items():
tags = axi_search_pkg_tags(self.axi,pkg)
# if the package was found in axi
if tags:
doc.add_term("XP"+pkg,freq)
# if the package has tags associated with it
if not tags == "notags":
for tag in tags:
if tag.lstrip("XT") in self.valid_tags:
doc.add_term(tag,freq)
doc_id = self.add_document(doc)
doc_count += 1
logging.debug("Popcon Xapian: Indexing doc %d" % doc_id)
# python garbage collector
gc.collect()
# flush to disk database changes
try:
self.commit()
except:
self.flush() # deprecated function, used for compatibility with old lib version
# Deprecated class, must be reviewed
class PopconXapianIndex(xapian.WritableDatabase):
"""
Data source for popcon submissions defined as a singleton xapian database.
"""
def __init__(self,cfg):
"""
Set initial attributes.
"""
self.axi = xapian.Database(cfg.axi)
self.path = os.path.expanduser(cfg.popcon_index)
self.source_dir = os.path.expanduser(cfg.popcon_dir)
self.max_popcon = cfg.max_popcon
self.valid_pkgs = []
# file format for filter: one package name per line
with open(cfg.pkgs_filter) as valid_pkgs:
self.valid_pkgs = [line.strip() for line in valid_pkgs
if not line.startswith("#")]
logging.debug("Considering %d valid packages" % len(self.valid_pkgs))
with open(os.path.join(cfg.filters_dir,"debtags")) as valid_tags:
self.valid_tags = [line.strip() for line in valid_tags
if not line.startswith("#")]
logging.debug("Considering %d valid tags" % len(self.valid_tags))
if not cfg.index_mode == "old" or not self.load_index():
if not os.path.exists(cfg.popcon_dir):
os.makedirs(cfg.popcon_dir)
if not os.listdir(cfg.popcon_dir):
logging.critical("Popcon dir seems to be empty.")
raise Error
if cfg.index_mode == "reindex" or cfg.index_mode == "old":
self.source_dir = os.path.expanduser(cfg.popcon_dir)
logging.debug(self.source_dir)
else:
self.source_dir = os.path.expanduser(cfg.clusters_dir)
if not os.path.exists(cfg.clusters_dir):
os.makedirs(cfg.clusters_dir)
if not os.listdir(cfg.clusters_dir) or \
cfg.index_mode == "recluster":
shutil.rmtree(cfg.clusters_dir,1)
os.makedirs(cfg.clusters_dir)
logging.info("Clustering popcon submissions from \'%s\'"
% cfg.popcon_dir)
logging.info("Clusters will be placed at \'%s\'"
% cfg.clusters_dir)
distance = JaccardDistance()
data = self.get_submissions(cfg.popcon_dir)
logging.debug(type(data))
self.cluster_dispersion = \
self.kmedoids_clustering(data, cfg.clusters_dir,
distance, cfg.k_medoids,
cfg.max_popcon)
logging.info("Clusters dispersion: %.2f",
self.cluster_dispersion)
else:
logging.info("Using clusters from \'%s\'" %
cfg.clusters_dir)
self.build_index()
def __str__(self):
return print_index(self)
def load_index(self):
"""
Load an existing popcon index.
"""
try:
logging.info("Opening existing popcon xapian index at \'%s\'"
% self.path)
xapian.Database.__init__(self,self.path)
return 1
except xapian.DatabaseError:
logging.info("Could not open popcon index.")
return 0
def build_index(self):
"""
Create a xapian index for popcon submissions at 'source_dir' and
place it at 'self.path'.
"""
shutil.rmtree(self.path,1)
os.makedirs(self.path)
try:
logging.info("Indexing popcon submissions from \'%s\'" %
self.source_dir)
logging.info("Creating new xapian index at \'%s\'" %
self.path)
xapian.WritableDatabase.__init__(self,self.path,
xapian.DB_CREATE_OR_OVERWRITE)
except xapian.DatabaseError as e:
logging.critical("Could not create popcon xapian index.")
