Commit 67cefa3d16f518b8a94a086d433e7cf82865bde2
Exists in
master
and in
1 other branch
Merge branch 'master' of github.com:tassia/AppRecommender
Showing
7 changed files
with
277 additions
and
121 deletions
Show diff stats
src/bin/app_recommender.cfg
... | ... | @@ -12,7 +12,7 @@ output = apprec.log |
12 | 12 | base_dir = ~/.app-recommender/ |
13 | 13 | # filters for valid packages |
14 | 14 | filters_dir = filters |
15 | -pkgs_filter = programs | |
15 | +pkgs_filter = desktopapps | |
16 | 16 | # package information indexes |
17 | 17 | axi = /var/lib/apt-xapian-index/index |
18 | 18 | axi_programs = axi_programs |
... | ... | @@ -24,7 +24,7 @@ axi_desktopapps = axi_desktopapps |
24 | 24 | popcon = 1 |
25 | 25 | popcon_programs = popcon_programs |
26 | 26 | popcon_desktopapps = popcon_desktopapps |
27 | -popcon_index = popcon_programs | |
27 | +popcon_index = popcon_desktopapps | |
28 | 28 | popcon_dir = popcon-entries |
29 | 29 | # number of popcon submission for indexing |
30 | 30 | max_popcon = 100000000 | ... | ... |
src/config.py
... | ... | @@ -46,7 +46,7 @@ class Config(Singleton): |
46 | 46 | self.base_dir = os.path.expanduser("~/.app-recommender/") |
47 | 47 | # filters for valid packages |
48 | 48 | self.filters_dir = os.path.join(self.base_dir,"filters") |
49 | - self.pkgs_filter = os.path.join(self.filters_dir,"programs") | |
49 | + self.pkgs_filter = os.path.join(self.filters_dir,"desktopapps") | |
50 | 50 | # package information packages |
51 | 51 | self.axi = "/var/lib/apt-xapian-index/index" |
52 | 52 | self.axi_programs = os.path.join(self.base_dir,"axi_programs") |
... | ... | @@ -57,7 +57,7 @@ class Config(Singleton): |
57 | 57 | self.popcon = 1 |
58 | 58 | self.popcon_programs = os.path.join(self.base_dir,"popcon_programs") |
59 | 59 | self.popcon_desktopapps = os.path.join(self.base_dir,"popcon_desktopapps") |
60 | - self.popcon_index = self.popcon_programs | |
60 | + self.popcon_index = self.popcon_desktopapps | |
61 | 61 | self.popcon_dir = os.path.join(self.base_dir,"popcon-entries") |
62 | 62 | self.max_popcon = 1000 |
63 | 63 | # popcon clustering | ... | ... |
src/data.py
... | ... | @@ -85,10 +85,15 @@ def tfidf_weighting(index,docs,content_filter,plus=0): |
85 | 85 | # Compute sublinear tfidf for each term |
86 | 86 | weights = {} |
87 | 87 | for term in terms_doc.termlist(): |
88 | - tf = 1+math.log(term.wdf) | |
89 | - idf = math.log(index.get_doccount()/ | |
90 | - float(index.get_termfreq(term.term))) | |
91 | - weights[term.term] = tf*idf | |
88 | + try: | |
89 | + # Even if it shouldn't raise error... | |
90 | + # math.log: ValueError: math domain error | |
91 | + tf = 1+math.log(term.wdf) | |
92 | + idf = math.log(index.get_doccount()/ | |
93 | + float(index.get_termfreq(term.term))) | |
94 | + weights[term.term] = tf*idf | |
95 | + except: | |
96 | + pass | |
92 | 97 | sorted_weights = list(reversed(sorted(weights.items(), |
93 | 98 | key=operator.itemgetter(1)))) |
94 | 99 | #print sorted_weights |
... | ... | @@ -410,7 +415,7 @@ class PopconXapianIndex(xapian.WritableDatabase): |
410 | 415 | # if the package has tags associated with it |
411 | 416 | if not tags == "notags": |
412 | 417 | for tag in tags: |
413 | - if tag in self.valid_tags: | |
418 | + if tag.lstrip("XT") in self.valid_tags: | |
414 | 419 | doc.add_term(tag,freq) |
415 | 420 | doc_id = self.add_document(doc) |
416 | 421 | doc_count += 1 | ... | ... |
src/evaluation.py
