Commit 40247ad1e6d51d0b6907f19bc0249dbb6a496816
1 parent
ae5b1cdb
Exists in
master
and in
1 other branch
Added experiments files
Showing
3 changed files
with
201 additions
and
0 deletions
Show diff stats
| @@ -0,0 +1,26 @@ | @@ -0,0 +1,26 @@ | ||
| 1 | +[DEFAULT] | ||
| 2 | +repetitions = 1 | ||
| 3 | +iterations = 10 | ||
| 4 | +path = 'results' | ||
| 5 | +experiment = 'grid' | ||
| 6 | +weight = ['bm25', 'trad'] | ||
| 7 | +;profile_size = range(10,100,10) | ||
| 8 | +sample = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] | ||
| 9 | + | ||
| 10 | +[content] | ||
| 11 | +strategy = ['cb','cbt','cbd'] | ||
| 12 | + | ||
| 13 | +[clustering] | ||
| 14 | +experiment = 'single' | ||
| 15 | +;iterations = 4 | ||
| 16 | +;medoids = range(2,6) | ||
| 17 | +iterations = 6 | ||
| 18 | +medoids = [100,500,1000,5000,10000,50000] | ||
| 19 | +;disabled for this experiment | ||
| 20 | +weight = 0 | ||
| 21 | +profile_size = 0 | ||
| 22 | +sample = 0 | ||
| 23 | + | ||
| 24 | +[colaborative] | ||
| 25 | +users_repository=["data/popcon","data/popcon-100","data/popcon-500","data/popcon-1000","data/popcon-5000","data/popcon-10000","data/popcon-50000"] | ||
| 26 | +neighbors = range(10,1010,50) |
| @@ -0,0 +1,173 @@ | @@ -0,0 +1,173 @@ | ||
| 1 | +#!/usr/bin/env python | ||
| 2 | +""" | ||
| 3 | + recommender suite - recommender experiments suite | ||
| 4 | +""" | ||
| 5 | +__author__ = "Tassia Camoes Araujo <tassia@gmail.com>" | ||
| 6 | +__copyright__ = "Copyright (C) 2011 Tassia Camoes Araujo" | ||
| 7 | +__license__ = """ | ||
| 8 | + This program is free software: you can redistribute it and/or modify | ||
| 9 | + it under the terms of the GNU General Public License as published by | ||
| 10 | + the Free Software Foundation, either version 3 of the License, or | ||
| 11 | + (at your option) any later version. | ||
| 12 | + | ||
| 13 | + This program is distributed in the hope that it will be useful, | ||
| 14 | + but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 15 | + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
| 16 | + GNU General Public License for more details. | ||
| 17 | + | ||
| 18 | + You should have received a copy of the GNU General Public License | ||
| 19 | + along with this program. If not, see <http://www.gnu.org/licenses/>. | ||
| 20 | +""" | ||
| 21 | + | ||
| 22 | +import expsuite | ||
| 23 | +import sys | ||
| 24 | +sys.path.insert(0,'../') | ||
| 25 | +from config import Config | ||
| 26 | +from data import PopconXapianIndex, PopconSubmission | ||
| 27 | +from recommender import Recommender | ||
| 28 | +from user import LocalSystem, User | ||
| 29 | +from evaluation import * | ||
| 30 | +import logging | ||
| 31 | +import random | ||
| 32 | +import Gnuplot | ||
| 33 | + | ||
| 34 | +class ClusteringSuite(expsuite.PyExperimentSuite): | ||
| 35 | + def reset(self, params, rep): | ||
| 36 | + self.cfg = Config() | ||
| 37 | + self.cfg.popcon_index = "../tests/test_data/.sample_pxi" | ||
| 38 | + self.cfg.popcon_dir = "../tests/test_data/popcon_dir" | ||
| 39 | + self.cfg.clusters_dir = "../tests/test_data/clusters_dir" | ||
