Commit 79e91d8c5e76016236e6af59f00a1fbbb813b390
1 parent
1aed15a5
Exists in
master
and in
1 other branch
Experiments refactoring.
Showing
2 changed files
with
109 additions
and
109 deletions
Show diff stats
src/evaluation.py
| ... | ... | @@ -294,6 +294,10 @@ class CrossValidation: |
| 294 | 294 | round_user = User(cross_item_score) |
| 295 | 295 | result_size = int(self.recommender.items_repository.get_doccount()* |
| 296 | 296 | self.result_proportion) |
| 297 | + logging.debug("size %d" % result_size) | |
| 298 | + if not result_size: | |
| 299 | + logging.critical("Recommendation size is zero.") | |
| 300 | + raise Error | |
| 297 | 301 | predicted_result = self.recommender.get_recommendation(round_user,result_size) |
| 298 | 302 | if not predicted_result.size: |
| 299 | 303 | logging.critical("No recommendation produced. Abort cross-validation.") | ... | ... |
src/experiments/strategies-suite.py
| ... | ... | @@ -30,121 +30,117 @@ import logging |
| 30 | 30 | import random |
| 31 | 31 | import Gnuplot |
| 32 | 32 | |
| 33 | -def run_iteration(label,cfg,sample_proportion,n): | |
| 33 | +def write_recall_log(label,sample,recommendation,log_file): | |
| 34 | + # Write recall log | |
| 35 | + output = open(log_file,'w') | |
| 36 | + output.write("# %s\n" % label["description"]) | |
| 37 | + output.write("# %s\n" % label["values"]) | |
| 38 | + notfound = [] | |
| 39 | + ranks = [] | |
| 40 | + for pkg in sample.keys(): | |
| 41 | + if pkg in recommendation.ranking: | |
| 42 | + ranks.append(recommendation.ranking.index(pkg)) | |
| 43 | + else: | |
| 44 | + notfound.append(pkg) | |
| 45 | + for r in sorted(ranks): | |
| 46 | + output.write(str(r)+"\n") | |
| 47 | + if notfound: | |
| 48 | + output.write("Out of recommendation:\n") | |
| 49 | + for pkg in notfound: | |
| 50 | + output.write(pkg+"\n") | |
| 51 | + output.close() | |
| 52 | + | |
| 53 | +def plot_summary(sample,recommendation,repo_size,log_file): | |
| 54 | + # Plot metrics summary | |
| 55 | + accuracy = [] | |
| 56 | + precision = [] | |
| 57 | + recall = [] | |
| 58 | + f1 = [] | |
| 59 | + g = Gnuplot.Gnuplot() | |
| 60 | + g('set style data lines') | |
| 61 | + g.xlabel('Recommendation size') | |
| 62 | + for size in range(1,len(recommendation.ranking)+1,100): | |
| 63 | + predicted = RecommendationResult(dict.fromkeys(recommendation.ranking[:size],1)) | |
| 64 | + real = RecommendationResult(sample) | |
| 65 | + evaluation = Evaluation(predicted,real,repo_size) | |
| 66 | + accuracy.append([size,evaluation.run(Accuracy())]) | |
| 67 | + precision.append([size,evaluation.run(Precision())]) | |
| 68 | + recall.append([size,evaluation.run(Recall())]) | |
| 69 | + f1.append([size,evaluation.run(F1())]) | |
| 70 | + | |
| 71 | + g.plot(Gnuplot.Data(accuracy,title="Accuracy"), | |
| 72 | + Gnuplot.Data(precision,title="Precision"), | |
| 73 | + Gnuplot.Data(recall,title="Recall"), | |
| 74 | + Gnuplot.Data(f1,title="F1")) | |
| 75 | + g.hardcopy(log_file+"-plot.ps", terminal="postscript") | |
| 76 | + g.hardcopy(log_file+"-plot.ps", terminal="postscript") | |
| 77 | + | |
| 78 | +def run_iteration(user,cfg,label,sample): | |
| 34 | 79 | rec = Recommender(cfg) |
| 35 | 80 | repo_size = rec.items_repository.get_doccount() |
| 36 | - user = RandomPopcon(cfg.popcon_dir,os.path.join(cfg.filters,"desktop")) | |
| 37 | - print "profile",user.pkg_profile | |
| 38 | - user.maximal_pkg_profile() | |
| 39 | - sample_size = int(len(user.pkg_profile)*sample_proportion) | |
| 40 | - for n in range(iteration): | |
| 41 | - item_score = dict.fromkeys(user.pkg_profile,1) | |
| 42 | - # Prepare partition | |
| 43 | - sample = {} | |
| 44 | - for i in range(sample_size): | |
| 45 | - key = random.choice(item_score.keys()) | |
| 46 | - sample[key] = item_score.pop(key) | |
