Commit 88ca87f69c91537a217a06644f6bd354f6ed79ef
1 parent
2255aea0
Exists in
master
and in
1 other branch
Implementation of missing metrics and small fixes.
Showing
9 changed files
with
159 additions
and
116 deletions
Show diff stats
doc/doxy_config
... | ... | @@ -31,7 +31,7 @@ PROJECT_NAME = AppRecommender |
31 | 31 | # This could be handy for archiving the generated documentation or |
32 | 32 | # if some version control system is used. |
33 | 33 | |
34 | -PROJECT_NUMBER = v0.1 | |
34 | +PROJECT_NUMBER = v0.3 | |
35 | 35 | |
36 | 36 | # Using the PROJECT_BRIEF tag one can provide an optional one line description for a project that appears at the top of each page and should give viewer a quick idea about the purpose of the project. Keep the description short. |
37 | 37 | ... | ... |
src/app_recommender.py
src/cross_validation.py
src/data.py
... | ... | @@ -77,11 +77,15 @@ class TagsXapianIndex(xapian.WritableDatabase,Singleton): |
77 | 77 | self.db_path = os.path.expanduser(cfg.tags_db) |
78 | 78 | self.debtags_db = debtags.DB() |
79 | 79 | |
80 | - db = open(self.db_path) | |
80 | + try: | |
81 | + db_file = open(self.db_path) | |
82 | + except IOError: | |
83 | + logging.error("Could not load DebtagsDB from '%s'." % self.db_path) | |
84 | + raise Error | |
81 | 85 | md5 = hashlib.md5() |
82 | - md5.update(db.read()) | |
86 | + md5.update(db_file.read()) | |
83 | 87 | self.db_md5 = md5.hexdigest() |
84 | - | |
88 | + db_file.close() | |
85 | 89 | self.load_index(cfg.reindex) |
86 | 90 | |
87 | 91 | def load_db(self): |
... | ... | @@ -92,8 +96,9 @@ class TagsXapianIndex(xapian.WritableDatabase,Singleton): |
92 | 96 | try: |
93 | 97 | db_file = open(self.db_path, "r") |
94 | 98 | self.debtags_db.read(db_file,lambda x: not tag_filter.match(x)) |
95 | - except IOError: #FIXME try is not catching this | |
96 | - logging.error("Could not load DebtagsDB from %s." % self.db_path) | |
99 | + db_file.close() | |
100 | + except: | |
101 | + logging.error("Could not load DebtagsDB from '%s'." % self.db_path) | |
97 | 102 | raise Error |
98 | 103 | |
99 | 104 | def relevant_tags_from_db(self,pkgs_list,qtd_of_tags): | ... | ... |
src/evaluation.py
... | ... | @@ -33,7 +33,7 @@ class Metric: |
33 | 33 | |
34 | 34 | class Precision(Metric): |
35 | 35 | """ |
36 | - Accuracy evaluation metric defined as the percentage of relevant itens | |
36 | + Classification accuracy metric defined as the percentage of relevant itens | |
37 | 37 | among the predicted ones. |
38 | 38 | """ |
39 | 39 | def __init__(self): |
... | ... | @@ -50,7 +50,7 @@ class Precision(Metric): |
50 | 50 | |
51 | 51 | class Recall(Metric): |
52 | 52 | """ |
53 | - Accuracy evaluation metric defined as the percentage of relevant itens | |
53 | + Classification ccuracy metric defined as the percentage of relevant itens | |
54 | 54 | which were predicted as so. |
55 | 55 | """ |
56 | 56 | def __init__(self): |
... | ... | @@ -66,7 +66,10 @@ class Recall(Metric): |
66 | 66 | return float(len(evaluation.predicted_real))/len(evaluation.real_relevant) |
67 | 67 | |
68 | 68 | class F1(Metric): |
69 | - """ """ | |
69 | + """ | |
70 | + Classification accuracy metric which correlates precision and recall into an | |
71 | + unique measure. | |
72 | + """ | |
70 | 73 | def __init__(self): |
71 | 74 | """ |
72 | 75 | Set metric description. |
... | ... | @@ -79,24 +82,45 @@ class F1(Metric): |
79 | 82 | """ |
80 | 83 | p = Precision().run(evaluation) |
81 | 84 | r = Recall().run(evaluation) |
82 | - return float((2*p*r)/(p+r)) | |
85 | + return float((2*p*r))/(p+r) | |
83 | 86 | |
84 | 87 | class MAE(Metric): |
85 | - """ """ | |
88 | + """ | |
89 | + Prediction accuracy metric defined as the mean absolute error. | |