... | ... | @@ -123,16 +123,33 @@ class Recall(Metric): |
123 | 123 | """ |
124 | 124 | return float(len(evaluation.true_positive))/len(evaluation.real_relevant) |
125 | 125 | |
126 | -class F1(Metric): | |
126 | +class FPR(Metric): | |
127 | + """ | |
128 | + False positive rate (used for ploting ROC curve). | |
129 | + """ | |
130 | + def __init__(self): | |
131 | + """ | |
132 | + Set metric description. | |
133 | + """ | |
134 | + self.desc = " FPR " | |
135 | + | |
136 | + def run(self,evaluation): | |
137 | + """ | |
138 | + Compute metric. | |
139 | + """ | |
140 | + return float(len(evaluation.false_positive))/evaluation.true_negatives_len | |
141 | + | |
142 | +class F_score(Metric): | |
127 | 143 | """ |
128 | 144 | Classification accuracy metric which correlates precision and recall into an |
129 | 145 | unique measure. |
130 | 146 | """ |
131 | - def __init__(self): | |
147 | + def __init__(self,k): | |
132 | 148 | """ |
133 | 149 | Set metric description. |
134 | 150 | """ |
135 | - self.desc = " F1 " | |
151 | + self.desc = " F_score " | |
152 | + self.k = k | |
136 | 153 | |
137 | 154 | def run(self,evaluation): |
138 | 155 | """ |
... | ... | @@ -140,8 +157,8 @@ class F1(Metric): |
140 | 157 | """ |
141 | 158 | p = Precision().run(evaluation) |
142 | 159 | r = Recall().run(evaluation) |
143 | - if (p+r)>0: | |
144 | - return float(2*((p*r)/(p+r))) | |
160 | + if ((self.k*self.k*p)+r)>0: | |
161 | + return float(((1+(self.k*self.k))*((p*r)/((self.k*self.k*p)+r)))) | |
145 | 162 | else: |
146 | 163 | return 0 |
147 | 164 | |
... | ... | @@ -237,11 +254,12 @@ class Evaluation: |
237 | 254 | self.false_negative = [v[0] for v in self.real_relevant if not v[0] in |
238 | 255 | [w[0] for w in self.predicted_relevant]] |
239 | 256 | |
240 | - logging.debug("TP: %d" % len(self.true_positive)) | |
241 | - logging.debug("FP: %d" % len(self.false_positive)) | |
242 | - logging.debug("FN: %d" % len(self.false_negative)) | |
243 | - logging.debug("Repo_size: %d" % self.repository_size) | |
244 | - logging.debug("Relevant: %d" % len(self.real_relevant)) | |
257 | + self.true_negatives_len = self.repository_size - len(self.real_relevant) | |
258 | + #logging.debug("TP: %d" % len(self.true_positive)) | |
259 | + #logging.debug("FP: %d" % len(self.false_positive)) | |
260 | + #logging.debug("FN: %d" % len(self.false_negative)) | |
261 | + #logging.debug("Repo_size: %d" % self.repository_size) | |
262 | + #logging.debug("Relevant: %d" % len(self.real_relevant)) | |
245 | 263 | |
246 | 264 | def run(self,metric): |
247 | 265 | """ | ... | ... |
src/experiments/strategies-suite.py
... | ... | @@ -30,117 +30,245 @@ import logging |
30 | 30 | import random |
31 | 31 | import Gnuplot |
32 | 32 | |
33 | -def write_recall_log(label,sample,recommendation,log_file): | |
33 | +#iterations = 3 | |
34 | +#sample_proportions = [0.9] | |
35 | +#weighting = [('bm25',1.2)] | |
36 | +#collaborative = ['knn'] | |
37 | +#content_based = [] | |
38 | +#hybrid = ['knnco'] | |
39 | +#profile_size = [50,100] | |
40 | +#popcon_size = ["1000"] | |
41 | +#neighbors = [50] | |
42 | + | |
43 | +iterations = 10 | |
44 | +sample_proportions = [0.5, 0.6, 0.7, 0.8, 0.9] | |
45 | +weighting = [('bm25',1.2), ('bm25',1.6), ('bm25',2.0), ('trad',0)] | |
46 | +content_based = ['cb','cbt','cbd','cbh','cb_eset','cbt_eset','cbd_eset','cbh_eset'] | |
47 | +collaborative = ['knn_eset','knn','knn_plus'] | |
48 | +hybrid = ['knnco','knnco_eset'] | |
49 | + | |
