Commit 94efb102510a4e1f84d73385e35ce801856749d9
Exists in
master
and in
1 other branch
Merge branch 'master' of https://github.com/tassia/AppRecommender
Showing
25 changed files
with
1589 additions
and
1230 deletions
Show diff stats
README
... | ... | @@ -6,10 +6,7 @@ Install dependencies |
6 | 6 | |
7 | 7 | # apt-get install \ |
8 | 8 | python python-xapian python-apt python-cluster python-webpy python-simplejson \ |
9 | -python-unittest2 python-numpy python-gnuplot \ | |
10 | -apt-xapian-index gnuplot | |
11 | - | |
12 | -# cd ./src; git clone https://github.com/rueckstiess/expsuite | |
9 | +python-numpy apt-xapian-index app-install-data python-xdg | |
13 | 10 | |
14 | 11 | |
15 | 12 | Run AppRecommender web UI |
... | ... | @@ -20,4 +17,5 @@ Run AppRecommender web UI |
20 | 17 | |
21 | 18 | Open a browser and access http://localhost:8080 |
22 | 19 | |
20 | + | |
23 | 21 | More info at https://github.com/tassia/AppRecommender/wiki | ... | ... |
src/bin/cross_validation.py
... | ... | @@ -37,7 +37,7 @@ if __name__ == '__main__': |
37 | 37 | #user = LocalSystem() |
38 | 38 | #user = RandomPopcon(cfg.popcon_dir) |
39 | 39 | #user = RandomPopcon(cfg.popcon_dir,os.path.join(cfg.filters_dir,"desktopapps")) |
40 | - user = PopconSystem("/home/tassia/.app-recommender/popcon-entries/4a/4a67a295ec14826db2aa1d90be2f1623") | |
40 | + user = PopconSystem(os.path.expanduser("~/.app-recommender/popcon-entries/00/0001166d0737c6dffb083071e5ee69f5")) | |
41 | 41 | user.filter_pkg_profile(os.path.join(cfg.filters_dir,"desktopapps")) |
42 | 42 | user.maximal_pkg_profile() |
43 | 43 | begin_time = datetime.datetime.now() |
... | ... | @@ -48,7 +48,7 @@ if __name__ == '__main__': |
48 | 48 | metrics.append(F_score(0.5)) |
49 | 49 | metrics.append(Accuracy()) |
50 | 50 | metrics.append(FPR()) |
51 | - validation = CrossValidation(0.9,10,rec,metrics,1) | |
51 | + validation = CrossValidation(0.9,20,rec,metrics,0.005) | |
52 | 52 | validation.run(user) |
53 | 53 | print validation |
54 | 54 | ... | ... |
... | ... | @@ -0,0 +1,42 @@ |
1 | +#!/usr/bin/env python | |
2 | +""" | |
3 | + AppRecommender - A GNU/Linux application recommender | |
4 | +""" | |
5 | +__author__ = "Tassia Camoes Araujo <tassia@gmail.com>" | |
6 | +__copyright__ = "Copyright (C) 2011 Tassia Camoes Araujo" | |
7 | +__license__ = """ | |
8 | + This program is free software: you can redistribute it and/or modify | |
9 | + it under the terms of the GNU General Public License as published by | |
10 | + the Free Software Foundation, either version 3 of the License, or | |
11 | + (at your option) any later version. | |
12 | + | |
13 | + This program is distributed in the hope that it will be useful, | |
14 | + but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | + GNU General Public License for more details. | |
17 | + | |
18 | + You should have received a copy of the GNU General Public License | |
19 | + along with this program. If not, see <http://www.gnu.org/licenses/>. | |
20 | +""" | |
21 | + | |
22 | +import os | |
23 | +import sys | |
24 | +sys.path.insert(0,'../') | |
25 | +import xapian | |
26 | + | |
27 | +if __name__ == '__main__': | |
28 | + if len(sys.argv)<2: | |
29 | + print "Usage: get_axipkgs index_path" | |
30 | + exit(1) | |
31 | + | |
32 | + axi_path = sys.argv[1] | |
33 | + axi = xapian.Database(axi_path) | |
34 | + for n in range(1,axi.get_lastdocid()): | |
35 | + doc = 0 | |
36 | + try: | |
37 | + doc = axi.get_document(n) | |
38 | + except: | |
39 | + pass | |
40 | + if doc: | |
41 | + xp_terms = [t.term for t in doc.termlist() if t.term.startswith("XP")] | |
42 | + print xp_terms[0].lstrip('XP') | ... | ... |
src/bin/get_desktop.sh
1 | 1 | #!/usr/bin/env bash |
2 | 2 | # |
3 | -# get_desktop.sh - get packages which have desktop files | |
3 | +# get_desktop.sh - get packages which have desktop files | |
4 | +# | |
5 | +# DEPRECATED: use get_axipkgs.py to get this info from axi | |
4 | 6 | |
5 | 7 | cd /usr/share/app-install/desktop |
6 | 8 | sed -ne 's/X-AppInstall-Package=//p' * | sort -u | grep -v kdelibs | grep -v libfm-gtk0 | ... | ... |
src/bin/get_pkgs_inst.py
1 | 1 | #!/usr/bin/env python |
2 | 2 | # |
3 | 3 | # get_pkgs_inst.py - get tuple (package,installation) from popcon results file |
4 | +# | |
5 | +# results_file: org/popcon.debian.org/popcon-mail/results | |
4 | 6 | |
7 | +import sys | |
5 | 8 | from operator import itemgetter |
9 | + | |
6 | 10 | if __name__ == '__main__': |
11 | + if len(sys.argv)<2: | |
12 | + print "Usage: get_pkgs_inst popcon_results_path" | |
13 | + exit(1) | |
14 | + | |
15 | + results_path = sys.argv[1] | |
7 | 16 | pkgs_inst = {} |
8 | - with open("/root/org/popcon.debian.org/popcon-mail/results") as results: | |
17 | + with open(results_path) as results: | |
9 | 18 | for line in results: |
10 | 19 | if line.startswith("Package"): |
11 | 20 | fields = line.split() |
12 | 21 | inst = int(fields[2])+int(fields[3])+int(fields[4]) |
13 | - if inst > 20: | |
14 | - pkgs_inst[fields[1]] = inst | |
22 | + pkgs_inst[fields[1]] = inst | |
15 | 23 | sorted_by_inst = sorted(pkgs_inst.items(), key=itemgetter(1)) |
16 | 24 | for pkg, inst in sorted_by_inst: |
17 | 25 | print pkg, inst | ... | ... |
src/config.py
... | ... | @@ -40,7 +40,7 @@ class Config(Singleton): |
40 | 40 | ## general options |
41 | 41 | self.debug = 0 |
42 | 42 | self.verbose = 1 |
43 | - self.output = "log" | |
43 | + self.output = "apprec.log" | |
44 | 44 | |
45 | 45 | ## data_source options |
46 | 46 | self.base_dir = os.path.expanduser("/home/tiago/.app-recommender/") |
... | ... | @@ -103,13 +103,14 @@ class Config(Singleton): |
103 | 103 | print " -f, --filtersdir=PATH Path to filters directory" |
104 | 104 | print " -b, --pkgsfilter=FILTER File containing packages to be considered for recommendations" |
105 | 105 | print " -a, --axi=PATH Path to apt-xapian-index" |
106 | - print " -e, --dde=URL DDE url" | |
107 | 106 | print " -p, --popconindex=PATH Path to popcon index" |
108 | - print " -m, --popcondir=PATH Path to popcon submissions dir" | |
109 | - print " -u, --indexmode=MODE 'old'|'reindex'|'cluster'|'recluster'" | |
110 | - print " -l, --clustersdir=PATH Path to popcon clusters dir" | |
111 | - print " -c, --medoids=k Number of medoids for clustering" | |
112 | - print " -x, --maxpopcon=k Number of submissions to be considered" | |
107 | + print " -e, --dde=URL DDE url" | |
108 | + # deprecated options | |
109 | + #print " -m, --popcondir=PATH Path to popcon submissions dir" | |
110 | + #print " -u, --indexmode=MODE 'old'|'reindex'|'cluster'|'recluster'" | |
111 | + #print " -l, --clustersdir=PATH Path to popcon clusters dir" | |
112 | + #print " -c, --medoids=k Number of medoids for clustering" | |
113 | + #print " -x, --maxpopcon=k Number of submissions to be considered" | |
113 | 114 | print "" |
114 | 115 | print " [ recommender ]" |
115 | 116 | print " -w, --weight=OPTION Search weighting scheme" |
... | ... | @@ -123,11 +124,19 @@ class Config(Singleton): |
123 | 124 | print " bm25 = bm25 weighting scheme" |
124 | 125 | print "" |
125 | 126 | print " [ strategy options ] " |
126 | - print " cb = content-based " | |
127 | - print " cbt = content-based using only tags as content " | |
128 | - print " cbd = content-based using only package descriptions as content " | |
129 | - print " col = collaborative " | |
130 | - print " colct = collaborative through tags content " | |
127 | + print " cb = content-based, mixed profile" | |
128 | + print " cbt = content-based, tags only profile" | |
129 | + print " cbd = content-based, description terms only profile" | |
130 | + print " cbh = content-based, half-half profile" | |
131 | + print " cb_eset = cb with eset profiling" | |
132 | + print " cbt_eset = cbt with eset profiling" | |
133 | + print " cbd_eset = cbd_eset with eset profiling" | |
134 | + print " cbh_eset = cbh with eset profiling" | |
135 | + print " knn = collaborative, tf-idf knn" | |
136 | + print " knn_plus = collaborative, tf-idf weighted knn" | |
137 | + print " knn_eset = collaborative, eset knn" | |
138 | + print " knnco = collaborative through content" | |
139 | + print " knnco_eset = collaborative through content, eset recommendation" | |
131 | 140 | |
132 | 141 | def read_option(self, section, option): |
133 | 142 | """ | ... | ... |
src/evaluation.py
... | ... | @@ -140,6 +140,29 @@ class FPR(Metric): |
140 | 140 | return (float(len(evaluation.false_positive))/ |
141 | 141 | evaluation.real_negative_len) |
142 | 142 | |
143 | +class MCC(Metric): | |
144 | + """ | |
145 | + Matthews correlation coefficient. | |
146 | + """ | |
147 | + def __init__(self): | |
148 | + """ | |
149 | + Set metric description. | |
150 | + """ | |
151 | + self.desc = " MCC " | |
152 | + | |
153 | + def run(self,evaluation): | |
154 | + """ | |
155 | + Compute metric. | |
156 | + """ | |
157 | + VP = len(evaluation.true_positive) | |
158 | + FP = len(evaluation.false_positive) | |
159 | + FN = len(evaluation.false_negative) | |
160 | + VN = evaluation.true_negative_len | |
161 | + if (VP+FP)==0 or (VP+FN)==0 or (VN+FP)==0 or (VN+FN)==0: | |
162 | + return 0 | |
163 | + MCC = (((VP*VN)-(FP*FN))/math.sqrt((VP+FP)*(VP+FN)*(VN+FP)*(VN+FN))) | |
164 | + return MCC | |
165 | + | |
143 | 166 | class F_score(Metric): |
144 | 167 | """ |
145 | 168 | Classification accuracy metric which correlates precision and recall into an | ... | ... |
src/experiments/README
1 | -Experiments handled by expsuite: | |
2 | -https://github.com/rueckstiess/expsuite | |
1 | +AppRecommender experiments and tests | |
2 | +--------------------------------------- | |
3 | + | |
4 | +Install dependencies: | |
5 | + | |
6 | +# apt-get install \ | |
7 | +python-unittest2 python-gnuplot gnuplot | |
8 | + | |
9 | +# cd ./src; git clone https://github.com/rueckstiess/expsuite (deprecated tests) | ... | ... |
... | ... | @@ -0,0 +1,186 @@ |
1 | +#!/usr/bin/env python | |
2 | +""" | |
3 | + k-suite - experiment different neighborhood sizes | |
4 | +""" | |
5 | +__author__ = "Tassia Camoes Araujo <tassia@gmail.com>" | |
6 | +__copyright__ = "Copyright (C) 2011 Tassia Camoes Araujo" | |
7 | +__license__ = """ | |
8 | + This program is free software: you can redistribute it and/or modify | |
9 | + it under the terms of the GNU General Public License as published by | |
10 | + the Free Software Foundation, either version 3 of the License, or | |
11 | + (at your option) any later version. | |
12 | + | |
13 | + This program is distributed in the hope that it will be useful, | |
14 | + but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | + GNU General Public License for more details. | |
17 | + | |
18 | + You should have received a copy of the GNU General Public License | |
19 | + along with this program. If not, see <http://www.gnu.org/licenses/>. | |
20 | +""" | |
21 | + | |
22 | +import sys | |
23 | +sys.path.insert(0,'../') | |
24 | +from config import Config | |
25 | +from data import PopconXapianIndex, PopconSubmission | |
26 | +from recommender import Recommender | |
27 | +from user import LocalSystem, User | |
28 | +from evaluation import * | |
29 | +import logging | |
30 | +import random | |
31 | +import Gnuplot | |
32 | +import numpy | |
33 | + | |
34 | +def plot_roc(k,roc_points,log_file): | |
35 | + g = Gnuplot.Gnuplot() | |
36 | + g('set style data points') | |
37 | + g.xlabel('False Positive Rate') | |
38 | + g.ylabel('True Positive Rate') | |
39 | + g('set xrange [0:1.0]') | |
40 | + g('set yrange [0:1.0]') | |
41 | + g.title("Setup: %s-k%d" % (log_file.split("/")[-1],k)) | |
42 | + g.plot(Gnuplot.Data([[0,0],[1,1]],with_="lines lt 7"), | |
43 | + Gnuplot.Data(roc_points)) | |
44 | + g.hardcopy(log_file+("-k%.3d.png"%k),terminal="png") | |
45 | + g.hardcopy(log_file+("-k%.3d.ps"%k),terminal="postscript",enhanced=1,color=1) | |
46 | + | |
47 | +def plot_summary(precision,f05,mcc,log_file): | |
48 | + g = Gnuplot.Gnuplot() | |
49 | + g('set style data lines') | |
50 | + g.xlabel('Neighborhood (k)') | |
51 | + g.title("Setup: %s-size20" % (log_file.split("/")[-1])) | |
52 | + g.plot(Gnuplot.Data([[k,sum(precision[k])/len(precision[k])] for k in precision.keys()],title="P"), | |
53 | + Gnuplot.Data([[k,sum(f05[k])/len(f05[k])] for k in f05.keys()],title="F05"), | |
54 | + Gnuplot.Data([[k,sum(mcc[k])/len(mcc[k])] for k in mcc.keys()],title="MCC")) | |
55 | + g.hardcopy(log_file+(".png"),terminal="png") | |
56 | + g.hardcopy(log_file+(".ps"),terminal="postscript",enhanced=1,color=1) | |
57 | + | |
58 | +class ExperimentResults: | |
59 | + def __init__(self,repo_size): | |
60 | + self.repository_size = repo_size | |
61 | + self.precision = [] | |
62 | + self.recall = [] | |
63 | + self.fpr = [] | |
64 | + self.f05 = [] | |
65 | + self.mcc = [] | |
66 | + | |
67 | + def add_result(self,ranking,sample): | |
68 | + predicted = RecommendationResult(dict.fromkeys(ranking,1)) | |
69 | + real = RecommendationResult(sample) | |
70 | + evaluation = Evaluation(predicted,real,self.repository_size) | |
71 | + self.precision.append(evaluation.run(Precision())) | |