| 40 | + | ||
| 41 | + if params['name'] == "clustering": | ||
| 42 | + logging.info("Starting 'clustering' experiments suite...") | ||
| 43 | + self.cfg.index_mode = "recluster" | ||
| 44 | + | ||
| 45 | + def iterate(self, params, rep, n): | ||
| 46 | + if params['name'] == "clustering": | ||
| 47 | + logging.info("Running iteration %d" % params['medoids'][n]) | ||
| 48 | + self.cfg.k_medoids = params['medoids'][n] | ||
| 49 | + pxi = PopconXapianIndex(self.cfg) | ||
| 50 | + result = {'k_medoids': params['medoids'][n], | ||
| 51 | + 'dispersion': pxi.cluster_dispersion} | ||
| 52 | + else: | ||
| 53 | + result = {} | ||
| 54 | + return result | ||
| 55 | + | ||
| 56 | +class ContentBasedSuite(expsuite.PyExperimentSuite): | ||
| 57 | + def reset(self, params, rep): | ||
| 58 | + if params['name'].startswith("content"): | ||
| 59 | + cfg = Config() | ||
| 60 | + #if the index was not built yet | ||
| 61 | + #app_axi = AppAptXapianIndex(cfg.axi,"results/arnaldo/AppAxi") | ||
| 62 | + cfg.axi = "data/AppAxi" | ||
| 63 | + cfg.index_mode = "old" | ||
| 64 | + cfg.weight = params['weight'] | ||
| 65 | + self.rec = Recommender(cfg) | ||
| 66 | + self.rec.set_strategy(params['strategy']) | ||
| 67 | + self.repo_size = self.rec.items_repository.get_doccount() | ||
| 68 | + self.user = LocalSystem() | ||
| 69 | + self.user.app_pkg_profile(self.rec.items_repository) | ||
| 70 | + self.user.no_auto_pkg_profile() | ||
| 71 | + self.sample_size = int(len(self.user.pkg_profile)*params['sample']) | ||
| 72 | + # iteration should be set to 10 in config file | ||
| 73 | + #self.profile_size = range(10,101,10) | ||
| 74 | + | ||
| 75 | + def iterate(self, params, rep, n): | ||
| 76 | + if params['name'].startswith("content"): | ||
| 77 | + # Get full recommendation | ||
| 78 | + item_score = dict.fromkeys(self.user.pkg_profile,1) | ||
| 79 | + sample = {} | ||
| 80 | + for i in range(self.sample_size): | ||
| 81 | + item, score = item_score.popitem() | ||
| 82 | + sample[item] = score | ||
| 83 | + user = User(item_score) | ||
| 84 | + recommendation = self.rec.get_recommendation(user,self.repo_size) | ||
| 85 | + # Write recall log | ||
| 86 | + recall_file = "results/content/recall/%s-%s-%.2f-%d" % \ | ||
| 87 | + (params['strategy'],params['weight'],params['sample'],n) | ||
| 88 | + output = open(recall_file,'w') | ||
| 89 | + output.write("# weight=%s\n" % params['weight']) | ||
| 90 | + output.write("# strategy=%s\n" % params['strategy']) | ||
| 91 | + output.write("# sample=%f\n" % params['sample']) | ||
| 92 | + output.write("\n%d %d %d\n" % \ | ||
| 93 | + (self.repo_size,len(item_score),self.sample_size)) | ||
| 94 | + notfound = [] | ||
| 95 | + ranks = [] | ||
| 96 | + for pkg in sample.keys(): | ||
| 97 | + if pkg in recommendation.ranking: | ||
| 98 | + ranks.append(recommendation.ranking.index(pkg)) | ||
| 99 | + else: | ||
| 100 | + notfound.append(pkg) | ||
| 101 | + for r in sorted(ranks): | ||
| 102 | + output.write(str(r)+"\n") | ||
| 103 | + if notfound: | ||
| 104 | + output.write("Out of recommendation:\n") | ||
| 105 | + for pkg in notfound: | ||