90 | + """ | |
86 | 91 | def __init__(self): |
87 | 92 | """ |
88 | 93 | Set metric description. |
89 | 94 | """ |
90 | 95 | self.desc = " MAE " |
91 | 96 | |
97 | + def get_errors(self,evaluation): | |
98 | + """ | |
99 | + Compute prediction errors. | |
100 | + """ | |
101 | + keys = evaluation.predicted_item_scores.keys() | |
102 | + keys.extend(evaluation.real_item_scores.keys()) | |
103 | + errors = [] | |
104 | + for k in keys: | |
105 | + if k not in evaluation.real_item_scores: | |
106 | + evaluation.real_item_scores[k] = 0.0 | |
107 | + if k not in evaluation.predicted_item_scores: | |
108 | + evaluation.predicted_item_scores[k] = 0.0 | |
109 | + errors.append(float(evaluation.predicted_item_scores[k]- | |
110 | + evaluation.real_item_scores[k])) | |
111 | + return errors | |
112 | + | |
92 | 113 | def run(self,evaluation): |
93 | 114 | """ |
94 | 115 | Compute metric. |
95 | 116 | """ |
96 | - print "---" #FIXME | |
117 | + errors = self.get_errors(evaluation) | |
118 | + return sum(errors)/len(errors) | |
97 | 119 | |
98 | -class MSE(Metric): | |
99 | - """ """ | |
120 | +class MSE(MAE): | |
121 | + """ | |
122 | + Prediction accuracy metric defined as the mean square error. | |
123 | + """ | |
100 | 124 | def __init__(self): |
101 | 125 | """ |
102 | 126 | Set metric description. |
... | ... | @@ -107,21 +131,34 @@ class MSE(Metric): |
107 | 131 | """ |
108 | 132 | Compute metric. |
109 | 133 | """ |
110 | - print "---" #FIXME | |
134 | + errors = self.get_errors(evaluation) | |
135 | + square_errors = [pow(x,2) for x in errors] | |
136 | + return sum(square_errors)/len(square_errors) | |
111 | 137 | |
112 | 138 | class Coverage(Metric): |
113 | - """ """ | |
114 | - def __init__(self): | |
139 | + """ | |
140 | + Evaluation metric defined as the percentage of itens covered by the | |
141 | + recommender (have been recommended at least once). | |
142 | + """ | |
143 | + def __init__(self,repository_size): | |
115 | 144 | """ |
116 | - Set metric description. | |
145 | + Set initial parameters. | |
117 | 146 | """ |
118 | 147 | self.desc = " Coverage " |
148 | + self.repository_size = repository_size | |
149 | + self.covered = set() | |
150 | + | |
151 | + def save_covered(self,recommended_list): | |
152 | + """ | |
153 | + Register that a list of itens has been recommended. | |
154 | + """ | |
155 | + self.covered.update(set(recommended_list)) | |
119 | 156 | |
120 | 157 | def run(self,evaluation): |
121 | 158 | """ |
122 | 159 | Compute metric. |
123 | 160 | """ |
124 | - print "---" #FIXME | |
161 | + return float(self.covered.size)/self.repository_size | |
125 | 162 | |
126 | 163 | class Evaluation: |
127 | 164 | """ |
... | ... | @@ -158,8 +195,7 @@ class CrossValidation: |
158 | 195 | if partition_proportion<1 and partition_proportion>0: |
159 | 196 | self.partition_proportion = partition_proportion |
160 | 197 | else: |
161 | - logging.critical("Partition proportion must be a value in the | |
162 | - interval [0,1].") | |
198 | + logging.critical("Partition proportion must be a value in the interval [0,1].") | |
163 | 199 | raise Error |
164 | 200 | self.rounds = rounds |
165 | 201 | self.recommender = rec |
... | ... | @@ -195,7 +231,6 @@ class CrossValidation: |
195 | 231 | """ |
196 | 232 | cross_item_score = dict.fromkeys(user.pkg_profile,1) |
197 | 233 | partition_size = int(len(cross_item_score)*self.partition_proportion) |
198 | - #cross_item_score = user.item_score.copy() | |
199 | 234 | for r in range(self.rounds): |
200 | 235 | round_partition = {} |
201 | 236 | for j in range(partition_size): | ... | ... |
src/generate_doc.sh
... | ... | @@ -19,8 +19,10 @@ |
19 | 19 | |