50 | +profile_size = range(20,100,20) | |
51 | +#popcon_size = [1000,10000,50000,'full'] | |
52 | +neighbors = range(10,510,50) | |
53 | + | |
54 | +def write_recall_log(label,n,sample,recommendation,profile_size,repo_size,log_file): | |
34 | 55 | # Write recall log |
35 | - output = open(log_file,'w') | |
36 | - output.write("# %s\n" % label["description"]) | |
37 | - output.write("# %s\n" % label["values"]) | |
38 | - notfound = [] | |
39 | - ranks = [] | |
40 | - for pkg in sample.keys(): | |
41 | - if pkg in recommendation.ranking: | |
42 | - ranks.append(recommendation.ranking.index(pkg)) | |
43 | - else: | |
44 | - notfound.append(pkg) | |
45 | - for r in sorted(ranks): | |
46 | - output.write(str(r)+"\n") | |
47 | - if notfound: | |
48 | - output.write("Out of recommendation:\n") | |
49 | - for pkg in notfound: | |
50 | - output.write(pkg+"\n") | |
56 | + output = open(("%s-%d" % (log_file,n)),'w') | |
57 | + output.write("# %s-n\n" % label["description"]) | |
58 | + output.write("# %s-%d\n" % (label["values"],n)) | |
59 | + output.write("\n%d %d %d\n" % \ | |
60 | + (repo_size,profile_size,len(sample))) | |
61 | + if hasattr(recommendation,"ranking"): | |
62 | + notfound = [] | |
63 | + ranks = [] | |
64 | + for pkg in sample.keys(): | |
65 | + if pkg in recommendation.ranking: | |
66 | + ranks.append(recommendation.ranking.index(pkg)) | |
67 | + else: | |
68 | + notfound.append(pkg) | |
69 | + for r in sorted(ranks): | |
70 | + output.write(str(r)+"\n") | |
71 | + if notfound: | |
72 | + output.write("Out of recommendation:\n") | |
73 | + for pkg in notfound: | |
74 | + output.write(pkg+"\n") | |
51 | 75 | output.close() |
52 | 76 | |
53 | -def plot_summary(sample,recommendation,repo_size,log_file): | |
77 | +def plot_summary(precision,recall,f1,f05,accuracy,log_file): | |
54 | 78 | # Plot metrics summary |
55 | - accuracy = [] | |
56 | - precision = [] | |
57 | - recall = [] | |
58 | - f1 = [] | |
59 | 79 | g = Gnuplot.Gnuplot() |
60 | 80 | g('set style data lines') |
61 | 81 | g.xlabel('Recommendation size') |
62 | - for size in range(1,len(recommendation.ranking)+1,100): | |
63 | - predicted = RecommendationResult(dict.fromkeys(recommendation.ranking[:size],1)) | |
64 | - real = RecommendationResult(sample) | |
65 | - evaluation = Evaluation(predicted,real,repo_size) | |
66 | - accuracy.append([size,evaluation.run(Accuracy())]) | |
67 | - precision.append([size,evaluation.run(Precision())]) | |
68 | - recall.append([size,evaluation.run(Recall())]) | |
69 | - f1.append([size,evaluation.run(F1())]) | |
70 | - | |
82 | + g.title("Setup: %s" % log_file.split("/")[-1]) | |
71 | 83 | g.plot(Gnuplot.Data(accuracy,title="Accuracy"), |
72 | 84 | Gnuplot.Data(precision,title="Precision"), |
73 | 85 | Gnuplot.Data(recall,title="Recall"), |
74 | - Gnuplot.Data(f1,title="F1")) | |
75 | - g.hardcopy(log_file+"-plot.ps", terminal="postscript") | |
76 | - g.hardcopy(log_file+"-plot.ps", terminal="postscript") | |
77 | - | |
78 | -def run_iteration(user,cfg,label,sample): | |
79 | - rec = Recommender(cfg) | |
80 | - repo_size = rec.items_repository.get_doccount() | |
81 | - recommendation = rec.get_recommendation(user,repo_size) | |
82 | - log_file = "results/strategies/"+label["values"] | |
83 | - write_recall_log(label,sample,recommendation,log_file) | |
84 | - plot_summary(sample,recommendation,repo_size,log_file) | |
85 | - | |
86 | -def run_strategies(user,sample,n): | |
87 | - cfg = Config() | |