72 | + self.recall.append(evaluation.run(Recall())) | |
73 | + self.fpr.append(evaluation.run(FPR())) | |
74 | + self.f05.append(evaluation.run(F_score(0.5))) | |
75 | + self.mcc.append(evaluation.run(MCC())) | |
76 | + | |
77 | + def get_roc_point(self): | |
78 | + tpr = self.recall | |
79 | + fpr = self.fpr | |
80 | + if not tpr or not fpr: | |
81 | + return [0,0] | |
82 | + return [sum(fpr)/len(fpr),sum(tpr)/len(tpr)] | |
83 | + | |
84 | + def get_precision_summary(self): | |
85 | + if not self.precision: return 0 | |
86 | + return sum(self.precision)/len(self.precision) | |
87 | + | |
88 | + def get_f05_summary(self): | |
89 | + if not self.f05: return 0 | |
90 | + return sum(self.f05)/len(self.f05) | |
91 | + | |
92 | + def get_mcc_summary(self): | |
93 | + if not self.mcc: return 0 | |
94 | + return sum(self.mcc)/len(self.mcc) | |
95 | + | |
96 | +if __name__ == '__main__': | |
97 | + if len(sys.argv)<3: | |
98 | + print "Usage: k-suite strategy_str sample_file" | |
99 | + exit(1) | |
100 | + threshold = 20 | |
101 | + iterations = 30 | |
102 | + neighbors = [3,5,10,50,100,150,200,300,400,500] | |
103 | + cfg = Config() | |
104 | + cfg.strategy = sys.argv[1] | |
105 | + sample_file = sys.argv[2] | |
106 | + population_sample = [] | |
107 | + with open(sample_file,'r') as f: | |
108 | + for line in f.readlines(): | |
109 | + user_id = line.strip('\n') | |
110 | + population_sample.append(os.path.join(cfg.popcon_dir,user_id[:2],user_id)) | |
111 | + # setup dictionaries and files | |
112 | + roc_summary = {} | |
113 | + recommended = {} | |
114 | + precision_summary = {} | |
115 | + f05_summary = {} | |
116 | + mcc_summary = {} | |
117 | + sample_dir = ("results/k-suite/%s" % sample_file.split('/')[-1]) | |
118 | + if not os.path.exists(sample_dir): | |
119 | + os.makedirs(sample_dir) | |
120 | + log_file = os.path.join(sample_dir,cfg.strategy) | |
121 | + with open(log_file,'w') as f: | |
122 | + f.write("# %s\n\n" % sample_file.split('/')[-1]) | |
123 | + f.write("# strategy %s recommendation_size %d iterations %d\n\n" % | |
124 | + (cfg.strategy,threshold,iterations)) | |
125 | + f.write("# k coverage \tprecision \tf05 \tmcc\n\n") | |
126 | + | |
127 | + for k in neighbors: | |
128 | + roc_summary[k] = [] | |
129 | + recommended[k] = set() | |
130 | + precision_summary[k] = [] | |
131 | + f05_summary[k] = [] | |
132 | + mcc_summary[k] = [] | |
133 | + with open(log_file+"-k%.3d"%k,'w') as f: | |
134 | + f.write("# %s\n\n" % sample_file.split('/')[-1]) | |
135 | + f.write("# strategy-k %s-k%.3d\n\n" % (cfg.strategy,k)) | |
136 | + f.write("# roc_point \tprecision \tf05 \tmcc\n\n") | |
137 | + | |
138 | + # main loop per user | |
139 | + for submission_file in population_sample: | |
140 | + user = PopconSystem(submission_file) | |
141 | + user.filter_pkg_profile(cfg.pkgs_filter) | |
142 | + user.maximal_pkg_profile() | |
143 | + for k in neighbors: | |
144 | + cfg.k_neighbors = k | |
145 | + rec = Recommender(cfg) | |
146 | + repo_size = rec.items_repository.get_doccount() | |
147 | + results = ExperimentResults(repo_size) | |
148 | + # n iterations for same recommender and user | |
149 | + for n in range(iterations): | |
150 | + # Fill sample profile | |
151 | + profile_len = len(user.pkg_profile) | |
152 | + item_score = {} | |
153 | + for pkg in user.pkg_profile: | |
154 | + item_score[pkg] = user.item_score[pkg] | |
155 | + sample = {} | |
156 | + sample_size = int(profile_len*0.9) | |
157 | + for i in range(sample_size): | |
158 | + key = random.choice(item_score.keys()) | |
159 | + sample[key] = item_score.pop(key) | |
160 | + iteration_user = User(item_score) | |
161 | + recommendation = rec.get_recommendation(iteration_user,threshold) | |
162 | + if hasattr(recommendation,"ranking"): | |
163 | + results.add_result(recommendation.ranking,sample) | |
164 | + recommended[k] = recommended[k].union(recommendation.ranking) | |
165 | + # save summary | |
166 | + roc_point = results.get_roc_point() | |
167 | + roc_summary[k].append(roc_point) | |
168 | + precision = results.get_precision_summary() | |
169 | + precision_summary[k].append(precision) | |
170 | + f05 = results.get_f05_summary() | |
171 | + f05_summary[k].append(f05) | |
172 | + mcc = results.get_mcc_summary() | |
173 | + mcc_summary[k].append(mcc) | |
174 | + with open(log_file+"-k%.3d"%k,'a') as f: | |
175 | + f.write("[%.2f,%.2f] \t%.4f \t%.4f \t%.4f\n" % | |
176 | + (roc_point[0],roc_point[1],precision,f05,mcc)) | |
177 | + # back to main flow | |
178 | + with open(log_file,'a') as f: | |
179 | + plot_summary(precision_summary,f05_summary,mcc_summary,log_file) | |
180 | + for k in neighbors: | |
181 | + coverage = len(recommended[size])/float(repo_size) | |
182 | + f.write("%3d \t%.2f \t%.4f \t%.4f \t%.4f\n" % | |
183 | + (k,coverage,float(sum(precision_summary[k]))/len(precision_summary[k]), | |
184 | + float(sum(f05_summary[k]))/len(f05_summary[k]), | |
185 | + float(sum(mcc_summary[k]))/len(mcc_summary[k]))) | |
186 | + plot_roc(k,roc_summary[k],log_file) | ... | ... |
... | ... | @@ -0,0 +1,274 @@ |
1 | +#!/usr/bin/env python | |
2 | +""" | |
3 | + recommender suite - recommender experiments suite | |
4 | +""" | |
5 | +__author__ = "Tassia Camoes Araujo <tassia@gmail.com>" | |
6 | +__copyright__ = "Copyright (C) 2011 Tassia Camoes Araujo" | |
7 | +__license__ = """ | |
8 | + This program is free software: you can redistribute it and/or modify | |
9 | + it under the terms of the GNU General Public License as published by | |
10 | + the Free Software Foundation, either version 3 of the License, or | |
11 | + (at your option) any later version. | |
12 | + | |
13 | + This program is distributed in the hope that it will be useful, | |
14 | + but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | + GNU General Public License for more details. | |
17 | + | |
18 | + You should have received a copy of the GNU General Public License | |
19 | + along with this program. If not, see <http://www.gnu.org/licenses/>. | |
20 | +""" | |
21 | + | |
22 | +import sys | |
23 | +sys.path.insert(0,'../') | |
24 | +from config import Config | |
25 | +from data import PopconXapianIndex, PopconSubmission, AppAptXapianIndex | |
26 | +from recommender import Recommender | |
27 | +from user import LocalSystem, User | |
28 | +from evaluation import * | |
29 | +import logging | |
30 | +import random | |
31 | +import Gnuplot | |
32 | + | |
33 | +#iterations = 3 | |
34 | +#sample_proportions = [0.9] | |
35 | +#weighting = [('bm25',1.2)] | |
36 | +#collaborative = ['knn'] | |
37 | +#content_based = [] | |
38 | +#hybrid = ['knnco'] | |
39 | +#profile_size = [50,100] | |
40 | +#popcon_size = ["1000"] | |
41 | +#neighbors = [50] | |
42 | + | |
43 | +iterations = 10 | |
44 | +sample_proportions = [0.5, 0.6, 0.7, 0.8, 0.9] | |
45 | +weighting = [('bm25',1.2), ('bm25',1.6), ('bm25',2.0), ('trad',0)] | |
46 | +content_based = ['cb','cbt','cbd','cbh','cb_eset','cbt_eset','cbd_eset','cbh_eset'] | |
47 | +collaborative = ['knn_eset','knn','knn_plus'] | |
48 | +hybrid = ['knnco','knnco_eset'] | |
49 | + | |
50 | +profile_size = range(20,100,20) | |
51 | +#popcon_size = [1000,10000,50000,'full'] | |
52 | +neighbors = range(10,510,50) | |
53 | + | |
54 | +def write_recall_log(label,n,sample,recommendation,profile_size,repo_size,log_file): | |
55 | + # Write recall log | |
56 | + output = open(("%s-%d" % (log_file,n)),'w') | |
57 | + output.write("# %s-n\n" % label["description"]) | |
58 | + output.write("# %s-%d\n" % (label["values"],n)) | |
59 | + output.write("\n%d %d %d\n" % \ | |
60 | + (repo_size,profile_size,len(sample))) | |
61 | + if hasattr(recommendation,"ranking"): | |
62 | + notfound = [] | |
63 | + ranks = [] | |
64 | + for pkg in sample.keys(): | |
65 | + if pkg in recommendation.ranking: | |
66 | + ranks.append(recommendation.ranking.index(pkg)) | |
67 | + else: | |
68 | + notfound.append(pkg) | |
69 | + for r in sorted(ranks): | |
70 | + output.write(str(r)+"\n") | |
71 | + if notfound: | |
72 | + output.write("Out of recommendation:\n") | |
73 | + for pkg in notfound: | |
74 | + output.write(pkg+"\n") | |
75 | + output.close() | |
76 | + | |
77 | +def plot_summary(precision,recall,f1,f05,accuracy,log_file): | |
78 | + # Plot metrics summary | |
79 | + g = Gnuplot.Gnuplot() | |
80 | + g('set style data lines') | |
81 | + g.xlabel('Recommendation size') | |
82 | + g.title("Setup: %s" % log_file.split("/")[-1]) | |
83 | + g.plot(Gnuplot.Data(accuracy,title="Accuracy"), | |
84 | + Gnuplot.Data(precision,title="Precision"), | |
85 | + Gnuplot.Data(recall,title="Recall"), | |
86 | + Gnuplot.Data(f1,title="F_1"), | |
87 | + Gnuplot.Data(f05,title="F_0.5")) | |
88 | + g.hardcopy(log_file+".png",terminal="png") | |
89 | + g.hardcopy(log_file+".ps",terminal="postscript",enhanced=1,color=1) | |
90 | + g('set logscale x') | |
91 | + g('replot') | |
92 | + g.hardcopy(log_file+"-logscale.png",terminal="png") | |
93 | + g.hardcopy(log_file+"-logscale.ps",terminal="postscript",enhanced=1,color=1) | |
94 | + | |
95 | +def get_label(cfg,sample_proportion): | |
96 | + label = {} | |
97 | + if cfg.strategy in content_based: | |
98 | + label["description"] = "strategy-filter-profile-k1_bm25-sample" | |
99 | + label["values"] = ("%s-profile%d-%s-kbm%.1f-sample%.1f" % | |
100 | + (cfg.strategy,cfg.profile_size, | |
101 | + cfg.pkgs_filter.split("/")[-1], | |
102 | + cfg.bm25_k1,sample_proportion)) | |
103 | + elif cfg.strategy in collaborative: | |
104 | + label["description"] = "strategy-knn-filter-k1_bm25-sample" | |
105 | + label["values"] = ("%s-k%d-%s-kbm%.1f-sample%.1f" % | |
106 | + (cfg.strategy,cfg.k_neighbors, | |
107 | + cfg.pkgs_filter.split("/")[-1], | |
108 | + cfg.bm25_k1,sample_proportion)) | |
109 | + elif cfg.strategy in hybrid: | |
110 | + label["description"] = "strategy-knn-filter-profile-k1_bm25-sample" | |
111 | + label["values"] = ("%s-k%d-profile%d-%s-kbm%.1f-sample%.1f" % | |
112 | + (cfg.strategy,cfg.k_neighbors,cfg.profile_size, | |
113 | + cfg.pkgs_filter.split("/")[-1], | |
114 | + cfg.bm25_k1,sample_proportion)) | |
115 | + else: | |
116 | + print "Unknown strategy" | |
117 | + return label | |
118 | + | |
119 | +class ExperimentResults: | |
120 | + def __init__(self,repo_size): | |
121 | + self.repository_size = repo_size | |
122 | + self.accuracy = {} | |
123 | + self.precision = {} | |
124 | + self.recall = {} | |
125 | + self.f1 = {} | |
126 | + self.f05 = {} | |
127 | + points = [1]+range(10,200,10)+range(200,self.repository_size,100) | |
128 | + for size in points: | |
129 | + self.accuracy[size] = [] | |
130 | + self.precision[size] = [] | |
131 | + self.recall[size] = [] | |
132 | + self.f1[size] = [] | |
133 | + self.f05[size] = [] | |
134 | + | |
135 | + def add_result(self,ranking,sample): | |
136 | + for size in self.accuracy.keys(): | |
137 | + predicted = RecommendationResult(dict.fromkeys(ranking[:size],1)) | |
138 | + real = RecommendationResult(sample) | |
139 | + evaluation = Evaluation(predicted,real,self.repository_size) | |
140 | + self.accuracy[size].append(evaluation.run(Accuracy())) | |
141 | + self.precision[size].append(evaluation.run(Precision())) | |
142 | + self.recall[size].append(evaluation.run(Recall())) | |
143 | + self.f1[size].append(evaluation.run(F_score(1))) | |
144 | + self.f05[size].append(evaluation.run(F_score(0.5))) | |
145 | + | |
146 | + def get_precision_summary(self): | |
147 | + summary = [[size,sum(values)/len(values)] for size,values in self.precision.items()] | |
148 | + return sorted(summary) | |
149 | + | |
150 | + def get_recall_summary(self): | |
151 | + summary = [[size,sum(values)/len(values)] for size,values in self.recall.items()] | |
152 | + return sorted(summary) | |
153 | + | |
154 | + def get_f1_summary(self): | |
155 | + summary = [[size,sum(values)/len(values)] for size,values in self.f1.items()] | |
156 | + return sorted(summary) | |
157 | + | |
158 | + def get_f05_summary(self): | |
159 | + summary = [[size,sum(values)/len(values)] for size,values in self.f05.items()] | |
160 | + return sorted(summary) | |
161 | + | |
162 | + def get_accuracy_summary(self): | |
163 | + summary = [[size,sum(values)/len(values)] for size,values in self.accuracy.items()] | |
164 | + return sorted(summary) | |
165 | + | |
166 | + def best_precision(self): | |
167 | + size = max(self.precision, key = lambda x: max(self.precision[x])) | |
168 | + return (size,max(self.precision[size])) | |
169 | + | |
170 | + def best_f1(self): | |
171 | + size = max(self.f1, key = lambda x: max(self.f1[x])) | |
172 | + return (size,max(self.f1[size])) | |
173 | + | |
174 | + def best_f05(self): | |
175 | + size = max(self.f05, key = lambda x: max(self.f05[x])) | |
176 | + return (size,max(self.f05[size])) | |
177 | + | |
178 | +def run_strategy(cfg,user): | |
179 | + for weight in weighting: | |
180 | + cfg.weight = weight[0] | |
181 | + cfg.bm25_k1 = weight[1] | |
182 | + rec = Recommender(cfg) | |
183 | + repo_size = rec.items_repository.get_doccount() | |