20 | 20 | # Get project version from git repository |
21 | 21 | TAG=$(git describe --tags --abbrev=0) |
22 | +echo "Generating documentation for git tag $TAG" | |
22 | 23 | sed -i "s/^PROJECT_NUMBER.*$/PROJECT_NUMBER\t\t= $TAG/" ../doc/doxy_config |
23 | 24 | rm -Rf ../doc/html |
24 | -../doc/doxygen ../doc/doxy_config | |
25 | -#scp -r html/* tassia@www.ime.usp.br:public_html/ | |
25 | +../doc/doxygen-1.7.3 ../doc/doxy_config | |
26 | +scp -r html/ tassia@eclipse.ime.usp.br: | |
27 | +echo "---> Remember to place doc in the right location on server side." | |
26 | 28 | mv html/ ../doc/ | ... | ... |
src/recommender.py
... | ... | @@ -61,7 +61,8 @@ class Recommender: |
61 | 61 | try: |
62 | 62 | strategy = "self."+cfg.strategy+"(cfg)" |
63 | 63 | exec(strategy) |
64 | - except (NameError, AttributeError, SyntaxError): | |
64 | + except (NameError, AttributeError, SyntaxError) as err: | |
65 | + print err | |
65 | 66 | logging.critical("Could not perform recommendation strategy '%s'" % |
66 | 67 | cfg.strategy) |
67 | 68 | raise Error | ... | ... |
... | ... | @@ -0,0 +1,89 @@ |
1 | +#!/usr/bin/python | |
2 | + | |
3 | +# similarity - python module for classes and methods related to similarity | |
4 | +# measuring between two sets of data. | |
5 | +# | |
6 | +# Copyright (C) 2010 Tassia Camoes <tassia@gmail.com> | |
7 | +# | |
8 | +# This program is free software: you can redistribute it and/or modify | |
9 | +# it under the terms of the GNU General Public License as published by | |
10 | +# the Free Software Foundation, either version 3 of the License, or | |
11 | +# (at your option) any later version. | |
12 | +# | |
13 | +# This program is distributed in the hope that it will be useful, | |
14 | +# but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | +# GNU General Public License for more details. | |
17 | +# | |
18 | +# You should have received a copy of the GNU General Public License | |
19 | +# along with this program. If not, see <http://www.gnu.org/licenses/>. | |
20 | + | |
21 | +import math | |
22 | +import stats | |
23 | + | |
24 | +def norm(x): | |
25 | + """ | |
26 | + Return vector norm. | |
27 | + """ | |
28 | + return math.sqrt(sum([x_i**2 for x_i in x])) | |
29 | + | |
30 | +def dot_product(x,y): | |
31 | + """ | |
32 | + Return dot product of vectors 'x' and 'y'. | |
33 | + """ | |
34 | + return sum([(x[i] * y[i]) for i in range(len(x))]) | |
35 | + | |
36 | +class SimilarityMeasure: | |
37 | + """ | |
38 | + Abstraction for diferent similarity measure approaches. | |
39 | + """ | |
40 | + | |
41 | +class Distance(SimilarityMeasure): | |
42 | + """ | |
43 | + Euclidian distance measure. | |
44 | + """ | |
45 | + def __call__(self,x,y): | |
46 | + """ | |
47 | + Return euclidian distance between vectors 'x' and 'y'. | |
48 | + """ | |
49 | + sum_pow = sum([((x[i] - y[i]) ** 2) for i in range(len(x))]) | |
50 | + return math.sqrt(sum_pow) | |
51 | + | |
52 | +class Cosine(SimilarityMeasure): | |
53 | + """ | |
54 | + Cosine similarity measure. | |
55 | + """ | |
56 | + def __call__(self,x,y): | |
57 | + """ | |
58 | + Return cosine of angle between vectors 'x' and 'y'. | |
59 | + """ | |
60 | + return float(dot_product(x,y)/(norm(x)*norm(y))) | |
61 | + | |
62 | +class Pearson(SimilarityMeasure): | |
63 | + """ | |
64 | + Pearson coeficient measure. | |
65 | + """ | |
66 | + def __call__(self,x,y): | |
67 | + """ Return Pearson coeficient between vectors 'x' and 'y'. """ | |
68 | + return stats.pearsonr(x,y) # FIXME: ZeroDivisionError | |
69 | + | |
70 | +class Spearman(SimilarityMeasure): | |
71 | + """ | |
72 | + Spearman correlation measure. | |
73 | + """ | |
74 | + def __call__(self,x,y): | |
75 | + """ | |