| 47 | - # Get full recommendation | |
| 48 | - user = User(item_score) | |
| 49 | - recommendation = rec.get_recommendation(user,repo_size) | |
| 50 | - # Write recall log | |
| 51 | - log_file = "results/strategies/"+label["values"] | |
| 52 | - output = open(log_file,'w') | |
| 53 | - output.write("# %s\n" % label["description"]) | |
| 54 | - output.write("# %s\n" % label["values"]) | |
| 55 | - notfound = [] | |
| 56 | - ranks = [] | |
| 57 | - for pkg in sample.keys(): | |
| 58 | - if pkg in recommendation.ranking: | |
| 59 | - ranks.append(recommendation.ranking.index(pkg)) | |
| 60 | - else: | |
| 61 | - notfound.append(pkg) | |
| 62 | - for r in sorted(ranks): | |
| 63 | - output.write(str(r)+"\n") | |
| 64 | - if notfound: | |
| 65 | - output.write("Out of recommendation:\n") | |
| 66 | - for pkg in notfound: | |
| 67 | - output.write(pkg+"\n") | |
| 68 | - output.close() | |
| 69 | - # Plot metrics summary | |
| 70 | - accuracy = [] | |
| 71 | - precision = [] | |
| 72 | - recall = [] | |
| 73 | - f1 = [] | |
| 74 | - g = Gnuplot.Gnuplot() | |
| 75 | - g('set style data lines') | |
| 76 | - g.xlabel('Recommendation size') | |
| 77 | - for size in range(1,len(recommendation.ranking)+1,100): | |
| 78 | - predicted = RecommendationResult(dict.fromkeys(recommendation.ranking[:size],1)) | |
| 79 | - real = RecommendationResult(sample) | |
| 80 | - evaluation = Evaluation(predicted,real,repo_size) | |
| 81 | - accuracy.append([size,evaluation.run(Accuracy())]) | |
| 82 | - precision.append([size,evaluation.run(Precision())]) | |
| 83 | - recall.append([size,evaluation.run(Recall())]) | |
| 84 | - f1.append([size,evaluation.run(F1())]) | |
| 85 | - | |
| 86 | - g.plot(Gnuplot.Data(accuracy,title="Accuracy"), | |
| 87 | - Gnuplot.Data(precision,title="Precision"), | |
| 88 | - Gnuplot.Data(recall,title="Recall"), | |
| 89 | - Gnuplot.Data(f1,title="F1")) | |
| 90 | - g.hardcopy(log_file+"-plot.ps", enhanced=1, color=1) | |
| 81 | + recommendation = rec.get_recommendation(user,repo_size) | |
| 82 | + log_file = "results/strategies/"+label["values"] | |
| 83 | + write_recall_log(label,sample,recommendation,log_file) | |
| 84 | + plot_summary(sample,recommendation,repo_size,log_file) | |
| 91 | 85 | |
| 86 | +def run_strategies(user,sample,n): | |
| 87 | + cfg = Config() | |
| 88 | + label = {} | |
| 89 | + sample_proportion = (len(sample)/len(user.pkg_profile)+len(sample)) | |
| 90 | + for k in bm25_k1: | |
| 91 | + cfg.bm25_k1 = k | |
| 92 | + if "content" in sys.argv or len(sys.argv)<2: | |
| 93 | + for size in profile_size: | |
| 94 | + cfg.profile_size = size | |
| 95 | + for strategy in content_based: | |
| 96 | + cfg.strategy = strategy | |
| 97 | + label["description"] = "k1_bm25-profile-strategy-sample-n" | |
| 98 | + label["values"] = ("%.2f-%d-%s-%.2f-%d" % | |
| 99 | + (cfg.bm25_k1,cfg.profile_size, | |
| 100 | + cfg.strategy,sample_proportion,n)) | |
| 101 | + run_iteration(user,cfg,label,sample) | |
| 102 | + if "colaborative" in sys.argv or len(sys.argv)<2: | |
| 103 | + for strategy in collaborative: | |
| 104 | + cfg.strategy = strategy | |
| 105 | + for size in popcon_size: | |
| 106 | + cfg.popcon_desktopapps = cfg.popcon_desktopapps+size | |
| 107 | + cfg.popcon_programs = cfg.popcon_programs+size | |
| 108 | + for k in neighbors: | |
| 109 | + cfg.k_neighbors = k | |
| 110 | + k_str = "k"+str(cfg.k_neighbors) | |
| 111 | + label["description"] = "k1_bm25-popcon-strategy-k-sample-n" | |
| 112 | + label["values"] = ("%.2f-%s-%s-%s-%.2f-%d" % | |
| 113 | + (cfg.bm25_k1,str(popcon_size),cfg.strategy, | |
| 114 | + k_str,sample_proportion,n)) | |
| 115 | + run_iteration(user,cfg,label,sample) | |
| 92 | 116 | |
| 93 | 117 | if __name__ == '__main__': |
| 94 | - iteration = 10 | |