184 | + for proportion in sample_proportions: | |
185 | + results = ExperimentResults(repo_size) | |
186 | + label = get_label(cfg,proportion) | |
187 | + log_file = "results/strategies/"+label["values"] | |
188 | + for n in range(iterations): | |
189 | + # Fill sample profile | |
190 | + profile_size = len(user.pkg_profile) | |
191 | + item_score = {} | |
192 | + for pkg in user.pkg_profile: | |
193 | + item_score[pkg] = user.item_score[pkg] | |
194 | + sample = {} | |
195 | + sample_size = int(profile_size*proportion) | |
196 | + for i in range(sample_size): | |
197 | + key = random.choice(item_score.keys()) | |
198 | + sample[key] = item_score.pop(key) | |
199 | + iteration_user = User(item_score) | |
200 | + recommendation = rec.get_recommendation(iteration_user,repo_size) | |
201 | + write_recall_log(label,n,sample,recommendation,profile_size,repo_size,log_file) | |
202 | + if hasattr(recommendation,"ranking"): | |
203 | + results.add_result(recommendation.ranking,sample) | |
204 | + with open(log_file,'w') as f: | |
205 | + precision_10 = sum(results.precision[10])/len(results.precision[10]) | |
206 | + f1_10 = sum(results.f1[10])/len(results.f1[10]) | |
207 | + f05_10 = sum(results.f05[10])/len(results.f05[10]) | |
208 | + f.write("# %s\n# %s\n\ncoverage %d\n\n" % | |
209 | + (label["description"],label["values"],recommendation.size)) | |
210 | + f.write("# best results (recommendation size; metric)\n") | |
211 | + f.write("precision (%d; %.2f)\nf1 (%d; %.2f)\nf05 (%d; %.2f)\n\n" % | |
212 | + (results.best_precision()[0],results.best_precision()[1], | |
213 | + results.best_f1()[0],results.best_f1()[1], | |
214 | + results.best_f05()[0],results.best_f05()[1])) | |
215 | + f.write("# recommendation size 10\nprecision (10; %.2f)\nf1 (10; %.2f)\nf05 (10; %.2f)" % | |
216 | + (precision_10,f1_10,f05_10)) | |
217 | + precision = results.get_precision_summary() | |
218 | + recall = results.get_recall_summary() | |
219 | + f1 = results.get_f1_summary() | |
220 | + f05 = results.get_f05_summary() | |
221 | + accuracy = results.get_accuracy_summary() | |
222 | + plot_summary(precision,recall,f1,f05,accuracy,log_file) | |
223 | + | |
224 | +def run_content(user,cfg): | |
225 | + for strategy in content_based: | |
226 | + cfg.strategy = strategy | |
227 | + for size in profile_size: | |
228 | + cfg.profile_size = size | |
229 | + run_strategy(cfg,user) | |
230 | + | |
231 | +def run_collaborative(user,cfg): | |
232 | + popcon_desktopapps = cfg.popcon_desktopapps | |
233 | + popcon_programs = cfg.popcon_programs | |
234 | + for strategy in collaborative: | |
235 | + cfg.strategy = strategy | |
236 | + for k in neighbors: | |
237 | + cfg.k_neighbors = k | |
238 | + #for size in popcon_size: | |
239 | + # if size: | |
240 | + # cfg.popcon_desktopapps = popcon_desktopapps+"_"+size | |
241 | + # cfg.popcon_programs = popcon_programs+"_"+size | |
242 | + run_strategy(cfg,user) | |
243 | + | |
244 | +def run_hybrid(user,cfg): | |
245 | + popcon_desktopapps = cfg.popcon_desktopapps | |
246 | + popcon_programs = cfg.popcon_programs | |
247 | + for strategy in hybrid: | |
248 | + cfg.strategy = strategy | |
249 | + for k in neighbors: | |
250 | + cfg.k_neighbors = k | |
251 | + #for size in popcon_size: | |
252 | + # if size: | |
253 | + # cfg.popcon_desktopapps = popcon_desktopapps+"_"+size | |
254 | + # cfg.popcon_programs = popcon_programs+"_"+size | |
255 | + for size in profile_size: | |
256 | + cfg.profile_size = size | |
257 | + run_strategy(cfg,user) | |
258 | + | |
259 | +if __name__ == '__main__': | |
260 | + #user = LocalSystem() | |
261 | + #user = RandomPopcon(cfg.popcon_dir,os.path.join(cfg.filters_dir,"desktopapps")) | |
262 | + | |
263 | + cfg = Config() | |
264 | + user = PopconSystem("/root/.app-recommender/popcon-entries/8b/8b44fcdbcf676e711a153d5db09979d7") | |
265 | + #user = PopconSystem("/root/.app-recommender/popcon-entries/4a/4a67a295ec14826db2aa1d90be2f1623") | |
266 | + user.filter_pkg_profile(cfg.pkgs_filter) | |
267 | + user.maximal_pkg_profile() | |
268 | + | |
269 | + if "content" in sys.argv or len(sys.argv)<2: | |
270 | + run_content(user,cfg) | |
271 | + if "collaborative" in sys.argv or len(sys.argv)<2: | |
272 | + run_collaborative(user,cfg) | |
273 | + if "hybrid" in sys.argv or len(sys.argv)<2: | |
274 | + run_hybrid(user,cfg) | ... | ... |
src/experiments/experiments.cfg
... | ... | @@ -1,27 +0,0 @@ |
1 | -[DEFAULT] | |
2 | -repetitions = 1 | |
3 | -iterations = 10 | |
4 | -path = 'results' | |
5 | -experiment = 'grid' | |
6 | -weight = ['bm25', 'trad'] | |
7 | -;profile_size = range(10,100,10) | |
8 | -;sample = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] | |
9 | -sample = [0.6, 0.7, 0.8, 0.9] | |
10 | - | |
11 | -[content] | |
12 | -strategy = ['cb','cbt','cbd'] | |
13 | - | |
14 | -[clustering] | |
15 | -experiment = 'single' | |
16 | -;iterations = 4 | |
17 | -;medoids = range(2,6) | |
18 | -iterations = 6 | |
19 | -medoids = [100,500,1000,5000,10000,50000] | |
20 | -;disabled for this experiment | |
21 | -weight = 0 | |
22 | -profile_size = 0 | |
23 | -sample = 0 | |
24 | - | |
25 | -[colaborative] | |
26 | -users_repository=["data/popcon","data/popcon-100","data/popcon-500","data/popcon-1000","data/popcon-5000","data/popcon-10000","data/popcon-50000"] | |
27 | -neighbors = range(10,1010,50) |
... | ... | @@ -0,0 +1,49 @@ |
1 | +#! /usr/bin/env python | |
2 | +""" | |
3 | + sample-popcon - extract a sample from popcon population | |
4 | +""" | |
5 | +__author__ = "Tassia Camoes Araujo <tassia@gmail.com>" | |
6 | +__copyright__ = "Copyright (C) 2011 Tassia Camoes Araujo" | |
7 | +__license__ = """ | |
8 | + This program is free software: you can redistribute it and/or modify | |
9 | + it under the terms of the GNU General Public License as published by | |
10 | + the Free Software Foundation, either version 3 of the License, or | |
11 | + (at your option) any later version. | |
12 | + | |
13 | + This program is distributed in the hope that it will be useful, | |
14 | + but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | + GNU General Public License for more details. | |
17 | + | |
18 | + You should have received a copy of the GNU General Public License | |
19 | + along with this program. If not, see <http://www.gnu.org/licenses/>. | |
20 | +""" | |
21 | + | |
22 | +import xapian | |
23 | +import os | |
24 | +import random | |
25 | +import sys | |
26 | + | |
27 | +if __name__ == '__main__': | |
28 | + try: | |
29 | + sample_file = sys.argv[1] | |
30 | + popcon = xapian.WritableDatabase(sys.argv[2],xapian.DB_OPEN) | |
31 | + except: | |
32 | + print "Usage: extract-sample-db sample_file popcon_index" | |
33 | + exit(1) | |
34 | + enquire = xapian.Enquire(popcon) | |
35 | + print sample_file.split("/") | |
36 | + new_popcon = xapian.WritableDatabase(sys.argv[2]+"-"+sample_file.split("/")[-1],xapian.DB_CREATE_OR_OVERWRITE) | |
37 | + print ("Popcon repository size: %d" % popcon.get_doccount()) | |
38 | + for submission in open(sample_file): | |
39 | + print "ID"+submission.strip() | |
40 | + query = xapian.Query("ID"+submission.strip()) | |
41 | + enquire.set_query(query) | |
42 | + mset = enquire.get_mset(0,20) | |
43 | + for m in mset: | |
44 | + print "Adding doc %s"%m.docid | |
45 | + new_popcon.add_document(popcon.get_document(m.docid)) | |
46 | + print "Removing doc %s"%m.docid | |
47 | + popcon.delete_document(m.docid) | |
48 | + print ("Popcon repository size: %d" % popcon.get_doccount()) | |
49 | + print ("Popcon repository size: %d" % new_popcon.get_doccount()) | ... | ... |
... | ... | @@ -0,0 +1,202 @@ |
1 | +#!/usr/bin/env python | |
2 | +""" | |
3 | + hybrid-suite | |
4 | +""" | |
5 | +__author__ = "Tassia Camoes Araujo <tassia@gmail.com>" | |
6 | +__copyright__ = "Copyright (C) 2011 Tassia Camoes Araujo" | |
7 | +__license__ = """ | |
8 | + This program is free software: you can redistribute it and/or modify | |
9 | + it under the terms of the GNU General Public License as published by | |
10 | + the Free Software Foundation, either version 3 of the License, or | |
11 | + (at your option) any later version. | |
12 | + | |
13 | + This program is distributed in the hope that it will be useful, | |
14 | + but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | + GNU General Public License for more details. | |
17 | + | |
18 | + You should have received a copy of the GNU General Public License | |
19 | + along with this program. If not, see <http://www.gnu.org/licenses/>. | |
20 | +""" | |
21 | + | |
22 | +import sys | |
23 | +sys.path.insert(0,'../') | |
24 | +from config import Config | |
25 | +from data import PopconXapianIndex, PopconSubmission | |
26 | +from recommender import Recommender | |
27 | +from user import LocalSystem, User | |
28 | +from evaluation import * | |
29 | +import logging | |
30 | +import random | |
31 | +import Gnuplot | |
32 | +import numpy | |
33 | + | |
34 | +#hybrid_strategies = ['knnco','knnco_eset'] | |
35 | + | |
36 | +if __name__ == '__main__': | |
37 | + if len(sys.argv)<2: | |
38 | + print "Usage: hybrid strategy sample_file" | |
39 | + exit(1) | |
40 | + | |
41 | + iterations = 20 | |
42 | + profile_size = [10,40,70,100,170,240] | |
43 | + neighbor_size = [3,10,50,70,100,150,200] | |
44 | + | |
45 | + #iterations = 1 | |
46 | + #profile_size = [10,20,30] | |
47 | + #neighbor_size = [10,20,30] | |
48 | + | |
49 | + cfg = Config() | |
50 | + population_sample = [] | |
51 | + strategy = sys.argv[1] | |
52 | + sample_file = sys.argv[2] | |
53 | + sample_str = sample_file.split('/')[-1] | |
54 | + with open(sample_file,'r') as f: | |
55 | + for line in f.readlines(): | |
56 | + user_id = line.strip('\n') | |
57 | + population_sample.append(os.path.join(cfg.popcon_dir,user_id[:2],user_id)) | |
58 | + sample_dir = ("results/hybrid/%s/%s" % (sample_str,strategy)) | |
59 | + if not os.path.exists(sample_dir): | |
60 | + os.makedirs(sample_dir) | |
61 | + | |
62 | + cfg.strategy = strategy | |
63 | + p_10_summary = {} | |
64 | + f05_100_summary = {} | |
65 | + c_10 = {} | |
66 | + c_100 = {} | |
67 | + | |
68 | + log_file = os.path.join(sample_dir,sample_str+"-"+cfg.strategy) | |
69 | + graph_10 = {} | |
70 | + graph_100 = {} | |
71 | + graph_10_jpg = {} | |
72 | + graph_100_jpg = {} | |
73 | + comment_10 = {} | |
74 | + comment_100 = {} | |
75 | + for k in neighbor_size: | |
76 | + graph_10[k] = log_file+("-neighborhood%.3d-010.png"%k) | |
77 | + graph_100[k] = log_file+("-neighborhood%.3d-100.png"%k) | |
78 | + graph_10_jpg[k] = graph_10[k].strip(".png")+".jpg" | |
79 | + graph_100_jpg[k] = graph_100[k].strip(".png")+".jpg" | |
80 | + comment_10[k] = graph_10_jpg[k]+".comment" | |
81 | + comment_100[k] = graph_100_jpg[k]+".comment" | |
82 | + | |
83 | + with open(comment_10[k],'w') as f: | |
84 | + f.write("# %s\n" % sample_str) | |
85 | + f.write("# strategy %s\n# threshold 10\n# iterations %d\n\n" % | |
86 | + (cfg.strategy,iterations)) | |
87 | + f.write("# neighborhood\tprofile\tmean_p_10\tdev_p_10\tc_10\n\n") | |
88 | + with open(comment_100[k],'w') as f: | |
89 | + f.write("# %s\n" % sample_str) | |
90 | + f.write("# strategy %s\n# threshold 100\n# iterations %d\n\n" % | |
91 | + (cfg.strategy,iterations)) | |
92 | + f.write("# neighborhood\tprofile\tmean_f05_100\tdev_f05_100\tc_100\n\n") | |
93 | + | |
94 | + c_10[k] = {} | |
95 | + c_100[k] = {} | |
96 | + p_10_summary[k] = {} | |
97 | + f05_100_summary[k] = {} | |
98 | + for size in profile_size: | |
99 | + c_10[k][size] = set() | |
100 | + c_100[k][size] = set() | |
101 | + p_10_summary[k][size] = [] | |
102 | + f05_100_summary[k][size] = [] | |
103 | + with open(log_file+"-neighborhood%.3d-profile%.3d"%(k,size),'w') as f: | |
104 | + f.write("# %s\n" % sample_str) | |
105 | + f.write("# strategy %s-neighborhood%.3d-profile%.3d\n\n" % (cfg.strategy,k,size)) | |
106 | + f.write("# p_10\t\tf05_100\n\n") | |
107 | + | |
108 | + # main loop per user | |
109 | + for submission_file in population_sample: | |
110 | + user = PopconSystem(submission_file) | |
111 | + user.filter_pkg_profile(cfg.pkgs_filter) | |
112 | + user.maximal_pkg_profile() | |
113 | + for k in neighbor_size: | |
114 | + cfg.k_neighbors = k | |
115 | + for size in profile_size: | |
116 | + cfg.profile_size = size | |
117 | + rec = Recommender(cfg) | |
118 | + repo_size = rec.items_repository.get_doccount() | |
119 | + p_10 = [] | |
120 | + f05_100 = [] | |
121 | + for n in range(iterations): | |
122 | + # Fill sample profile | |
123 | + profile_len = len(user.pkg_profile) | |
124 | + item_score = {} | |
125 | + for pkg in user.pkg_profile: | |
126 | + item_score[pkg] = user.item_score[pkg] | |
127 | + sample = {} | |
128 | + sample_size = int(profile_len*0.9) | |
129 | + for i in range(sample_size): | |
130 | + key = random.choice(item_score.keys()) | |
131 | + sample[key] = item_score.pop(key) | |
132 | + iteration_user = User(item_score) | |
133 | + recommendation = rec.get_recommendation(iteration_user,repo_size) | |
134 | + if hasattr(recommendation,"ranking"): | |