86 | + Gnuplot.Data(f1,title="F_1"), | |
87 | + Gnuplot.Data(f05,title="F_0.5")) | |
88 | + g.hardcopy(log_file+".png",terminal="png") | |
89 | + g.hardcopy(log_file+".ps",terminal="postscript",enhanced=1,color=1) | |
90 | + g('set logscale x') | |
91 | + g('replot') | |
92 | + g.hardcopy(log_file+"-logscale.png",terminal="png") | |
93 | + g.hardcopy(log_file+"-logscale.ps",terminal="postscript",enhanced=1,color=1) | |
94 | + | |
95 | +def get_label(cfg,sample_proportion): | |
88 | 96 | label = {} |
89 | - sample_proportion = (len(sample)/len(user.pkg_profile)+len(sample)) | |
90 | - for k in bm25_k1: | |
91 | - cfg.bm25_k1 = k | |
92 | - if "content" in sys.argv or len(sys.argv)<2: | |
97 | + if cfg.strategy in content_based: | |
98 | + label["description"] = "strategy-filter-profile-k1_bm25-sample" | |
99 | + label["values"] = ("%s-profile%d-%s-kbm%.1f-sample%.1f" % | |
100 | + (cfg.strategy,cfg.profile_size, | |
101 | + cfg.pkgs_filter.split("/")[-1], | |
102 | + cfg.bm25_k1,sample_proportion)) | |
103 | + elif cfg.strategy in collaborative: | |
104 | + label["description"] = "strategy-knn-filter-k1_bm25-sample" | |
105 | + label["values"] = ("%s-k%d-%s-kbm%.1f-sample%.1f" % | |
106 | + (cfg.strategy,cfg.k_neighbors, | |
107 | + cfg.pkgs_filter.split("/")[-1], | |
108 | + cfg.bm25_k1,sample_proportion)) | |
109 | + elif cfg.strategy in hybrid: | |
110 | + label["description"] = "strategy-knn-filter-profile-k1_bm25-sample" | |
111 | + label["values"] = ("%s-k%d-profile%d-%s-kbm%.1f-sample%.1f" % | |
112 | + (cfg.strategy,cfg.k_neighbors,cfg.profile_size, | |
113 | + cfg.pkgs_filter.split("/")[-1], | |
114 | + cfg.bm25_k1,sample_proportion)) | |
115 | + else: | |
116 | + print "Unknown strategy" | |
117 | + return label | |
118 | + | |
119 | +class ExperimentResults: | |
120 | + def __init__(self,repo_size): | |
121 | + self.repository_size = repo_size | |
122 | + self.accuracy = {} | |
123 | + self.precision = {} | |
124 | + self.recall = {} | |
125 | + self.f1 = {} | |
126 | + self.f05 = {} | |
127 | + points = [1]+range(10,200,10)+range(200,self.repository_size,100) | |
128 | + for size in points: | |
129 | + self.accuracy[size] = [] | |
130 | + self.precision[size] = [] | |
131 | + self.recall[size] = [] | |
132 | + self.f1[size] = [] | |
133 | + self.f05[size] = [] | |
134 | + | |
135 | + def add_result(self,ranking,sample): | |
136 | + for size in self.accuracy.keys(): | |
137 | + predicted = RecommendationResult(dict.fromkeys(ranking[:size],1)) | |
138 | + real = RecommendationResult(sample) | |
139 | + evaluation = Evaluation(predicted,real,self.repository_size) | |
140 | + self.accuracy[size].append(evaluation.run(Accuracy())) | |
141 | + self.precision[size].append(evaluation.run(Precision())) | |
142 | + self.recall[size].append(evaluation.run(Recall())) | |
143 | + self.f1[size].append(evaluation.run(F_score(1))) | |
144 | + self.f05[size].append(evaluation.run(F_score(0.5))) | |
145 | + | |
146 | + def get_precision_summary(self): | |
147 | + summary = [[size,sum(values)/len(values)] for size,values in self.precision.items()] | |
148 | + return sorted(summary) | |
149 | + | |
150 | + def get_recall_summary(self): | |
151 | + summary = [[size,sum(values)/len(values)] for size,values in self.recall.items()] | |
152 | + return sorted(summary) | |
153 | + | |
154 | + def get_f1_summary(self): | |
155 | + summary = [[size,sum(values)/len(values)] for size,values in self.f1.items()] | |