76 | + Return Spearman correlation between vectors 'x' and 'y'. | |
77 | + """ | |
78 | + return stats.spearmanr(x,y) # FIXME: ZeroDivisionError | |
79 | + | |
80 | +class Tanimoto(SimilarityMeasure): | |
81 | + """ | |
82 | + Tanimoto coeficient measure. | |
83 | + """ | |
84 | + def __call__(self,x,y): | |
85 | + """ | |
86 | + Return Tanimoto coeficient between vectors 'x' and 'y'. | |
87 | + """ | |
88 | + z = [v for v in x if v in y] | |
89 | + return float(len(z))/(len(x)+len(y)-len(z)) | ... | ... |
src/similarity_measure.py
... | ... | @@ -1,89 +0,0 @@ |
1 | -#!/usr/bin/python | |
2 | - | |
3 | -# similarity-measure - python module for classes and methods related to | |
4 | -# measuring similarity between two sets of data. | |
5 | -# | |
6 | -# Copyright (C) 2010 Tassia Camoes <tassia@gmail.com> | |
7 | -# | |
8 | -# This program is free software: you can redistribute it and/or modify | |
9 | -# it under the terms of the GNU General Public License as published by | |
10 | -# the Free Software Foundation, either version 3 of the License, or | |
11 | -# (at your option) any later version. | |
12 | -# | |
13 | -# This program is distributed in the hope that it will be useful, | |
14 | -# but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | -# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | -# GNU General Public License for more details. | |
17 | -# | |
18 | -# You should have received a copy of the GNU General Public License | |
19 | -# along with this program. If not, see <http://www.gnu.org/licenses/>. | |
20 | - | |
21 | -import math | |
22 | -import stats | |
23 | - | |
24 | -def norm(x): | |
25 | - """ | |
26 | - Return vector norm. | |
27 | - """ | |
28 | - return math.sqrt(sum([x_i**2 for x_i in x])) | |
29 | - | |
30 | -def dot_product(x,y): | |
31 | - """ | |
32 | - Return dot product of vectors 'x' and 'y'. | |
33 | - """ | |
34 | - return sum([(x[i] * y[i]) for i in range(len(x))]) | |
35 | - | |
36 | -class SimilarityMeasure: | |
37 | - """ | |
38 | - Abstraction for diferent similarity measure approaches. | |
39 | - """ | |
40 | - | |
41 | -class Distance(SimilarityMeasure): | |
42 | - """ | |
43 | - Euclidian distance measure. | |
44 | - """ | |
45 | - def __call__(self,x,y): | |
46 | - """ | |
47 | - Return euclidian distance between vectors 'x' and 'y'. | |
48 | - """ | |
49 | - sum_pow = sum([((x[i] - y[i]) ** 2) for i in range(len(x))]) | |
50 | - return math.sqrt(sum_pow) | |
51 | - | |
52 | -class Cosine(SimilarityMeasure): | |
53 | - """ | |
54 | - Cosine similarity measure. | |
55 | - """ | |
56 | - def __call__(self,x,y): | |
57 | - """ | |
58 | - Return cosine of angle between vectors 'x' and 'y'. | |
59 | - """ | |
60 | - return float(dot_product(x,y)/(norm(x)*norm(y))) | |
61 | - | |
62 | -class Pearson(SimilarityMeasure): | |
63 | - """ | |
64 | - Pearson coeficient measure. | |
65 | - """ | |
66 | - def __call__(self,x,y): | |
67 | - """ Return Pearson coeficient between vectors 'x' and 'y'. """ | |
68 | - return stats.pearsonr(x,y) # FIXME: ZeroDivisionError | |
69 | - | |
70 | -class Spearman(SimilarityMeasure): | |
71 | - """ | |
72 | - Spearman correlation measure. | |
73 | - """ | |
74 | - def __call__(self,x,y): | |
75 | - """ | |
76 | - Return Spearman correlation between vectors 'x' and 'y'. | |
77 | - """ | |
78 | - return stats.spearmanr(x,y) # FIXME: ZeroDivisionError | |
79 | - | |
80 | -class Tanimoto(SimilarityMeasure): | |
81 | - """ | |
82 | - Tanimoto coeficient measure. | |
83 | - """ | |
84 | - def __call__(self,x,y): | |
85 | - """ | |
86 | - Return Tanimoto coeficient between vectors 'x' and 'y'. | |
87 | - """ | |
88 | - z = [v for v in x if v in y] | |
89 | - return float(len(z))/(len(x)+len(y)-len(z)) |