135 | + ranking = recommendation.ranking | |
136 | + real = RecommendationResult(sample) | |
137 | + predicted_10 = RecommendationResult(dict.fromkeys(ranking[:10],1)) | |
138 | + evaluation = Evaluation(predicted_10,real,repo_size) | |
139 | + p_10.append(evaluation.run(Precision())) | |
140 | + predicted_100 = RecommendationResult(dict.fromkeys(ranking[:100],1)) | |
141 | + evaluation = Evaluation(predicted_100,real,repo_size) | |
142 | + f05_100.append(evaluation.run(F_score(0.5))) | |
143 | + c_10[k][size] = c_10[k][size].union(recommendation.ranking[:10]) | |
144 | + c_100[k][size] = c_100[k][size].union(recommendation.ranking[:100]) | |
145 | + # save summary | |
146 | + if p_10: | |
147 | + p_10_summary[k][size].append(numpy.mean(p_10)) | |
148 | + if f05_100: | |
149 | + f05_100_summary[k][size].append(numpy.mean(f05_100)) | |
150 | + | |
151 | + with open(log_file+"-neighborhood%.3d-profile%.3d"%(k,size),'a') as f: | |
152 | + f.write("%.4f\t\t%.4f\n" % | |
153 | + (numpy.mean(p_10),numpy.mean(f05_100))) | |
154 | + | |
155 | + # back to main flow | |
156 | + coverage_10 = {} | |
157 | + coverage_100 = {} | |
158 | + for k in neighbor_size: | |
159 | + coverage_10[k] = {} | |
160 | + coverage_100[k] = {} | |
161 | + with open(comment_10[k],'a') as f: | |
162 | + for size in profile_size: | |
163 | + coverage_10[k][size] = len(c_10[k][size])/float(repo_size) | |
164 | + f.write("%3d\t\t%3d\t\t%.4f\t%.4f\t%.4f\n" % | |
165 | + (k,size,numpy.mean(p_10_summary[k][size]), | |
166 | + numpy.std(p_10_summary[k][size]),coverage_10[k][size])) | |
167 | + with open(comment_100[k],'a') as f: | |
168 | + for size in profile_size: | |
169 | + coverage_100[k][size] = len(c_100[k][size])/float(repo_size) | |
170 | + f.write("%3d\t\t%3d\t\t%.4f\t%.4f\t%.4f\n" % | |
171 | + (k,size,numpy.mean(f05_100_summary[k][size]), | |
172 | + numpy.std(f05_100_summary[k][size]),coverage_100[k][size])) | |
173 | + | |
174 | + for k in neighbor_size: | |
175 | + # plot results summary | |
176 | + g = Gnuplot.Gnuplot() | |
177 | + g('set style data lines') | |
178 | + g('set yrange [0:1.0]') | |
179 | + g.xlabel('Profile size') | |
180 | + g.title("Setup: %s-neighborhood%3d (threshold 10)" % (cfg.strategy,k)) | |
181 | + g.plot(Gnuplot.Data(sorted([[i,numpy.mean(p_10_summary[k][i]),numpy.std(p_10_summary[k][i])] | |
182 | + for i in p_10_summary[k].keys()]),title="Precision"), | |
183 | + Gnuplot.Data(sorted([[i,numpy.mean(p_10_summary[k][i]),numpy.std(p_10_summary[k][i])] | |
184 | + for i in p_10_summary[k].keys()]),title="Deviation", | |
185 | + with_="yerrorbar lt 2 pt 6"), | |
186 | + Gnuplot.Data(sorted([[i,coverage_10[k][i]] | |
187 | + for i in coverage_10[k].keys()]),title="Coverage")) | |
188 | + g.hardcopy(graph_10[k],terminal="png") | |
189 | + | |
190 | + g = Gnuplot.Gnuplot() | |
191 | + g('set style data lines') | |
192 | + g('set yrange [0:1.0]') | |
193 | + g.xlabel('Profile size') | |
194 | + g.title("Setup: %s-neighborhood%3d (threshold 100)" % (cfg.strategy,k)) | |
195 | + g.plot(Gnuplot.Data(sorted([[i,numpy.mean(f05_100_summary[k][i]),numpy.std(f05_100_summary[k][i])] | |
196 | + for i in f05_100_summary[k].keys()]),title="F05"), | |
197 | + Gnuplot.Data(sorted([[i,numpy.mean(f05_100_summary[k][i]),numpy.std(f05_100_summary[k][i])] | |
198 | + for i in f05_100_summary[k].keys()]),title="Deviation", | |
199 | + with_="yerrorbar lt 2 pt 6"), | |
200 | + Gnuplot.Data(sorted([[i,coverage_100[k][i]] | |
201 | + for i in coverage_100[k].keys()]),title="Coverage")) | |
202 | + g.hardcopy(graph_100[k],terminal="png") | ... | ... |
src/experiments/k-suite.py
... | ... | @@ -1,152 +0,0 @@ |
1 | -#!/usr/bin/env python | |
2 | -""" | |
3 | - recommender suite - recommender experiments suite | |
4 | -""" | |
5 | -__author__ = "Tassia Camoes Araujo <tassia@gmail.com>" | |
6 | -__copyright__ = "Copyright (C) 2011 Tassia Camoes Araujo" | |
7 | -__license__ = """ | |
8 | - This program is free software: you can redistribute it and/or modify | |
9 | - it under the terms of the GNU General Public License as published by | |
10 | - the Free Software Foundation, either version 3 of the License, or | |
11 | - (at your option) any later version. | |
12 | - | |
13 | - This program is distributed in the hope that it will be useful, | |
14 | - but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | - GNU General Public License for more details. | |
17 | - | |
18 | - You should have received a copy of the GNU General Public License | |
19 | - along with this program. If not, see <http://www.gnu.org/licenses/>. | |
20 | -""" | |
21 | - | |
22 | -import sys | |
23 | -sys.path.insert(0,'../') | |
24 | -from config import Config | |
25 | -from data import PopconXapianIndex, PopconSubmission | |
26 | -from recommender import Recommender | |
27 | -from user import LocalSystem, User | |
28 | -from evaluation import * | |
29 | -import logging | |
30 | -import random | |
31 | -import Gnuplot | |
32 | -import numpy | |
33 | - | |
34 | -def plot_roc(p,roc_points,log_file): | |
35 | - g = Gnuplot.Gnuplot() | |
36 | - g('set style data points') | |
37 | - g.xlabel('False Positive Rate') | |
38 | - g.ylabel('True Positive Rate') | |
39 | - g('set xrange [0:1.0]') | |
40 | - g('set yrange [0:1.0]') | |
41 | - g.title("Setup: %s" % log_file.split("/")[-1]) | |
42 | - g.plot(Gnuplot.Data([[0,0],[1,1]],with_="lines lt 7"), | |
43 | - Gnuplot.Data(roc_points,title="k %d"%k)) | |
44 | - g.hardcopy(log_file+("-k%.3d.png"%k),terminal="png") | |
45 | - g.hardcopy(log_file+("-k%.3d.ps"%k),terminal="postscript",enhanced=1,color=1) | |
46 | - | |
47 | -class ExperimentResults: | |
48 | - def __init__(self,repo_size): | |
49 | - self.repository_size = repo_size | |
50 | - self.precision = [] | |
51 | - self.recall = [] | |
52 | - self.fpr = [] | |
53 | - | |
54 | - def add_result(self,ranking,sample): | |
55 | - predicted = RecommendationResult(dict.fromkeys(ranking,1)) | |
56 | - real = RecommendationResult(sample) | |
57 | - evaluation = Evaluation(predicted,real,self.repository_size) | |
58 | - self.precision.append(evaluation.run(Precision())) | |
59 | - self.recall.append(evaluation.run(Recall())) | |
60 | - self.fpr.append(evaluation.run(FPR())) | |
61 | - | |
62 | - # Average ROC by threshold (whici is the size) | |
63 | - def get_roc_point(self): | |
64 | - tpr = self.recall | |
65 | - fpr = self.fpr | |
66 | - return [sum(fpr)/len(fpr),sum(tpr)/len(tpr)] | |
67 | - | |
68 | - def get_precision_summary(self): | |
69 | - return sum(self.precision)/len(self.precision) | |
70 | - | |
71 | - def get_recall_summary(self): | |
72 | - return sum(self.recall)/len(self.recall) | |
73 | - | |
74 | -if __name__ == '__main__': | |
75 | - # experiment parameters | |
76 | - threshold = 20 | |
77 | - iterations = 30 | |
78 | - sample_file = "results/misc-popcon/sample-050-100" | |
79 | - neighbors = [3,5,10,50,100,150,200,300,400,500] | |
80 | - cfg = Config() | |
81 | - cfg.strategy = "knn" | |
82 | - print cfg.popcon_index | |
83 | - sample = [] | |
84 | - with open(sample_file,'r') as f: | |
85 | - for line in f.readlines(): | |
86 | - user_id = line.strip('\n') | |
87 | - sample.append(os.path.join(cfg.popcon_dir,user_id[:2],user_id)) | |
88 | - # setup dictionaries and files | |
89 | - roc_points = {} | |
90 | - recommended = {} | |
91 | - precisions = {} | |
92 | - aucs = {} | |
93 | - log_file = "results/k-suite/sample-050-100/%s" % (cfg.strategy) | |
94 | - for k in neighbors: | |
95 | - roc_points[k] = [] | |
96 | - recommended[k] = set() | |
97 | - precisions[k] = [] | |
98 | - aucs[k] = [] | |
99 | - with open(log_file+"-k%.3d"%k,'w') as f: | |
100 | - f.write("# strategy-k %s-k%.3d\n\n" % (cfg.strategy,k)) | |
101 | - f.write("# roc_point \tp(20) \tauc\n\n") | |
102 | - # main loop per user | |
103 | - for submission_file in sample: | |
104 | - user = PopconSystem(submission_file) | |
105 | - user.filter_pkg_profile(cfg.pkgs_filter) | |
106 | - user.maximal_pkg_profile() | |
107 | - for k in neighbors: | |
108 | - cfg.k_neighbors = k | |
109 | - rec = Recommender(cfg) | |
110 | - repo_size = rec.items_repository.get_doccount() | |
111 | - results = ExperimentResults(repo_size) | |
112 | - # n iterations for same recommender and user | |
113 | - for n in range(iterations): | |
114 | - # Fill sample profile | |
115 | - profile_size = len(user.pkg_profile) | |
116 | - item_score = {} | |
117 | - for pkg in user.pkg_profile: | |
118 | - item_score[pkg] = user.item_score[pkg] | |
119 | - sample = {} | |
120 | - sample_size = int(profile_size*0.9) | |
121 | - for i in range(sample_size): | |
122 | - key = random.choice(item_score.keys()) | |
123 | - sample[key] = item_score.pop(key) | |
124 | - iteration_user = User(item_score) | |
125 | - recommendation = rec.get_recommendation(iteration_user,threshold) | |
126 | - if hasattr(recommendation,"ranking"): | |
127 | - results.add_result(recommendation.ranking,sample) | |
128 | - print "ranking",recommendation.ranking | |
129 | - print "recommended_%d"%k,recommended[k] | |
130 | - recommended[k] = recommended[k].union(recommendation.ranking) | |
131 | - print recommended[k] | |
132 | - # save summary | |
133 | - roc_point = results.get_roc_point() | |
134 | - auc = numpy.trapz(y=[0,roc_point[1],1],x=[0,roc_point[0],1]) | |
135 | - p_20 = results.get_precision_summary() | |
136 | - roc_points[k].append(roc_point) | |
137 | - aucs[k].append(auc) | |
138 | - precisions[k].append(p_20) | |
139 | - with open(log_file+"-k%.3d"%k,'a') as f: | |
140 | - f.write("%s \t%.2f \t%.4f\n" % (str(roc_point),p_20,auc)) | |
141 | - # back to main flow | |
142 | - with open(log_file,'w') as f: | |
143 | - f.write("# k coverage \tp(20) \tauc\n\n") | |
144 | - for k in neighbors: | |
145 | - print "len_recommended_%d"%k,len(recommended[k]) | |
146 | - print "repo_size",repo_size | |
147 | - coverage = len(recommended[k])/float(repo_size) | |
148 | - print coverage | |
149 | - f.write("%d \t%.2f \t%.2f \t%.2fi\n" % | |
150 | - (k,coverage,float(sum(precisions[k]))/len(precisions[k]), | |
151 | - float(sum(aucs[k]))/len(aucs[k]))) | |
152 | - plot_roc(k,roc_points[k],log_file) |
src/experiments/legacy/clustering-suite.py
... | ... | @@ -1,51 +0,0 @@ |
1 | -#!/usr/bin/env python | |
2 | -""" | |
3 | - recommender suite - recommender experiments suite | |
4 | -""" | |
5 | -__author__ = "Tassia Camoes Araujo <tassia@gmail.com>" | |
6 | -__copyright__ = "Copyright (C) 2011 Tassia Camoes Araujo" | |
7 | -__license__ = """ | |
8 | - This program is free software: you can redistribute it and/or modify | |
9 | - it under the terms of the GNU General Public License as published by | |
10 | - the Free Software Foundation, either version 3 of the License, or | |
11 | - (at your option) any later version. | |
12 | - | |
13 | - This program is distributed in the hope that it will be useful, | |
14 | - but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | - GNU General Public License for more details. | |
17 | - | |
18 | - You should have received a copy of the GNU General Public License | |
19 | - along with this program. If not, see <http://www.gnu.org/licenses/>. | |
20 | -""" | |
21 | - | |
22 | -import sys | |
23 | -import os | |
24 | -sys.path.insert(0,'../') | |
25 | -from config import Config | |
26 | -from data import PopconXapianIndex, PopconSubmission | |
27 | -from recommender import Recommender | |
28 | -from user import LocalSystem, User | |
29 | -from evaluation import * | |
30 | -import logging | |
31 | -import random | |
32 | -import Gnuplot | |
33 | - | |
34 | -if __name__ == '__main__': | |
35 | - | |
36 | - cfg = Config() | |
37 | - cfg.index_mode = "recluster" | |
38 | - logging.info("Starting clustering experiments") | |
39 | - logging.info("Medoids: %d\t Max popcon:%d" % (cfg.k_medoids,cfg.max_popcon)) | |
40 | - cfg.popcon_dir = os.path.expanduser("~/org/popcon.debian.org/popcon-mail/popcon-entries/") | |
41 | - cfg.popcon_index = cfg.popcon_index+("_%dmedoids%dmax" % | |
42 | - (cfg.k_medoids,cfg.max_popcon)) | |
43 | - cfg.clusters_dir = cfg.clusters_dir+("_%dmedoids%dmax" % | |
44 | - (cfg.k_medoids,cfg.max_popcon)) | |
45 | - pxi = PopconXapianIndex(cfg) | |
46 | - logging.info("Overall dispersion: %f\n" % pxi.cluster_dispersion) | |
47 | - # Write clustering log | |
48 | - output = open(("results/clustering/%dmedoids%dmax" % (cfg.k_medoids,cfg.max_popcon)),'w') | |
49 | - output.write("# k_medoids\tmax_popcon\tdispersion\n") | |
50 | - output.write("%d %f\n" % (cfg.k_medoids,cfg.max_popcon,pxi.cluster_dispersion)) | |
51 | - output.close() |
src/experiments/legacy/experiments.cfg
... | ... | @@ -1,27 +0,0 @@ |
1 | -[DEFAULT] | |
2 | -repetitions = 1 | |
3 | -iterations = 10 | |
4 | -path = 'results' | |
5 | -experiment = 'grid' | |
6 | -weight = ['bm25', 'trad'] | |
7 | -;profile_size = range(10,100,10) | |
8 | -;sample = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] | |
9 | -sample = [0.6, 0.7, 0.8, 0.9] | |
10 | - | |
11 | -[content] | |
12 | -strategy = ['cb','cbt','cbd'] | |
13 | - | |