156 | + return sorted(summary) | |
157 | + | |
158 | + def get_f05_summary(self): | |
159 | + summary = [[size,sum(values)/len(values)] for size,values in self.f05.items()] | |
160 | + return sorted(summary) | |
161 | + | |
162 | + def get_accuracy_summary(self): | |
163 | + summary = [[size,sum(values)/len(values)] for size,values in self.accuracy.items()] | |
164 | + return sorted(summary) | |
165 | + | |
166 | + def best_precision(self): | |
167 | + size = max(self.precision, key = lambda x: max(self.precision[x])) | |
168 | + return (size,max(self.precision[size])) | |
169 | + | |
170 | + def best_f1(self): | |
171 | + size = max(self.f1, key = lambda x: max(self.f1[x])) | |
172 | + return (size,max(self.f1[size])) | |
173 | + | |
174 | + def best_f05(self): | |
175 | + size = max(self.f05, key = lambda x: max(self.f05[x])) | |
176 | + return (size,max(self.f05[size])) | |
177 | + | |
178 | +def run_strategy(cfg,user): | |
179 | + for weight in weighting: | |
180 | + cfg.weight = weight[0] | |
181 | + cfg.bm25_k1 = weight[1] | |
182 | + rec = Recommender(cfg) | |
183 | + repo_size = rec.items_repository.get_doccount() | |
184 | + for proportion in sample_proportions: | |
185 | + results = ExperimentResults(repo_size) | |
186 | + label = get_label(cfg,proportion) | |
187 | + log_file = "results/strategies/"+label["values"] | |
188 | + for n in range(iterations): | |
189 | + # Fill sample profile | |
190 | + profile_size = len(user.pkg_profile) | |
191 | + item_score = {} | |
192 | + for pkg in user.pkg_profile: | |
193 | + item_score[pkg] = user.item_score[pkg] | |
194 | + sample = {} | |
195 | + sample_size = int(profile_size*proportion) | |
196 | + for i in range(sample_size): | |
197 | + key = random.choice(item_score.keys()) | |
198 | + sample[key] = item_score.pop(key) | |
199 | + iteration_user = User(item_score) | |
200 | + recommendation = rec.get_recommendation(iteration_user,repo_size) | |
201 | + write_recall_log(label,n,sample,recommendation,profile_size,repo_size,log_file) | |
202 | + if hasattr(recommendation,"ranking"): | |
203 | + results.add_result(recommendation.ranking,sample) | |
204 | + with open(log_file,'w') as f: | |
205 | + precision_10 = sum(results.precision[10])/len(results.precision[10]) | |
206 | + f1_10 = sum(results.f1[10])/len(results.f1[10]) | |
207 | + f05_10 = sum(results.f05[10])/len(results.f05[10]) | |
208 | + f.write("# %s\n# %s\n\ncoverage %d\n\n" % | |
209 | + (label["description"],label["values"],recommendation.size)) | |
210 | + f.write("# best results (recommendation size; metric)\n") | |
211 | + f.write("precision (%d; %.2f)\nf1 (%d; %.2f)\nf05 (%d; %.2f)\n\n" % | |
212 | + (results.best_precision()[0],results.best_precision()[1], | |
213 | + results.best_f1()[0],results.best_f1()[1], | |
214 | + results.best_f05()[0],results.best_f05()[1])) | |
215 | + f.write("# recommendation size 10\nprecision (10; %.2f)\nf1 (10; %.2f)\nf05 (10; %.2f)" % | |
216 | + (precision_10,f1_10,f05_10)) | |
217 | + precision = results.get_precision_summary() | |
218 | + recall = results.get_recall_summary() | |
219 | + f1 = results.get_f1_summary() | |
220 | + f05 = results.get_f05_summary() | |
221 | + accuracy = results.get_accuracy_summary() | |
222 | + plot_summary(precision,recall,f1,f05,accuracy,log_file) | |
223 | + | |
224 | +def run_content(user,cfg): | |
225 | + for strategy in content_based: | |
226 | + cfg.strategy = strategy | |