| 118 | + iterations = 10 | |
| 95 | 119 | samples_proportion = [0.5, 0.6, 0.7, 0.8, 0.9] |
| 96 | 120 | weights = ['bm25', 'trad'] |
| 97 | - cb_strategies = ['cb','cbt','cbd'] | |
| 98 | - #cb_strategies = [] | |
| 99 | - profile_size = range(10,100,10) | |
| 100 | - items_repository = ["data/AppAxi","/var/lib/apt-xapian-index/index"] | |
| 101 | - users_repository = ["data/popcon_index_full","data/popcon_index-50000", | |
| 102 | - "data/popcon_index_10000","data/popcon_index_1000"] | |
| 103 | - users_repository = [] | |
| 104 | - neighbors = range(10,1010,100) | |
| 121 | + bm25_k1 = [1.0, 1.2, 1.4, 1.6, 1.8, 2.0] | |
| 122 | + content_based = ['cb','cbt','cbd','cbh', | |
| 123 | + 'cb_eset','cbt_eset','cbd_eset','cbh_eset'] | |
| 124 | + collaborative = ['knn','knn_plus','knn_eset'] | |
| 125 | + hybrid = ['knnco','knnco_eset'] | |
| 105 | 126 | |
| 106 | - cfg = Config() | |
| 107 | - cfg.index_mode = "old" | |
| 108 | - label = {} | |
| 127 | + profile_size = range(10,100,10) | |
| 128 | + popcon_size = [1000,10000,50000,'full'] | |
| 129 | + neighbors = range(10,510,100) | |
| 109 | 130 | |
| 110 | - for w in weights: | |
| 111 | - cfg.weight = w | |
| 112 | - for items_repo in items_repository: | |
| 113 | - cfg.axi = items_repo | |
| 114 | - if "App" in cfg.axi: | |
| 115 | - axi_str = "axiapp" | |
| 116 | - else: | |
| 117 | - axi_str = "axifull" | |
| 118 | - for sample_proportion in samples_proportion: | |
| 119 | - if "content" in sys.argv or len(sys.argv)<2: | |
| 120 | - for size in profile_size: | |
| 121 | - cfg.profile_size = size | |
| 122 | - for strategy in cb_strategies: | |
| 123 | - cfg.strategy = strategy | |
| 124 | - for n in range(iteration): | |
| 125 | - label["description"] = "weight-axi-profile-strategy-sample-n" | |
| 126 | - label["values"] = ("%s-%s-%d-%s-%.2f-%d" % | |
| 127 | - (cfg.weight,axi_str,cfg.profile_size, | |
| 128 | - cfg.strategy,sample_proportion,n)) | |
| 129 | - run_iteration(label,cfg,sample_proportion,n) | |
| 130 | - if "colaborative" in sys.argv or len(sys.argv)<2: | |
| 131 | - cfg.strategy = "col" | |
| 132 | - for users_repo in users_repository: | |
| 133 | - cfg.popcon_index = users_repo | |
| 134 | - for k in neighbors: | |
| 135 | - cfg.k_neighbors = k | |
| 136 | - for n in range(iteration): | |
| 137 | - k_str = "k"+str(cfg.k_neighbors) | |
| 138 | - if "full" in cfg.popcon_index: | |
| 139 | - popcon_str = "popfull" | |
| 140 | - if "50000" in cfg.popcon_index: | |
| 141 | - popcon_str = "pop50000" | |
| 142 | - if "10000" in cfg.popcon_index: | |
| 143 | - popcon_str = "pop10000" | |
| 144 | - if "1000" in cfg.popcon_index: | |
| 145 | - popcon_str = "pop1000" | |
| 146 | - label["description"] = "weight-axi-popcon-profile-strategy-k-sample-n" | |
| 147 | - label["values"] = ("%s-%s-%s-%d-%s-%s-%.2f-%d" % | |
| 148 | - (cfg.weight,axi_str,popcon_str,cfg.profile_size, | |
| 149 | - cfg.strategy,k_str,sample_proportion,n)) | |
| 150 | - run_iteration(label,cfg,sample_proportion,n) | |
| 131 | + user = LocalSystem() | |
| 132 | + #user = RandomPopcon(cfg.popcon_dir,os.path.join(cfg.filters_dir,"desktopapps")) | |
| 133 | + user.maximal_pkg_profile() | |
| 134 | + for sample_proportion in samples_proportion: | |
| 135 | + for n in range(iterations): | |
| 136 | + # Fill user profile | |
| 137 | + item_score = {} | |
| 138 | + for pkg in user.pkg_profile: | |
| 139 | + item_score[pkg] = user.item_score[pkg] | |
| 140 | + # Prepare partition sample | |
| 141 | + sample = {} | |
| 142 | + sample_size = int(len(user.pkg_profile)*sample_proportion) | |
| 143 | + for i in range(sample_size): | |
| 144 | + key = random.choice(item_score.keys()) | |
| 145 | + sample[key] = item_score.pop(key) | |
| 146 | + run_strategies(User(item_score),sample,n) | ... | ... |