14 | -[clustering] | |
15 | -experiment = 'single' | |
16 | -;iterations = 4 | |
17 | -;medoids = range(2,6) | |
18 | -iterations = 6 | |
19 | -medoids = [100,500,1000,5000,10000,50000] | |
20 | -;disabled for this experiment | |
21 | -weight = 0 | |
22 | -profile_size = 0 | |
23 | -sample = 0 | |
24 | - | |
25 | -[colaborative] | |
26 | -users_repository=["data/popcon","data/popcon-100","data/popcon-500","data/popcon-1000","data/popcon-5000","data/popcon-10000","data/popcon-50000"] | |
27 | -neighbors = range(10,1010,50) |
src/experiments/legacy/runner.py
... | ... | @@ -1,171 +0,0 @@ |
1 | -#!/usr/bin/env python | |
2 | -""" | |
3 | - recommender suite - recommender experiments suite | |
4 | -""" | |
5 | -__author__ = "Tassia Camoes Araujo <tassia@gmail.com>" | |
6 | -__copyright__ = "Copyright (C) 2011 Tassia Camoes Araujo" | |
7 | -__license__ = """ | |
8 | - This program is free software: you can redistribute it and/or modify | |
9 | - it under the terms of the GNU General Public License as published by | |
10 | - the Free Software Foundation, either version 3 of the License, or | |
11 | - (at your option) any later version. | |
12 | - | |
13 | - This program is distributed in the hope that it will be useful, | |
14 | - but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | - GNU General Public License for more details. | |
17 | - | |
18 | - You should have received a copy of the GNU General Public License | |
19 | - along with this program. If not, see <http://www.gnu.org/licenses/>. | |
20 | -""" | |
21 | - | |
22 | -import expsuite | |
23 | -import sys | |
24 | -sys.path.insert(0,'../') | |
25 | -from config import Config | |
26 | -from data import PopconXapianIndex, PopconSubmission | |
27 | -from recommender import Recommender | |
28 | -from user import LocalSystem, User | |
29 | -from evaluation import * | |
30 | -import logging | |
31 | -import random | |
32 | -import Gnuplot | |
33 | - | |
34 | -class ClusteringSuite(expsuite.PyExperimentSuite): | |
35 | - def reset(self, params, rep): | |
36 | - self.cfg = Config() | |
37 | - self.cfg.popcon_index = "../tests/test_data/.sample_pxi" | |
38 | - self.cfg.popcon_dir = "../tests/test_data/popcon_dir" | |
39 | - self.cfg.clusters_dir = "../tests/test_data/clusters_dir" | |
40 | - | |
41 | - if params['name'] == "clustering": | |
42 | - logging.info("Starting 'clustering' experiments suite...") | |
43 | - self.cfg.index_mode = "recluster" | |
44 | - | |
45 | - def iterate(self, params, rep, n): | |
46 | - if params['name'] == "clustering": | |
47 | - logging.info("Running iteration %d" % params['medoids'][n]) | |
48 | - self.cfg.k_medoids = params['medoids'][n] | |
49 | - pxi = PopconXapianIndex(self.cfg) | |
50 | - result = {'k_medoids': params['medoids'][n], | |
51 | - 'dispersion': pxi.cluster_dispersion} | |
52 | - else: | |
53 | - result = {} | |
54 | - return result | |
55 | - | |
56 | -class ContentBasedSuite(expsuite.PyExperimentSuite): | |
57 | - def reset(self, params, rep): | |
58 | - if params['name'].startswith("content"): | |
59 | - cfg = Config() | |
60 | - #if the index was not built yet | |
61 | - #app_axi = AppAptXapianIndex(cfg.axi,"results/arnaldo/AppAxi") | |
62 | - cfg.axi = "data/AppAxi" | |
63 | - cfg.index_mode = "old" | |
64 | - cfg.weight = params['weight'] | |
65 | - self.rec = Recommender(cfg) | |
66 | - self.rec.set_strategy(params['strategy']) | |
67 | - self.repo_size = self.rec.items_repository.get_doccount() | |
68 | - self.user = LocalSystem() | |
69 | - self.user.app_pkg_profile(self.rec.items_repository) | |
70 | - self.user.no_auto_pkg_profile() | |
71 | - self.sample_size = int(len(self.user.pkg_profile)*params['sample']) | |
72 | - # iteration should be set to 10 in config file | |
73 | - #self.profile_size = range(10,101,10) | |
74 | - | |
75 | - def iterate(self, params, rep, n): | |
76 | - if params['name'].startswith("content"): | |
77 | - item_score = dict.fromkeys(self.user.pkg_profile,1) | |
78 | - # Prepare partition | |
79 | - sample = {} | |
80 | - for i in range(self.sample_size): | |
81 | - key = random.choice(item_score.keys()) | |
82 | - sample[key] = item_score.pop(key) | |
83 | - # Get full recommendation | |
84 | - user = User(item_score) | |
85 | - recommendation = self.rec.get_recommendation(user,self.repo_size) | |
86 | - # Write recall log | |
87 | - recall_file = "results/content/recall/%s-%s-%.2f-%d" % \ | |
88 | - (params['strategy'],params['weight'],params['sample'],n) | |
89 | - output = open(recall_file,'w') | |
90 | - output.write("# weight=%s\n" % params['weight']) | |
91 | - output.write("# strategy=%s\n" % params['strategy']) | |
92 | - output.write("# sample=%f\n" % params['sample']) | |
93 | - output.write("\n%d %d %d\n" % \ | |
94 | - (self.repo_size,len(item_score),self.sample_size)) | |
95 | - notfound = [] | |
96 | - ranks = [] | |
97 | - for pkg in sample.keys(): | |
98 | - if pkg in recommendation.ranking: | |
99 | - ranks.append(recommendation.ranking.index(pkg)) | |
100 | - else: | |
101 | - notfound.append(pkg) | |
102 | - for r in sorted(ranks): | |
103 | - output.write(str(r)+"\n") | |
104 | - if notfound: | |
105 | - output.write("Out of recommendation:\n") | |
106 | - for pkg in notfound: | |
107 | - output.write(pkg+"\n") | |
108 | - output.close() | |
109 | - # Plot metrics summary | |
110 | - accuracy = [] | |
111 | - precision = [] | |
112 | - recall = [] | |
113 | - f1 = [] | |
114 | - g = Gnuplot.Gnuplot() | |
115 | - g('set style data lines') | |
116 | - g.xlabel('Recommendation size') | |
117 | - for size in range(1,len(recommendation.ranking)+1,100): | |
118 | - predicted = RecommendationResult(dict.fromkeys(recommendation.ranking[:size],1)) | |
119 | - real = RecommendationResult(sample) | |
120 | - evaluation = Evaluation(predicted,real,self.repo_size) | |
121 | - accuracy.append([size,evaluation.run(Accuracy())]) | |
122 | - precision.append([size,evaluation.run(Precision())]) | |
123 | - recall.append([size,evaluation.run(Recall())]) | |
124 | - f1.append([size,evaluation.run(F1())]) | |
125 | - g.plot(Gnuplot.Data(accuracy,title="Accuracy"), | |
126 | - Gnuplot.Data(precision,title="Precision"), | |
127 | - Gnuplot.Data(recall,title="Recall"), | |
128 | - Gnuplot.Data(f1,title="F1")) | |
129 | - g.hardcopy(recall_file+"-plot.ps", enhanced=1, color=1) | |
130 | - # Iteration log | |
131 | - result = {'iteration': n, | |
132 | - 'weight': params['weight'], | |
133 | - 'strategy': params['strategy'], | |
134 | - 'accuracy': accuracy[20], | |
135 | - 'precision': precision[20], | |
136 | - 'recall:': recall[20], | |
137 | - 'f1': f1[20]} | |
138 | - return result | |
139 | - | |
140 | -#class CollaborativeSuite(expsuite.PyExperimentSuite): | |
141 | -# def reset(self, params, rep): | |
142 | -# if params['name'].startswith("collaborative"): | |
143 | -# | |
144 | -# def iterate(self, params, rep, n): | |
145 | -# if params['name'].startswith("collaborative"): | |
146 | -# for root, dirs, files in os.walk(self.source_dir): | |
147 | -# for popcon_file in files: | |
148 | -# submission = PopconSubmission(os.path.join(root,popcon_file)) | |
149 | -# user = User(submission.packages) | |
150 | -# user.maximal_pkg_profile() | |
151 | -# rec.get_recommendation(user) | |
152 | -# precision = 0 | |
153 | -# result = {'weight': params['weight'], | |
154 | -# 'strategy': params['strategy'], | |
155 | -# 'profile_size': self.profile_size[n], | |
156 | -# 'accuracy': accuracy, | |
157 | -# 'precision': precision, | |
158 | -# 'recall:': recall, | |
159 | -# 'f1': } | |
160 | -# else: | |
161 | -# result = {} | |
162 | -# return result | |
163 | - | |
164 | -if __name__ == '__main__': | |
165 | - | |
166 | - if "clustering" in sys.argv or len(sys.argv)<3: | |
167 | - ClusteringSuite().start() | |
168 | - if "content" in sys.argv or len(sys.argv)<3: | |
169 | - ContentBasedSuite().start() | |
170 | - #if "collaborative" in sys.argv or len(sys.argv)<3: | |
171 | - #CollaborativeSuite().start() |
... | ... | @@ -0,0 +1,199 @@ |
1 | +#!/usr/bin/env python | |
2 | +""" | |
3 | + profile-suite - experiment different profile sizes | |
4 | +""" | |
5 | +__author__ = "Tassia Camoes Araujo <tassia@gmail.com>" | |
6 | +__copyright__ = "Copyright (C) 2011 Tassia Camoes Araujo" | |
7 | +__license__ = """ | |
8 | + This program is free software: you can redistribute it and/or modify | |
9 | + it under the terms of the GNU General Public License as published by | |
10 | + the Free Software Foundation, either version 3 of the License, or | |
11 | + (at your option) any later version. | |
12 | + | |
13 | + This program is distributed in the hope that it will be useful, | |
14 | + but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | + GNU General Public License for more details. | |
17 | + | |
18 | + You should have received a copy of the GNU General Public License | |
19 | + along with this program. If not, see <http://www.gnu.org/licenses/>. | |
20 | +""" | |
21 | + | |
22 | +import sys | |
23 | +sys.path.insert(0,'../') | |
24 | +from config import Config | |
25 | +from data import PopconXapianIndex, PopconSubmission | |
26 | +from recommender import Recommender | |
27 | +from user import LocalSystem, User | |
28 | +from evaluation import * | |
29 | +import logging | |
30 | +import random | |
31 | +import Gnuplot | |
32 | +import numpy | |
33 | + | |
34 | +if __name__ == '__main__': | |
35 | + if len(sys.argv)<2: | |
36 | + print "Usage: pure strategy_category sample_file" | |
37 | + exit(1) | |
38 | + | |
39 | + iterations = 20 | |
40 | + profile_size = [10,20,40,60,80,100,140,170,200,240] | |
41 | + neighbor_size = [3,5,10,20,30,50,70,100,150,200] | |
42 | + | |
43 | + content_strategies = ['cb','cbt','cbd','cbh','cb_eset','cbt_eset','cbd_eset','cbh_eset'] | |
44 | + collaborative_strategies = ['knn_eset','knn','knn_plus'] | |
45 | + | |
46 | + #iterations = 1 | |
47 | + #profile_size = [10,20,30] | |
48 | + #neighbor_size = [3,5,10,20,30,50] | |
49 | + #content_strategies = ['cb'] | |
50 | + #collaborative_strategies = ['knn'] | |
51 | + | |
52 | + strategy_category = sys.argv[1] | |
53 | + if strategy_category == "content": | |
54 | + strategies = content_strategies | |
55 | + sizes = profile_size | |
56 | + option_str = "profile" | |
57 | + elif strategy_category == "collaborative": | |
58 | + strategies = collaborative_strategies | |
59 | + sizes = neighbor_size | |
60 | + option_str = "neighborhood" | |
61 | + else: | |
62 | + print "Usage: profile-suite strategy_category sample_file" | |
63 | + exit(1) | |
64 | + | |
65 | + cfg = Config() | |
66 | + population_sample = [] | |
67 | + sample_file = sys.argv[2] | |
68 | + sample_str = sample_file.split('/')[-1] | |
69 | + with open(sample_file,'r') as f: | |
70 | + for line in f.readlines(): | |
71 | + user_id = line.strip('\n') | |
72 | + population_sample.append(os.path.join(cfg.popcon_dir,user_id[:2],user_id)) | |
73 | + sample_dir = ("results/%s/%s" % | |
74 | + (strategy_category,sample_str)) | |
75 | + if not os.path.exists(sample_dir): | |
76 | + os.makedirs(sample_dir) | |
77 | + | |
78 | + for strategy in strategies: | |
79 | + cfg.strategy = strategy | |
80 | + p_10_summary = {} | |
81 | + f05_100_summary = {} | |
82 | + c_10 = {} | |
83 | + c_100 = {} | |
84 | + | |
85 | + log_file = os.path.join(sample_dir,sample_str+"-"+cfg.strategy) | |
86 | + graph_10 = log_file+"-10.png" | |
87 | + graph_100 = log_file+"-100.png" | |
88 | + graph_10_jpg = graph_10.strip(".png")+".jpg" | |
89 | + graph_100_jpg = graph_100.strip(".png")+".jpg" | |
90 | + comment_10 = graph_10_jpg+".comment" | |
91 | + comment_100 = graph_100_jpg+".comment" | |
92 | + | |
93 | + with open(comment_10,'w') as f: | |
94 | + f.write("# sample %s\n" % sample_str) | |
95 | + f.write("# strategy %s\n# threshold 10\n# iterations %d\n\n" % | |
96 | + (cfg.strategy,iterations)) | |
97 | + f.write("# %s\tmean_p_10\tdev_p_10\tc_10\n\n"%option_str) | |
98 | + with open(comment_100,'w') as f: | |
99 | + f.write("# sample %s\n" % sample_str) | |
100 | + f.write("# strategy %s\n# threshold 100\n# iterations %d\n\n" % | |
101 | + (cfg.strategy,iterations)) | |
102 | + f.write("# %s\t\tmean_f05_100\t\tdev_f05_100\t\tc_100\n\n"%option_str) | |
103 | + | |
104 | + for size in sizes: | |
105 | + c_10[size] = set() | |
106 | + c_100[size] = set() | |
107 | + p_10_summary[size] = [] | |
108 | + f05_100_summary[size] = [] | |
109 | + with open(log_file+"-%s%.3d"%(option_str,size),'w') as f: | |
110 | + f.write("# sample %s\n" % sample_str) | |
111 | + f.write("# strategy %s-%s%.3d\n\n" % (cfg.strategy,option_str,size)) | |
112 | + f.write("# p_10\tf05_100\n\n") | |
113 | + | |
114 | + # main loop per user | |
115 | + for submission_file in population_sample: | |
116 | + user = PopconSystem(submission_file) | |
117 | + user.filter_pkg_profile(cfg.pkgs_filter) | |
118 | + user.maximal_pkg_profile() | |
119 | + for size in sizes: | |
120 | + cfg.profile_size = size | |
121 | + cfg.k_neighbors = size | |
122 | + rec = Recommender(cfg) | |