logging.critical(str(e))
raise Error
doc_count = 0
for root, dirs, files in os.walk(self.source_dir):
if doc_count == self.max_popcon:
break
for popcon_file in files:
if doc_count == self.max_popcon:
break
submission = PopconSubmission(os.path.join(root, popcon_file))
doc = xapian.Document()
submission_pkgs = submission.get_filtered(self.valid_pkgs)
if len(submission_pkgs) < 10:
logging.debug("Low profile popcon submission \'%s\' (%d)" %
(submission.user_id,len(submission_pkgs)))
else:
doc.set_data(submission.user_id)
logging.debug("Parsing popcon submission \'%s\'" %
submission.user_id)
for pkg,freq in submission_pkgs.items():
tags = axi_search_pkg_tags(self.axi,pkg)
# if the package was foung in axi
if tags:
doc.add_term("XP"+pkg,freq)
# if the package has tags associated with it
if not tags == "notags":
for tag in tags:
if tag.lstrip("XT") in self.valid_tags:
doc.add_term(tag,freq)
doc_id = self.add_document(doc)
doc_count += 1
logging.debug("Popcon Xapian: Indexing doc %d" % doc_id)
# python garbage collector
gc.collect()
# flush to disk database changes
try:
self.commit()
except:
self.flush() # deprecated function, used for compatibility with old lib version
def get_submissions(self,submissions_dir):
"""
Get popcon submissions from popcon_dir
"""
submissions = []
for root, dirs, files in os.walk(submissions_dir):
for popcon_file in files:
logging.debug("Parsing submission %s" % popcon_file)
submission = PopconSubmission(os.path.join(root, popcon_file))
submissions.append(submission)
return submissions
def kmedoids_clustering(self,data,clusters_dir,distance,k_medoids,max_popcon):
clusters = KMedoidsClustering(data,lambda x,y:
distance(x.packages.keys(),
y.packages.keys()),max_popcon)
medoids,dispersion = clusters.getMedoids(k_medoids)
for submission in medoids:
logging.debug("Copying submission %s" % submission.user_id)
shutil.copyfile(submission.path,os.path.join(clusters_dir,
submission.user_id))
return dispersion
class KMedoidsClustering(cluster.KMeansClustering):
def __init__(self,data,distance,max_data):
if len(data)<max_data:
data_sample = data
else:
data_sample = random.sample(data,max_data)
cluster.KMeansClustering.__init__(self, data_sample, distance)
self.distanceMatrix = {}
for submission in self._KMeansClustering__data:
self.distanceMatrix[submission.user_id] = {}
def loadDistanceMatrix(self,cluster):
for i in range(len(cluster)-1):
for j in range(i+1,len(cluster)):
try:
d = self.distanceMatrix[cluster[i].user_id][cluster[j].user_id]
logging.debug("Using d[%d,%d]" % (i,j))
except:
d = self.distance(cluster[i],cluster[j])
self.distanceMatrix[cluster[i].user_id][cluster[j].user_id] = d
self.distanceMatrix[cluster[j].user_id][cluster[i].user_id] = d
logging.debug("d[%d,%d] = %.2f" % (i,j,d))
def getMedoid(self,cluster):
"""
Return the medoid popcon submission of a given a cluster, based on
the distance function.
"""
logging.debug("Cluster size: %d" % len(cluster))
self.loadDistanceMatrix(cluster)
medoidDistance = sys.maxint
for i in range(len(cluster)):
totalDistance = sum(self.distanceMatrix[cluster[i].user_id].values())
logging.debug("totalDistance[%d]=%f" % (i,totalDistance))
if totalDistance < medoidDistance:
medoidDistance = totalDistance
medoid = i
logging.debug("medoidDistance: %f" % medoidDistance)
logging.debug("Cluster medoid: [%d] %s" % (medoid,
cluster[medoid].user_id))
return (cluster[medoid],medoidDistance)
def assign_item(self, item, origin):
"""
Assigns an item from a given cluster to the closest located cluster
"""
closest_cluster = origin
for cluster in self._KMeansClustering__clusters:
if self.distance(item,self.getMedoid(cluster)[0]) < \
self.distance(item,self.getMedoid(closest_cluster)[0]):
closest_cluster = cluster
if closest_cluster != origin:
self.move_item(item, origin, closest_cluster)
logging.debug("Item changed cluster: %s" % item.user_id)
return True
else:
return False
def getMedoids(self,n):
"""
Generate n clusters and return their medoids.
"""
#medoids_distances = [self.getMedoid(cluster) for cluster in self.getclusters(n)]
medoids_distances = []
logging.debug("initial length %s" % self._KMeansClustering__initial_length)
logging.debug("n %d" % n)
for cluster in self.getclusters(n):
type(cluster)
print cluster
medoids_distances.append(self.getMedoid(cluster))
print medoids_distances
medoids = [m[0] for m in medoids_distances]
dispersion = sum([m[1] for m in medoids_distances])
logging.info("Clustering completed and the following medoids were found: %s" % [c.user_id for c in medoids])
return medoids,dispersion