227 | + for size in profile_size: | |
228 | + cfg.profile_size = size | |
229 | + run_strategy(cfg,user) | |
230 | + | |
231 | +def run_collaborative(user,cfg): | |
232 | + popcon_desktopapps = cfg.popcon_desktopapps | |
233 | + popcon_programs = cfg.popcon_programs | |
234 | + for strategy in collaborative: | |
235 | + cfg.strategy = strategy | |
236 | + for k in neighbors: | |
237 | + cfg.k_neighbors = k | |
238 | + #for size in popcon_size: | |
239 | + # if size: | |
240 | + # cfg.popcon_desktopapps = popcon_desktopapps+"_"+size | |
241 | + # cfg.popcon_programs = popcon_programs+"_"+size | |
242 | + run_strategy(cfg,user) | |
243 | + | |
244 | +def run_hybrid(user,cfg): | |
245 | + popcon_desktopapps = cfg.popcon_desktopapps | |
246 | + popcon_programs = cfg.popcon_programs | |
247 | + for strategy in hybrid: | |
248 | + cfg.strategy = strategy | |
249 | + for k in neighbors: | |
250 | + cfg.k_neighbors = k | |
251 | + #for size in popcon_size: | |
252 | + # if size: | |
253 | + # cfg.popcon_desktopapps = popcon_desktopapps+"_"+size | |
254 | + # cfg.popcon_programs = popcon_programs+"_"+size | |
93 | 255 | for size in profile_size: |
94 | 256 | cfg.profile_size = size |
95 | - for strategy in content_based: | |
96 | - cfg.strategy = strategy | |
97 | - label["description"] = "k1_bm25-profile-strategy-sample-n" | |
98 | - label["values"] = ("%.2f-%d-%s-%.2f-%d" % | |
99 | - (cfg.bm25_k1,cfg.profile_size, | |
100 | - cfg.strategy,sample_proportion,n)) | |
101 | - run_iteration(user,cfg,label,sample) | |
102 | - if "colaborative" in sys.argv or len(sys.argv)<2: | |
103 | - for strategy in collaborative: | |
104 | - cfg.strategy = strategy | |
105 | - for size in popcon_size: | |
106 | - cfg.popcon_desktopapps = cfg.popcon_desktopapps+size | |
107 | - cfg.popcon_programs = cfg.popcon_programs+size | |
108 | - for k in neighbors: | |
109 | - cfg.k_neighbors = k | |
110 | - k_str = "k"+str(cfg.k_neighbors) | |
111 | - label["description"] = "k1_bm25-popcon-strategy-k-sample-n" | |
112 | - label["values"] = ("%.2f-%s-%s-%s-%.2f-%d" % | |
113 | - (cfg.bm25_k1,str(popcon_size),cfg.strategy, | |
114 | - k_str,sample_proportion,n)) | |
115 | - run_iteration(user,cfg,label,sample) | |
257 | + run_strategy(cfg,user) | |
116 | 258 | |
117 | 259 | if __name__ == '__main__': |
118 | - iterations = 10 | |
119 | - samples_proportion = [0.5, 0.6, 0.7, 0.8, 0.9] | |
120 | - weights = ['bm25', 'trad'] | |
121 | - bm25_k1 = [1.0, 1.2, 1.4, 1.6, 1.8, 2.0] | |
122 | - content_based = ['cb','cbt','cbd','cbh', | |
123 | - 'cb_eset','cbt_eset','cbd_eset','cbh_eset'] | |
124 | - collaborative = ['knn','knn_plus','knn_eset'] | |
125 | - hybrid = ['knnco','knnco_eset'] | |
126 | - | |
127 | - profile_size = range(10,100,10) | |
128 | - popcon_size = [1000,10000,50000,'full'] | |
129 | - neighbors = range(10,510,100) | |
130 | - | |
131 | - user = LocalSystem() | |
260 | + #user = LocalSystem() | |
132 | 261 | #user = RandomPopcon(cfg.popcon_dir,os.path.join(cfg.filters_dir,"desktopapps")) |
262 | + | |
263 | + cfg = Config() | |
264 | + user = PopconSystem("/root/.app-recommender/popcon-entries/8b/8b44fcdbcf676e711a153d5db09979d7") | |
265 | + #user = PopconSystem("/root/.app-recommender/popcon-entries/4a/4a67a295ec14826db2aa1d90be2f1623") | |
266 | + user.filter_pkg_profile(cfg.pkgs_filter) | |
133 | 267 | user.maximal_pkg_profile() |
134 | - for sample_proportion in samples_proportion: | |
135 | - for n in range(iterations): | |