123 | + repo_size = rec.items_repository.get_doccount() | |
124 | + p_10 = [] | |
125 | + f05_100 = [] | |
126 | + for n in range(iterations): | |
127 | + # Fill sample profile | |
128 | + profile_len = len(user.pkg_profile) | |
129 | + item_score = {} | |
130 | + for pkg in user.pkg_profile: | |
131 | + item_score[pkg] = user.item_score[pkg] | |
132 | + sample = {} | |
133 | + sample_size = int(profile_len*0.9) | |
134 | + for i in range(sample_size): | |
135 | + key = random.choice(item_score.keys()) | |
136 | + sample[key] = item_score.pop(key) | |
137 | + iteration_user = User(item_score) | |
138 | + recommendation = rec.get_recommendation(iteration_user,repo_size) | |
139 | + if hasattr(recommendation,"ranking"): | |
140 | + ranking = recommendation.ranking | |
141 | + real = RecommendationResult(sample) | |
142 | + predicted_10 = RecommendationResult(dict.fromkeys(ranking[:10],1)) | |
143 | + evaluation = Evaluation(predicted_10,real,repo_size) | |
144 | + p_10.append(evaluation.run(Precision())) | |
145 | + predicted_100 = RecommendationResult(dict.fromkeys(ranking[:100],1)) | |
146 | + evaluation = Evaluation(predicted_100,real,repo_size) | |
147 | + f05_100.append(evaluation.run(F_score(0.5))) | |
148 | + c_10[size] = c_10[size].union(recommendation.ranking[:10]) | |
149 | + c_100[size] = c_100[size].union(recommendation.ranking[:100]) | |
150 | + # save summary | |
151 | + if p_10: | |
152 | + p_10_summary[size].append(numpy.mean(p_10)) | |
153 | + if f05_100: | |
154 | + f05_100_summary[size].append(numpy.mean(f05_100)) | |
155 | + | |
156 | + with open(log_file+"-%s%.3d"%(option_str,size),'a') as f: | |
157 | + f.write("%.4f \t%.4f\n" % (numpy.mean(p_10),numpy.mean(f05_100))) | |
158 | + | |
159 | + # back to main flow | |
160 | + coverage_10 = {} | |
161 | + coverage_100 = {} | |
162 | + with open(comment_10,'a') as f: | |
163 | + for size in sizes: | |
164 | + coverage_10[size] = len(c_10[size])/float(repo_size) | |
165 | + f.write("%3d\t\t%.4f\t\t%.4f\t\t%.4f\n" % | |
166 | + (size,numpy.mean(p_10_summary[size]),numpy.std(p_10_summary[size]),coverage_10[size])) | |
167 | + with open(comment_100,'a') as f: | |
168 | + for size in sizes: | |
169 | + coverage_100[size] = len(c_100[size])/float(repo_size) | |
170 | + f.write("%3d\t\t%.4f\t\t%.4f\t\t%.4f\n" % | |
171 | + (size,numpy.mean(f05_100_summary[size]),numpy.std(f05_100_summary[size]),coverage_100[size])) | |
172 | + | |
173 | + # plot results summary | |
174 | + g = Gnuplot.Gnuplot() | |
175 | + g('set style data lines') | |
176 | + g('set yrange [0:1.0]') | |
177 | + g.xlabel('%s size'%option_str.capitalize()) | |
178 | + g.title("Setup: %s (threshold 10)" % cfg.strategy) | |
179 | + g.plot(Gnuplot.Data(sorted([[k,numpy.mean(p_10_summary[k]),numpy.std(p_10_summary[k])] | |
180 | + for k in p_10_summary.keys()]),title="Precision"), | |
181 | + Gnuplot.Data(sorted([[k,numpy.mean(p_10_summary[k]),numpy.std(p_10_summary[k])] | |
182 | + for k in p_10_summary.keys()]),title="Deviation", | |
183 | + with_="yerrorbar lt 2 pt 6"), | |
184 | + Gnuplot.Data(sorted([[k,coverage_10[k]] | |
185 | + for k in coverage_10.keys()]),title="Coverage")) | |
186 | + g.hardcopy(graph_10,terminal="png") | |
187 | + g = Gnuplot.Gnuplot() | |
188 | + g('set style data lines') | |
189 | + g('set yrange [0:1.0]') | |
190 | + g.xlabel('%s size'%option_str.capitalize()) | |
191 | + g.title("Setup: %s (threshold 100)" % cfg.strategy) | |
192 | + g.plot(Gnuplot.Data(sorted([[k,numpy.mean(f05_100_summary[k]),numpy.std(f05_100_summary[k])] | |
193 | + for k in f05_100_summary.keys()]),title="F05"), | |
194 | + Gnuplot.Data(sorted([[k,numpy.mean(f05_100_summary[k]),numpy.std(f05_100_summary[k])] | |
195 | + for k in f05_100_summary.keys()]),title="Deviation", | |
196 | + with_="yerrorbar lt 2 pt 6"), | |
197 | + Gnuplot.Data(sorted([[k,coverage_100[k]] | |
198 | + for k in coverage_100.keys()]),title="Coverage")) | |
199 | + g.hardcopy(graph_100,terminal="png") | ... | ... |
... | ... | @@ -0,0 +1,240 @@ |
1 | +#!/usr/bin/env python | |
2 | +""" | |
3 | + recommender suite - recommender experiments suite | |
4 | +""" | |
5 | +__author__ = "Tassia Camoes Araujo <tassia@gmail.com>" | |
6 | +__copyright__ = "Copyright (C) 2011 Tassia Camoes Araujo" | |
7 | +__license__ = """ | |
8 | + This program is free software: you can redistribute it and/or modify | |
9 | + it under the terms of the GNU General Public License as published by | |
10 | + the Free Software Foundation, either version 3 of the License, or | |
11 | + (at your option) any later version. | |
12 | + | |
13 | + This program is distributed in the hope that it will be useful, | |
14 | + but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | + GNU General Public License for more details. | |
17 | + | |
18 | + You should have received a copy of the GNU General Public License | |
19 | + along with this program. If not, see <http://www.gnu.org/licenses/>. | |
20 | +""" | |
21 | + | |
22 | +import sys | |
23 | +sys.path.insert(0,'../') | |
24 | +from config import Config | |
25 | +from data import PopconXapianIndex, PopconSubmission | |
26 | +from recommender import Recommender | |
27 | +from user import LocalSystem, User | |
28 | +from evaluation import * | |
29 | +import logging | |
30 | +import random | |
31 | +import Gnuplot | |
32 | +import numpy | |
33 | +import shutil | |
34 | + | |
35 | +def plot_roc(results,log_file,mean=0): | |
36 | + g = Gnuplot.Gnuplot() | |
37 | + g('set style data lines') | |
38 | + g.xlabel('False Positive Rate') | |
39 | + g.ylabel('True Positive Rate') | |
40 | + g('set xrange [0:1.0]') | |
41 | + g('set yrange [0:1.0]') | |
42 | + g.title("Setup: %s" % log_file.split("/")[-1]) | |
43 | + g('set label "C %.4f" at 0.68,0.2' % results.coverage()) | |
44 | + g('set label "AUC %.4f" at 0.68,0.15' % results.get_auc()) | |
45 | + g('set label "P(10) %.2f +- %.2f" at 0.68,0.10' % (numpy.mean(results.precision[10]),numpy.std(results.precision[10]))) | |
46 | + g('set label "F05(100) %.2f +- %.2f" at 0.68,0.05' % (numpy.mean(results.f05[100]),numpy.std(results.f05[100]))) | |
47 | + if mean==1: | |
48 | + g.plot(Gnuplot.Data(results.get_roc_points(),title="mean ROC"), | |
49 | + Gnuplot.Data([[0,0],[1,1]],with_="lines lt 7")) | |
50 | + g.hardcopy(log_file+"-roc-mean.png",terminal="png") | |
51 | + g.hardcopy(log_file+"-roc-mean.ps",terminal="postscript",enhanced=1,color=1) | |
52 | + else: | |
53 | + g.plot(Gnuplot.Data(results.get_roc_points(),title="ROC",with_="xyerrorbars"), | |
54 | + Gnuplot.Data([[0,0],[1,1]],with_="lines lt 7")) | |
55 | + g.hardcopy(log_file+"-roc.png",terminal="png") | |
56 | + g.hardcopy(log_file+"-roc.ps",terminal="postscript",enhanced=1,color=1) | |
57 | + | |
58 | +def get_label(cfg): | |
59 | + label = {} | |
60 | + if cfg.strategy in content_based: | |
61 | + label["description"] = "strategy-profile" | |
62 | + label["values"] = ("%s-profile%.3d" % | |
63 | + (cfg.strategy,cfg.profile_size)) | |
64 | + elif cfg.strategy in collaborative: | |
65 | + label["description"] = "strategy-knn" | |
66 | + label["values"] = ("%s-k%.3d" % | |
67 | + (cfg.strategy,cfg.k_neighbors)) | |
68 | + elif cfg.strategy in hybrid: | |
69 | + label["description"] = "strategy-knn-profile" | |
70 | + label["values"] = ("%s-k%.3d-profile%.3d" % | |
71 | + (cfg.strategy,cfg.k_neighbors,cfg.profile_size)) | |
72 | + return label | |
73 | + | |
74 | +class ExperimentResults: | |
75 | + def __init__(self,repo_size): | |
76 | + self.repository_size = repo_size | |
77 | + self.precision = {} | |
78 | + self.recall = {} | |
79 | + self.fpr = {} | |
80 | + self.f05 = {} | |
81 | + self.recommended = {} | |
82 | + self.thresholds = [1]+range(10,self.repository_size,10) | |
83 | + for size in self.thresholds: | |
84 | + self.precision[size] = [] | |
85 | + self.recall[size] = [] | |
86 | + self.fpr[size] = [] | |
87 | + self.f05[size] = [] | |
88 | + self.recommended[size] = set() | |
89 | + | |
90 | + def add_result(self,ranking,sample): | |
91 | + for size in self.thresholds: | |
92 | + recommendation = ranking[:size] | |
93 | + self.recommended[size] = self.recommended[size].union(recommendation) | |
94 | + predicted = RecommendationResult(dict.fromkeys(recommendation,1)) | |
95 | + real = RecommendationResult(sample) | |
96 | + evaluation = Evaluation(predicted,real,self.repository_size) | |
97 | + self.precision[size].append(evaluation.run(Precision())) | |
98 | + self.recall[size].append(evaluation.run(Recall())) | |
99 | + self.f05[size].append(evaluation.run(F_score(0.5))) | |
100 | + self.fpr[size].append(evaluation.run(FPR())) | |
101 | + | |
102 | + def precision_summary(self): | |
103 | + return [[size,numpy.mean(self.precision[size])] for size in self.thresholds] | |
104 | + | |
105 | + def recall_summary(self): | |
106 | + return [[size,numpy.mean(self.recall[size])] for size in self.thresholds] | |
107 | + | |
108 | + def f05_summary(self): | |
109 | + return [[size,numpy.mean(self.f05[size])] for size in self.thresholds] | |
110 | + | |
111 | + def coverage_summary(self): | |
112 | + return [[size,self.coverage(size)] for size in self.thresholds] | |
113 | + | |
114 | + def coverage(self,size=0): | |
115 | + if not size: | |
116 | + size = self.thresholds[-1] | |
117 | + return len(self.recommended[size])/float(self.repository_size) | |
118 | + | |
119 | + def precision(self,size): | |
120 | + return numpy.mean(results.precision[size]) | |
121 | + | |
122 | + def get_auc(self): | |
123 | + roc_points = self.get_roc_points() | |
124 | + x_roc = [p[0] for p in roc_points] | |
125 | + y_roc = [p[1] for p in roc_points] | |
126 | + x_roc.insert(0,0) | |
127 | + y_roc.insert(0,0) | |
128 | + x_roc.append(1) | |
129 | + y_roc.append(1) | |
130 | + return numpy.trapz(y=y_roc, x=x_roc) | |
131 | + | |
132 | + # Average ROC by threshold (= size of recommendation) | |
133 | + def get_roc_points(self): | |
134 | + points = [] | |
135 | + for size in self.recall.keys(): | |
136 | + tpr = self.recall[size] | |
137 | + fpr = self.fpr[size] | |
138 | + points.append([numpy.mean(fpr),numpy.mean(tpr),numpy.std(fpr),numpy.std(tpr)]) | |
139 | + return sorted(points) | |
140 | + | |
141 | +def run_strategy(cfg,sample_file): | |
142 | + rec = Recommender(cfg) | |
143 | + repo_size = rec.items_repository.get_doccount() | |
144 | + results = ExperimentResults(repo_size) | |
145 | + label = get_label(cfg) | |
146 | + population_sample = [] | |
147 | + sample_str = sample_file.split('/')[-1] | |
148 | + with open(sample_file,'r') as f: | |
149 | + for line in f.readlines(): | |
150 | + user_id = line.strip('\n') | |
151 | + population_sample.append(os.path.join(cfg.popcon_dir,user_id[:2],user_id)) | |
152 | + sample_dir = ("results/roc-sample/%s" % sample_str) | |
153 | + if not os.path.exists(sample_dir): | |
154 | + os.makedirs(sample_dir) | |
155 | + log_file = os.path.join(sample_dir,label["values"]) | |
156 | + | |
157 | + # n iterations per population user | |
158 | + for submission_file in population_sample: | |
159 | + user = PopconSystem(submission_file) | |
160 | + user.filter_pkg_profile(cfg.pkgs_filter) | |
161 | + user.maximal_pkg_profile() | |
162 | + for n in range(iterations): | |
163 | + # Fill sample profile | |
164 | + profile_len = len(user.pkg_profile) | |
165 | + item_score = {} | |
166 | + for pkg in user.pkg_profile: | |
167 | + item_score[pkg] = user.item_score[pkg] | |
168 | + sample = {} | |
169 | + sample_size = int(profile_len*0.9) | |
170 | + for i in range(sample_size): | |
171 | + key = random.choice(item_score.keys()) | |
172 | + sample[key] = item_score.pop(key) | |
173 | + iteration_user = User(item_score) | |
174 | + recommendation = rec.get_recommendation(iteration_user,repo_size) | |
175 | + if hasattr(recommendation,"ranking"): | |
176 | + results.add_result(recommendation.ranking,sample) | |
177 | + | |
178 | + plot_roc(results,log_file) | |
179 | + plot_roc(results,log_file,1) | |
180 | + with open(log_file+"-roc.jpg.comment",'w') as f: | |
181 | + f.write("# %s\n# %s\n\n" % | |
182 | + (label["description"],label["values"])) | |
183 | + f.write("# roc AUC\n%.4f\n\n"%results.get_auc()) | |
184 | + f.write("# threshold\tmean_fpr\tdev_fpr\t\tmean_tpr\tdev_tpr\t\tcoverage\n") | |
185 | + for size in results.thresholds: | |
186 | + f.write("%4d\t\t%.4f\t\t%.4f\t\t%.4f\t\t%.4f\t\t%.4f\n" % | |
187 | + (size,numpy.mean(results.fpr[size]), | |
188 | + numpy.std(results.fpr[size]), | |
189 | + numpy.mean(results.recall[size]), | |
190 | + numpy.std(results.recall[size]), | |
191 | + numpy.mean(results.coverage(size)))) | |
192 | + | |
193 | +def run_content(cfg,sample_file): | |
194 | + for size in profile_size: | |
195 | + cfg.profile_size = size | |
196 | + run_strategy(cfg,sample_file) | |
197 | + | |
198 | +def run_collaborative(cfg,sample_file): | |
199 | + for k in neighbors: | |
200 | + cfg.k_neighbors = k | |
201 | + run_strategy(cfg,sample_file) | |
202 | + | |
203 | +def run_hybrid(cfg,sample_file): | |
204 | + for k in neighbors: | |