| 106 | + output.write(pkg+"\n") | ||
| 107 | + output.close() | ||
| 108 | + # Plot metrics summary | ||
| 109 | + g = Gnuplot.Gnuplot() | ||
| 110 | + g('set style data lines') | ||
| 111 | + g.xlabel('Recommendation size') | ||
| 112 | + accuracy = [] | ||
| 113 | + precision = [] | ||
| 114 | + recall = [] | ||
| 115 | + f1 = [] | ||
| 116 | + for size in range(1,len(recommendation.ranking)+1,100): | ||
| 117 | + predicted = RecommendationResult(dict.fromkeys(recommendation.ranking[:size],1)) | ||
| 118 | + real = RecommendationResult(sample) | ||
| 119 | + evaluation = Evaluation(predicted,real,self.repo_size) | ||
| 120 | + accuracy.append([size,evaluation.run(Accuracy())]) | ||
| 121 | + precision.append([size,evaluation.run(Precision())]) | ||
| 122 | + recall.append([size,evaluation.run(Recall())]) | ||
| 123 | + f1.append([size,evaluation.run(F1())]) | ||
| 124 | + #print "accuracy", len(accuracy) | ||
| 125 | + #print "precision", len(precision) | ||
| 126 | + #print "recall", len(recall) | ||
| 127 | + #print "f1", len(f1) | ||
| 128 | + g.plot(Gnuplot.Data(accuracy,title="Accuracy"), | ||
| 129 | + Gnuplot.Data(precision,title="Precision"), | ||
| 130 | + Gnuplot.Data(recall,title="Recall"), | ||
| 131 | + Gnuplot.Data(f1,title="F1")) | ||
| 132 | + g.hardcopy(recall_file+"-plot.ps", enhanced=1, color=1) | ||
| 133 | + result = {} | ||
| 134 | + result = {'weight': params['weight'], | ||
| 135 | + 'strategy': params['strategy'], | ||
| 136 | + 'accuracy': accuracy[20], | ||
| 137 | + 'precision': precision[20], | ||
| 138 | + 'recall:': recall[20], | ||
| 139 | + 'f1': f1[20]} | ||
| 140 | + return result | ||
| 141 | + | ||
| 142 | +#class CollaborativeSuite(expsuite.PyExperimentSuite): | ||
| 143 | +# def reset(self, params, rep): | ||
| 144 | +# if params['name'].startswith("collaborative"): | ||
| 145 | +# | ||
| 146 | +# def iterate(self, params, rep, n): | ||
| 147 | +# if params['name'].startswith("collaborative"): | ||
| 148 | +# for root, dirs, files in os.walk(self.source_dir): | ||
| 149 | +# for popcon_file in files: | ||
| 150 | +# submission = PopconSubmission(os.path.join(root,popcon_file)) | ||
| 151 | +# user = User(submission.packages) | ||
| 152 | +# user.maximal_pkg_profile() | ||
| 153 | +# rec.get_recommendation(user) | ||
| 154 | +# precision = 0 | ||
| 155 | +# result = {'weight': params['weight'], | ||
| 156 | +# 'strategy': params['strategy'], | ||
| 157 | +# 'profile_size': self.profile_size[n], | ||
| 158 | +# 'accuracy': accuracy, | ||
| 159 | +# 'precision': precision, | ||
| 160 | +# 'recall:': recall, | ||
| 161 | +# 'f1': } | ||
| 162 | +# else: | ||
| 163 | +# result = {} | ||
| 164 | +# return result | ||
| 165 | + | ||
| 166 | +if __name__ == '__main__': | ||
| 167 | + | ||
| 168 | + if "clustering" in sys.argv or len(sys.argv)<3: | ||
| 169 | + ClusteringSuite().start() | ||
| 170 | + if "content" in sys.argv or len(sys.argv)<3: | ||
| 171 | + ContentBasedSuite().start() | ||
| 172 | + #if "collaborative" in sys.argv or len(sys.argv)<3: | ||
| 173 | + #CollaborativeSuite().start() |