136 | - # Fill user profile | |
137 | - item_score = {} | |
138 | - for pkg in user.pkg_profile: | |
139 | - item_score[pkg] = user.item_score[pkg] | |
140 | - # Prepare partition sample | |
141 | - sample = {} | |
142 | - sample_size = int(len(user.pkg_profile)*sample_proportion) | |
143 | - for i in range(sample_size): | |
144 | - key = random.choice(item_score.keys()) | |
145 | - sample[key] = item_score.pop(key) | |
146 | - run_strategies(User(item_score),sample,n) | |
268 | + | |
269 | + if "content" in sys.argv or len(sys.argv)<2: | |
270 | + run_content(user,cfg) | |
271 | + if "collaborative" in sys.argv or len(sys.argv)<2: | |
272 | + run_collaborative(user,cfg) | |
273 | + if "hybrid" in sys.argv or len(sys.argv)<2: | |
274 | + run_hybrid(user,cfg) | ... | ... |
src/recommender.py
... | ... | @@ -109,8 +109,12 @@ class Recommender: |
109 | 109 | Set the recommendation strategy. |
110 | 110 | """ |
111 | 111 | logging.info("Setting recommender strategy to \'%s\'" % strategy_str) |
112 | - self.items_repository = self.axi_programs | |
113 | - self.valid_pkgs = self.valid_programs | |
112 | + if self.cfg.pkgs_filter.split("/")[-1] == "desktopapps": | |
113 | + self.items_repository = self.axi_desktopapps | |
114 | + self.valid_pkgs = self.valid_desktopapps | |
115 | + else: | |
116 | + self.items_repository = self.axi_programs | |
117 | + self.valid_pkgs = self.valid_programs | |
114 | 118 | # Check if collaborative strategies can be instanciated |
115 | 119 | if ("col" in strategy_str) or ("knn" in strategy_str): |
116 | 120 | if not self.cfg.popcon: | ... | ... |
src/strategy.py
... | ... | @@ -100,6 +100,7 @@ class ContentBased(RecommendationStrategy): |
100 | 100 | |
101 | 101 | def get_sugestion_from_profile(self,rec,user,profile,recommendation_size): |
102 | 102 | query = xapian.Query(xapian.Query.OP_OR,profile) |
103 | + print query | |
103 | 104 | enquire = xapian.Enquire(rec.items_repository) |
104 | 105 | enquire.set_weighting_scheme(rec.weight) |
105 | 106 | enquire.set_query(query) |
... | ... | @@ -295,7 +296,7 @@ class KnnContent(Collaborative): |
295 | 296 | weights = data.tfidf_weighting(rec.users_repository,neighborhood, |
296 | 297 | PkgExpandDecider(user.items())) |
297 | 298 | profile = [w[0] for w in weights][:rec.cfg.profile_size] |
298 | - result = ContentBased().get_sugestion_from_profile(rec,user,profile,recommendation_size) | |
299 | + result = ContentBased("tag",rec.cfg.profile_size).get_sugestion_from_profile(rec,user,profile,recommendation_size) | |
299 | 300 | return result |
300 | 301 | |
301 | 302 | class KnnContentEset(Collaborative): |
... | ... | @@ -313,10 +314,10 @@ class KnnContentEset(Collaborative): |
313 | 314 | neighbors_rset = self.get_neighborhood_rset(user,rec) |
314 | 315 | enquire = self.get_enquire(rec) |
315 | 316 | # Retrieve relevant tags based on neighborhood profile expansion |
316 | - eset = enquire.get_eset(rec.cfg.profile_size,rset, | |
317 | + eset = enquire.get_eset(rec.cfg.profile_size,neighbors_rset, | |
317 | 318 | TagExpandDecider()) |
318 | 319 | profile = [e.term for e in eset] |
319 | - result = ContentBased().get_sugestion_from_profile(rec,user,profile,recommendation_size) | |
320 | + result = ContentBased("tag",rec.cfg.profile_size).get_sugestion_from_profile(rec,user,profile,recommendation_size) | |
320 | 321 | return result |
321 | 322 | |
322 | 323 | class Demographic(RecommendationStrategy): | ... | ... |