205 | + cfg.k_neighbors = k | |
206 | + for size in profile_size: | |
207 | + cfg.profile_size = size | |
208 | + run_strategy(cfg,sample_file) | |
209 | + | |
210 | +if __name__ == '__main__': | |
211 | + if len(sys.argv)<2: | |
212 | + print "Usage: sample-roc strategy_str [popcon_sample_path]" | |
213 | + exit(1) | |
214 | + | |
215 | + #iterations = 3 | |
216 | + #content_based = ['cb'] | |
217 | + #collaborative = ['knn_eset'] | |
218 | + #hybrid = ['knnco'] | |
219 | + #profile_size = [50,100] | |
220 | + #neighbors = [50] | |
221 | + iterations = 20 | |
222 | + content_based = ['cb','cbt','cbd','cbh','cb_eset','cbt_eset','cbd_eset','cbh_eset'] | |
223 | + collaborative = ['knn_eset','knn','knn_plus'] | |
224 | + hybrid = ['knnco','knnco_eset'] | |
225 | + profile_size = [10,20,50,100,200] | |
226 | + neighbors = [200] | |
227 | + #neighbors = [3,10,50,100,200] | |
228 | + #profile_size = [10,20,40,60,80,100,140,170,200,240] | |
229 | + #neighbors = [3,5,10,20,30,50,70,100,150,200] | |
230 | + | |
231 | + cfg = Config() | |
232 | + cfg.strategy = sys.argv[1] | |
233 | + sample_file = sys.argv[2] | |
234 | + | |
235 | + if cfg.strategy in content_based: | |
236 | + run_content(cfg,sample_file) | |
237 | + if cfg.strategy in collaborative: | |
238 | + run_collaborative(cfg,sample_file) | |
239 | + if cfg.strategy in hybrid: | |
240 | + run_hybrid(cfg,sample_file) | ... | ... |
... | ... | @@ -0,0 +1,269 @@ |
1 | +#!/usr/bin/env python | |
2 | +""" | |
3 | + recommender suite - recommender experiments suite | |
4 | +""" | |
5 | +__author__ = "Tassia Camoes Araujo <tassia@gmail.com>" | |
6 | +__copyright__ = "Copyright (C) 2011 Tassia Camoes Araujo" | |
7 | +__license__ = """ | |
8 | + This program is free software: you can redistribute it and/or modify | |
9 | + it under the terms of the GNU General Public License as published by | |
10 | + the Free Software Foundation, either version 3 of the License, or | |
11 | + (at your option) any later version. | |
12 | + | |
13 | + This program is distributed in the hope that it will be useful, | |
14 | + but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | + GNU General Public License for more details. | |
17 | + | |
18 | + You should have received a copy of the GNU General Public License | |
19 | + along with this program. If not, see <http://www.gnu.org/licenses/>. | |
20 | +""" | |
21 | + | |
22 | +import sys | |
23 | +sys.path.insert(0,'../') | |
24 | +from config import Config | |
25 | +from data import PopconXapianIndex, PopconSubmission | |
26 | +from recommender import Recommender | |
27 | +from user import LocalSystem, User | |
28 | +from evaluation import * | |
29 | +import logging | |
30 | +import random | |
31 | +import Gnuplot | |
32 | +import numpy | |
33 | +import shutil | |
34 | + | |
35 | +def write_recall_log(label,n,sample,recommendation,profile_size,repo_size,log_file): | |
36 | + # Write recall log | |
37 | + output = open(("%s-%.2d" % (log_file,n)),'w') | |
38 | + output.write("# %s-n\n" % label["description"]) | |
39 | + output.write("# %s-%.2d\n" % (label["values"],n)) | |
40 | + output.write("\n# repository profile sample\n%d %d %d\n" % \ | |
41 | + (repo_size,profile_size,len(sample))) | |
42 | + if hasattr(recommendation,"ranking"): | |
43 | + notfound = [] | |
44 | + ranks = [] | |
45 | + for pkg in sample.keys(): | |
46 | + if pkg in recommendation.ranking: | |
47 | + ranks.append(recommendation.ranking.index(pkg)) | |
48 | + else: | |
49 | + notfound.append(pkg) | |
50 | + for r in sorted(ranks): | |
51 | + output.write(str(r)+"\n") | |
52 | + if notfound: | |
53 | + output.write("# out of recommendation:\n") | |
54 | + for pkg in notfound: | |
55 | + output.write(pkg+"\n") | |
56 | + output.close() | |
57 | + | |
58 | +def plot_summary(results,log_file): | |
59 | + # Plot metrics summary | |
60 | + g = Gnuplot.Gnuplot() | |
61 | + g('set style data lines') | |
62 | + g('set yrange [0:1.0]') | |
63 | + g.xlabel('Threshold (recommendation size)') | |
64 | + g.title("Setup: %s" % log_file.split("/")[-1]) | |
65 | + g.plot(Gnuplot.Data(results.precision_summary(),title="Precision"), | |
66 | + Gnuplot.Data(results.recall_summary(),title="Recall"), | |
67 | + Gnuplot.Data(results.f05_summary(),title="F05"), | |
68 | + Gnuplot.Data(results.coverage_summary(),title="Coverage")) | |
69 | + g.hardcopy(log_file+".png",terminal="png") | |
70 | + g.hardcopy(log_file+".ps",terminal="postscript",enhanced=1,color=1) | |
71 | + g('set logscale x') | |
72 | + g('replot') | |
73 | + g.hardcopy(log_file+"-logscale.png",terminal="png") | |
74 | + g.hardcopy(log_file+"-logscale.ps",terminal="postscript",enhanced=1,color=1) | |
75 | + | |
76 | +def plot_roc(results,log_file): | |
77 | + g = Gnuplot.Gnuplot() | |
78 | + g('set style data lines') | |
79 | + g.xlabel('False Positive Rate') | |
80 | + g.ylabel('True Positive Rate') | |
81 | + g('set xrange [0:1.0]') | |
82 | + g('set yrange [0:1.0]') | |
83 | + g.title("Setup: %s" % log_file.split("/")[-1]) | |
84 | + g('set label "C %.2f" at 0.8,0.25' % results.coverage()) | |
85 | + g('set label "AUC %.2f" at 0.8,0.2' % results.get_auc()) | |
86 | + g('set label "P(10) %.2f" at 0.8,0.15' % numpy.mean(results.precision[10])) | |
87 | + g('set label "P(20) %.2f" at 0.8,0.10' % numpy.mean(results.precision[20])) | |
88 | + g('set label "F05(100) %.2f" at 0.8,0.05' % numpy.mean(results.f05[100])) | |
89 | + g.plot(Gnuplot.Data(results.get_roc_points(),title="ROC"), | |
90 | + Gnuplot.Data([[0,0],[1,1]],with_="lines lt 7")) | |
91 | + #Gnuplot.Data([roc_points[-1],[1,1]],with_="lines lt 6")) | |
92 | + g.hardcopy(log_file+"-roc.png",terminal="png") | |
93 | + g.hardcopy(log_file+"-roc.ps",terminal="postscript",enhanced=1,color=1) | |
94 | + | |
95 | +def get_label(cfg): | |
96 | + label = {} | |
97 | + if cfg.strategy in content_based: | |
98 | + label["description"] = "strategy-profile" | |
99 | + label["values"] = ("%s-profile%.3d" % | |
100 | + (cfg.strategy,cfg.profile_size)) | |
101 | + elif cfg.strategy in collaborative: | |
102 | + label["description"] = "strategy-knn" | |
103 | + label["values"] = ("%s-k%.3d" % | |
104 | + (cfg.strategy,cfg.k_neighbors)) | |
105 | + elif cfg.strategy in hybrid: | |
106 | + label["description"] = "strategy-knn-profile" | |
107 | + label["values"] = ("%s-k%.3d-profile%.3d" % | |
108 | + (cfg.strategy,cfg.k_neighbors,cfg.profile_size)) | |
109 | + return label | |
110 | + | |
111 | +class ExperimentResults: | |
112 | + def __init__(self,repo_size): | |
113 | + self.repository_size = repo_size | |
114 | + self.precision = {} | |
115 | + self.recall = {} | |
116 | + self.fpr = {} | |
117 | + self.f05 = {} | |
118 | + self.recommended = {} | |
119 | + self.thresholds = [1]+range(10,self.repository_size,10) | |
120 | + for size in self.thresholds: | |
121 | + self.precision[size] = [] | |
122 | + self.recall[size] = [] | |
123 | + self.fpr[size] = [] | |
124 | + self.f05[size] = [] | |
125 | + self.recommended[size] = set() | |
126 | + | |
127 | + def add_result(self,ranking,sample): | |
128 | + for size in self.thresholds: | |
129 | + recommendation = ranking[:size] | |
130 | + self.recommended[size] = self.recommended[size].union(recommendation) | |
131 | + predicted = RecommendationResult(dict.fromkeys(recommendation,1)) | |
132 | + real = RecommendationResult(sample) | |
133 | + evaluation = Evaluation(predicted,real,self.repository_size) | |
134 | + print evaluation.run(Precision()) | |
135 | + self.precision[size].append(evaluation.run(Precision())) | |
136 | + self.recall[size].append(evaluation.run(Recall())) | |
137 | + self.f05[size].append(evaluation.run(F_score(0.5))) | |
138 | + self.fpr[size].append(evaluation.run(FPR())) | |
139 | + | |
140 | + def precision_summary(self): | |
141 | + return [[size,numpy.mean(self.precision[size])] for size in self.thresholds] | |
142 | + | |
143 | + def recall_summary(self): | |
144 | + return [[size,numpy.mean(self.recall[size])] for size in self.thresholds] | |
145 | + | |
146 | + def f05_summary(self): | |
147 | + return [[size,numpy.mean(self.f05[size])] for size in self.thresholds] | |
148 | + | |
149 | + def coverage_summary(self): | |
150 | + return [[size,self.coverage(size)] for size in self.thresholds] | |
151 | + | |
152 | + def coverage(self,size=0): | |
153 | + if not size: | |
154 | + size = self.thresholds[-1] | |
155 | + return len(self.recommended[size])/float(self.repository_size) | |
156 | + | |
157 | + def precision(self,size): | |
158 | + return numpy.mean(results.precision[size]) | |
159 | + | |
160 | + def get_auc(self): | |
161 | + roc_points = self.get_roc_points() | |
162 | + x_roc = [p[0] for p in roc_points] | |
163 | + y_roc = [p[1] for p in roc_points] | |
164 | + x_roc.insert(0,0) | |
165 | + y_roc.insert(0,0) | |
166 | + x_roc.append(1) | |
167 | + y_roc.append(1) | |
168 | + return numpy.trapz(y=y_roc, x=x_roc) | |
169 | + | |
170 | + # Average ROC by threshold (= size of recommendation) | |
171 | + def get_roc_points(self): | |
172 | + points = [] | |
173 | + for size in self.recall.keys(): | |
174 | + tpr = self.recall[size] | |
175 | + fpr = self.fpr[size] | |
176 | + points.append([sum(fpr)/len(fpr),sum(tpr)/len(tpr)]) | |
177 | + return sorted(points) | |
178 | + | |
179 | +def run_strategy(cfg,user): | |
180 | + rec = Recommender(cfg) | |
181 | + repo_size = rec.items_repository.get_doccount() | |
182 | + results = ExperimentResults(repo_size) | |
183 | + label = get_label(cfg) | |
184 | + user_dir = ("results/roc-suite/%s/%s" % (user.user_id[:8],cfg.strategy)) | |
185 | + if not os.path.exists(user_dir): | |
186 | + os.makedirs(user_dir) | |
187 | + log_file = os.path.join(user_dir,label["values"]) | |
188 | + for n in range(iterations): | |
189 | + # Fill sample profile | |
190 | + profile_len = len(user.pkg_profile) | |
191 | + item_score = {} | |
192 | + for pkg in user.pkg_profile: | |
193 | + item_score[pkg] = user.item_score[pkg] | |
194 | + sample = {} | |
195 | + sample_size = int(profile_len*0.9) | |
196 | + for i in range(sample_size): | |
197 | + key = random.choice(item_score.keys()) | |
198 | + sample[key] = item_score.pop(key) | |
199 | + iteration_user = User(item_score) | |
200 | + recommendation = rec.get_recommendation(iteration_user,repo_size) | |
201 | + write_recall_log(label,n,sample,recommendation,profile_len,repo_size,log_file) | |
202 | + if hasattr(recommendation,"ranking"): | |
203 | + results.add_result(recommendation.ranking,sample) | |
204 | + with open(log_file+"-roc.jpg.comment",'w') as f: | |
205 | + f.write("# %s\n# %s\n\n" % | |
206 | + (label["description"],label["values"])) | |
207 | + f.write("# roc AUC\n%.4f\n\n"%results.get_auc()) | |
208 | + f.write("# threshold\tprecision\trecall\t\tf05\t\tcoverage\n") | |
209 | + for size in results.thresholds: | |
210 | + f.write("%4d\t\t%.4f\t\t%.4f\t\t%.4f\t\t%.4f\n" % | |
211 | + (size,numpy.mean(results.precision[size]), | |
212 | + numpy.mean(results.recall[size]), | |
213 | + numpy.mean(results.f05[size]), | |
214 | + numpy.mean(results.coverage(size)))) | |
215 | + shutil.copy(log_file+"-roc.jpg.comment",log_file+".jpg.comment") | |
216 | + shutil.copy(log_file+"-roc.jpg.comment",log_file+"-logscale.jpg.comment") | |
217 | + plot_roc(results,log_file) | |
218 | + plot_summary(results,log_file) | |
219 | + | |
220 | +def run_content(user,cfg): | |
221 | + for size in profile_size: | |
222 | + cfg.profile_size = size | |
223 | + run_strategy(cfg,user) | |
224 | + | |
225 | +def run_collaborative(user,cfg): | |
226 | + for k in neighbors: | |
227 | + cfg.k_neighbors = k | |
228 | + run_strategy(cfg,user) | |
229 | + | |
230 | +def run_hybrid(user,cfg): | |
231 | + for k in neighbors: | |
232 | + cfg.k_neighbors = k | |
233 | + for size in profile_size: | |
234 | + cfg.profile_size = size | |
235 | + run_strategy(cfg,user) | |
236 | + | |
237 | +if __name__ == '__main__': | |
238 | + if len(sys.argv)<2: | |
239 | + print "Usage: roc-suite strategy_str [popcon_submission_path]" | |
240 | + exit(1) | |
241 | + | |
242 | + #iterations = 3 | |
243 | + #content_based = ['cb'] | |
244 | + #collaborative = ['knn_eset'] | |
245 | + #hybrid = ['knnco'] | |
246 | + #profile_size = [50,100] | |
247 | + #neighbors = [50] | |
248 | + iterations = 20 | |
249 | + content_based = ['cb','cbt','cbd','cbh','cb_eset','cbt_eset','cbd_eset','cbh_eset'] | |
250 | + collaborative = ['knn_eset','knn','knn_plus'] | |
251 | + hybrid = ['knnco','knnco_eset'] | |
252 | + profile_size = [10,20,40,60,80,100,140,170,200,240] | |
253 | + neighbors = [3,5,10,20,30,50,70,100,150,200] | |
254 | + | |
255 | + cfg = Config() | |
256 | + cfg.strategy = sys.argv[1] | |
257 | + | |
258 | + #user = PopconSystem("/root/.app-recommender/popcon-entries/4a/4a67a295ec14826db2aa1d90be2f1623") | |
259 | + user = PopconSystem("/root/.app-recommender/popcon-entries/8b/8b44fcdbcf676e711a153d5db09979d7") | |
260 | + #user = PopconSystem(sys.argv[1]) | |
261 | + user.filter_pkg_profile(cfg.pkgs_filter) | |
262 | + user.maximal_pkg_profile() | |
263 | + | |
264 | + if cfg.strategy in content_based: | |
265 | + run_content(user,cfg) | |
266 | + if cfg.strategy in collaborative: | |
267 | + run_collaborative(user,cfg) | |
268 | + if cfg.strategy in hybrid: | |
269 | + run_hybrid(user,cfg) | ... | ... |
src/experiments/roc-suite.py
... | ... | @@ -1,328 +0,0 @@ |
1 | -#!/usr/bin/env python | |
2 | -""" | |
3 | - recommender suite - recommender experiments suite | |
4 | -""" | |
5 | -__author__ = "Tassia Camoes Araujo <tassia@gmail.com>" | |
6 | -__copyright__ = "Copyright (C) 2011 Tassia Camoes Araujo" | |
7 | -__license__ = """ | |
8 | - This program is free software: you can redistribute it and/or modify | |
9 | - it under the terms of the GNU General Public License as published by | |
10 | - the Free Software Foundation, either version 3 of the License, or | |
11 | - (at your option) any later version. | |
12 | - | |
13 | - This program is distributed in the hope that it will be useful, | |
14 | - but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | - GNU General Public License for more details. | |
17 | - | |
18 | - You should have received a copy of the GNU General Public License | |
19 | - along with this program. If not, see <http://www.gnu.org/licenses/>. | |
20 | -""" | |
21 | - | |
22 | -import sys | |
23 | -sys.path.insert(0,'../') | |
24 | -from config import Config | |
25 | -from data import PopconXapianIndex, PopconSubmission | |
26 | -from recommender import Recommender | |
27 | -from user import LocalSystem, User | |
28 | -from evaluation import * | |
29 | -import logging | |
30 | -import random | |
31 | -import Gnuplot | |
32 | -import numpy | |
33 | - | |
34 | -#iterations = 3 | |
35 | -#sample_proportions = [0.9] | |
36 | -#weighting = [('bm25',1.2)] | |
37 | -#collaborative = ['knn_eset'] | |
38 | -#content_based = ['cb'] | |
39 | -#hybrid = ['knnco'] | |
40 | -#profile_size = [50,100] | |
41 | -#popcon_size = ["1000"] | |
42 | -#neighbors = [50] | |
43 | - | |
44 | -iterations = 30 | |
45 | -sample_proportions = [0.9] | |
46 | -weighting = [('bm25',1.0),('bm25',1.2),('bm25',2.0),('trad',0)] | |
47 | -content_based = ['cb','cbt','cbd','cbh','cb_eset','cbt_eset','cbd_eset','cbh_eset'] | |
48 | -collaborative = ['knn_eset','knn','knn_plus'] | |
49 | -hybrid = ['knnco','knnco_eset'] | |
50 | -profile_size = range(20,200,20) | |
51 | -neighbors = range(10,510,50) | |
52 | - | |
53 | -def write_recall_log(label,n,sample,recommendation,profile_size,repo_size,log_file): | |
54 | - # Write recall log | |
55 | - output = open(("%s-%.2d" % (log_file,n)),'w') | |
56 | - output.write("# %s-n\n" % label["description"]) | |
57 | - output.write("# %s-%.2d\n" % (label["values"],n)) | |
58 | - output.write("\n# repository profile sample\n%d %d %d\n" % \ | |
59 | - (repo_size,profile_size,len(sample))) | |
60 | - if hasattr(recommendation,"ranking"): | |
61 | - notfound = [] | |
62 | - ranks = [] | |
63 | - for pkg in sample.keys(): | |
64 | - if pkg in recommendation.ranking: | |
65 | - ranks.append(recommendation.ranking.index(pkg)) | |
66 | - else: | |
67 | - notfound.append(pkg) | |
68 | - for r in sorted(ranks): | |
69 | - output.write(str(r)+"\n") | |
70 | - if notfound: | |
71 | - output.write("# out of recommendation:\n") | |
72 | - for pkg in notfound: | |
73 | - output.write(pkg+"\n") | |
74 | - output.close() | |
75 | - | |
76 | -def plot_roc(roc_points,auc,eauc,c,p,log_file): | |
77 | - g = Gnuplot.Gnuplot() | |
78 | - g('set style data lines') | |
79 | - g.xlabel('False Positive Rate') | |
80 | - g.ylabel('True Positive Rate') | |
81 | - g('set xrange [0:1.0]') | |
82 | - g('set yrange [0:1.0]') | |
83 | - g.title("Setup: %s" % log_file.split("/")[-1]) | |
84 | - g('set label "C %.2f" at 0.8,0.25' % c) | |
85 | - g('set label "P(20) %.2f" at 0.8,0.2' % p) | |
86 | - g('set label "AUC %.4f" at 0.8,0.15' % auc) | |
87 | - g('set label "EAUC %.4f" at 0.8,0.1' % eauc) | |
88 | - g.plot(Gnuplot.Data(roc_points,title="ROC"), | |
89 | - Gnuplot.Data([[0,0],[1,1]],with_="lines lt 7"), | |
90 | - Gnuplot.Data([roc_points[-1],[1,1]],with_="lines lt 6")) | |
91 | - g.hardcopy(log_file+"-roc.png",terminal="png") | |
92 | - g.hardcopy(log_file+"-roc.ps",terminal="postscript",enhanced=1,color=1) | |
93 | - | |
94 | -def plot_summary(precision,recall,f1,f05,accuracy,log_file): | |
95 | - # Plot metrics summary | |
96 | - g = Gnuplot.Gnuplot() | |
97 | - g('set style data lines') | |
98 | - g.xlabel('Recommendation size') | |
99 | - g.title("Setup: %s" % log_file.split("/")[-1]) | |
100 | - g.plot(Gnuplot.Data(accuracy,title="Accuracy"), | |
101 | - Gnuplot.Data(precision,title="Precision"), | |
102 | - Gnuplot.Data(recall,title="Recall"), | |
103 | - Gnuplot.Data(f1,title="F_1"), | |
104 | - Gnuplot.Data(f05,title="F_0.5")) | |
105 | - g.hardcopy(log_file+".png",terminal="png") | |
106 | - g.hardcopy(log_file+".ps",terminal="postscript",enhanced=1,color=1) | |
107 | - g('set logscale x') | |
108 | - g('replot') | |
109 | - g.hardcopy(log_file+"-logscale.png",terminal="png") | |
110 | - g.hardcopy(log_file+"-logscale.ps",terminal="postscript",enhanced=1,color=1) | |
111 | - | |
112 | -def get_label(cfg,sample_proportion): | |
113 | - label = {} | |
114 | - if cfg.strategy in content_based: | |
115 | - label["description"] = "strategy-filter-profile-k1_bm25" | |
116 | - label["values"] = ("%s-profile%.3d-%s-kbm%.1f" % | |
117 | - (cfg.strategy,cfg.profile_size, | |
118 | - cfg.pkgs_filter.split("/")[-1], | |
119 | - cfg.bm25_k1)) | |
120 | - elif cfg.strategy in collaborative: | |
121 | - label["description"] = "strategy-knn-filter-k1_bm25" | |
122 | - label["values"] = ("%s-k%.3d-%s-kbm%.1f" % | |
123 | - (cfg.strategy,cfg.k_neighbors, | |
124 | - cfg.pkgs_filter.split("/")[-1], | |
125 | - cfg.bm25_k1)) | |
126 | - elif cfg.strategy in hybrid: | |
127 | - label["description"] = "strategy-knn-filter-profile-k1_bm25" | |
128 | - label["values"] = ("%s-k%.3d-profile%.3d-%s-kbm%.1f" % | |
129 | - (cfg.strategy,cfg.k_neighbors,cfg.profile_size, | |
130 | - cfg.pkgs_filter.split("/")[-1], | |
131 | - cfg.bm25_k1)) | |
132 | - else: | |
133 | - print "Unknown strategy" | |
134 | - return label | |
135 | - | |
136 | -class ExperimentResults: | |
137 | - def __init__(self,repo_size): | |
138 | - self.repository_size = repo_size | |
139 | - self.accuracy = {} | |
140 | - self.precision = {} | |
141 | - self.recall = {} | |
142 | - self.f1 = {} | |
143 | - self.f05 = {} | |
144 | - self.fpr = {} | |
145 | - #points = [1]+range(10,200,10)+range(200,self.repository_size,100) | |
146 | - points = [1]+range(10,self.repository_size,10) | |
147 | - self.recommended = set() | |
148 | - for size in points: | |
149 | - self.accuracy[size] = [] | |
150 | - self.precision[size] = [] | |
151 | - self.recall[size] = [] | |
152 | - self.f1[size] = [] | |
153 | - self.f05[size] = [] | |
154 | - self.fpr[size] = [] | |
155 | - | |
156 | - def add_result(self,ranking,sample): | |
157 | - print "len_recommended", len(self.recommended) | |
158 | - print "len_rank", len(ranking) | |
159 | - self.recommended = self.recommended.union(ranking) | |
160 | - print "len_recommended", len(self.recommended) | |
161 | - # get data only for point | |
162 | - for size in self.accuracy.keys(): | |
163 | - predicted = RecommendationResult(dict.fromkeys(ranking[:size],1)) | |
164 | - real = RecommendationResult(sample) | |
165 | - evaluation = Evaluation(predicted,real,self.repository_size) | |
166 | - #self.accuracy[size].append(evaluation.run(Accuracy())) | |
167 | - self.precision[size].append(evaluation.run(Precision())) | |
168 | - self.recall[size].append(evaluation.run(Recall())) | |
169 | - #self.f1[size].append(evaluation.run(F_score(1))) | |
170 | - #self.f05[size].append(evaluation.run(F_score(0.5))) | |
171 | - self.fpr[size].append(evaluation.run(FPR())) | |
172 | - | |
173 | - # Average ROC by threshold (whici is the size) | |
174 | - def get_roc_points(self): | |
175 | - points = [] | |
176 | - for size in self.recall.keys(): | |
177 | - tpr = self.recall[size] | |
178 | - fpr = self.fpr[size] | |
179 | - points.append([sum(fpr)/len(fpr),sum(tpr)/len(tpr)]) | |
180 | - return sorted(points) | |
181 | - | |
182 | - def get_precision_summary(self): | |
183 | - summary = [[size,sum(values)/len(values)] for size,values in self.precision.items()] | |
184 | - return sorted(summary) | |
185 | - | |
186 | - def get_recall_summary(self): | |
187 | - summary = [[size,sum(values)/len(values)] for size,values in self.recall.items()] | |
188 | - return sorted(summary) | |
189 | - | |
190 | - def get_f1_summary(self): | |
191 | - summary = [[size,sum(values)/len(values)] for size,values in self.f1.items()] | |
192 | - return sorted(summary) | |
193 | - | |
194 | - def get_f05_summary(self): | |
195 | - summary = [[size,sum(values)/len(values)] for size,values in self.f05.items()] | |
196 | - return sorted(summary) | |
197 | - | |
198 | - def get_accuracy_summary(self): | |
199 | - summary = [[size,sum(values)/len(values)] for size,values in self.accuracy.items()] | |
200 | - return sorted(summary) | |
201 | - | |
202 | - def best_precision(self): | |
203 | - size = max(self.precision, key = lambda x: max(self.precision[x]) and x>10) | |
204 | - return (size,max(self.precision[size])) | |
205 | - | |
206 | - def best_f1(self): | |
207 | - size = max(self.f1, key = lambda x: max(self.f1[x])) | |
208 | - return (size,max(self.f1[size])) | |
209 | - | |
210 | - def best_f05(self): | |
211 | - size = max(self.f05, key = lambda x: max(self.f05[x])) | |
212 | - return (size,max(self.f05[size])) | |
213 | - | |
214 | -def run_strategy(cfg,user): | |
215 | - for weight in weighting: | |
216 | - cfg.weight = weight[0] | |
217 | - cfg.bm25_k1 = weight[1] | |
218 | - rec = Recommender(cfg) | |
219 | - repo_size = rec.items_repository.get_doccount() | |
220 | - for proportion in sample_proportions: | |
221 | - results = ExperimentResults(repo_size) | |
222 | - label = get_label(cfg,proportion) | |
223 | - #log_file = "results/20110906/4a67a295/"+label["values"] | |
224 | - log_file = "results/"+label["values"] | |
225 | - for n in range(iterations): | |
226 | - # Fill sample profile | |
227 | - profile_size = len(user.pkg_profile) | |
228 | - item_score = {} | |
229 | - for pkg in user.pkg_profile: | |
230 | - item_score[pkg] = user.item_score[pkg] | |
231 | - sample = {} | |
232 | - sample_size = int(profile_size*proportion) | |
233 | - for i in range(sample_size): | |
234 | - key = random.choice(item_score.keys()) | |
235 | - sample[key] = item_score.pop(key) | |
236 | - iteration_user = User(item_score) | |
237 | - recommendation = rec.get_recommendation(iteration_user,repo_size) | |
238 | - #write_recall_log(label,n,sample,recommendation,profile_size,repo_size,log_file) | |
239 | - if hasattr(recommendation,"ranking"): | |
240 | - results.add_result(recommendation.ranking,sample) | |
241 | - with open(log_file,'w') as f: | |
242 | - roc_points = results.get_roc_points() | |
243 | - x_coord = [p[0] for p in roc_points] | |
244 | - y_coord = [p[1] for p in roc_points] | |
245 | - auc = numpy.trapz(y=y_coord, x=x_coord) | |
246 | - eauc = (auc+ | |
247 | - numpy.trapz(y=[0,roc_points[0][1]],x=[0,roc_points[0][0]])+ | |
248 | - numpy.trapz(y=[roc_points[-1][1],1],x=[roc_points[-1][0],1])) | |
249 | - precision_20 = sum(results.precision[10])/len(results.precision[10]) | |
250 | - print results.recommended | |
251 | - print "len",len(results.recommended) | |
252 | - coverage = len(results.recommended)/float(repo_size) | |
253 | - print "repo_size: ", float(repo_size) | |
254 | - print coverage | |
255 | - exit(1) | |
256 | - #f1_10 = sum(results.f1[10])/len(results.f1[10]) | |
257 | - #f05_10 = sum(results.f05[10])/len(results.f05[10]) | |
258 | - f.write("# %s\n# %s\n\n" % | |
259 | - (label["description"],label["values"])) | |
260 | - f.write("# coverage \tp(20) \tauc \teauc\n\t%.2f \t%.2f \t%.4f \t%.4f\n\n" % | |
261 | - (coverage,precision_20,auc,eauc)) | |
262 | - #f.write("# best results (recommendation size; metric)\n") | |
263 | - #f.write("precision (%d; %.2f)\nf1 (%d; %.2f)\nf05 (%d; %.2f)\n\n" % | |
264 | - # (results.best_precision()[0],results.best_precision()[1], | |
265 | - # results.best_f1()[0],results.best_f1()[1], | |
266 | - # results.best_f05()[0],results.best_f05()[1])) | |
267 | - #f.write("# recommendation size 10\nprecision (10; %.2f)\nf1 (10; %.2f)\nf05 (10; %.2f)" % | |
268 | - # (precision_10,f1_10,f05_10)) | |
269 | - #precision = results.get_precision_summary() | |
270 | - #recall = results.get_recall_summary() | |
271 | - #f1 = results.get_f1_summary() | |
272 | - #f05 = results.get_f05_summary() | |
273 | - #accuracy = results.get_accuracy_summary() | |
274 | - #plot_summary(precision,recall,f1,f05,accuracy,log_file) | |
275 | - plot_roc(roc_points,auc,eauc,coverage,precision_20,log_file) | |
276 | - | |
277 | -def run_content(user,cfg): | |
278 | - for strategy in content_based: | |
279 | - cfg.strategy = strategy | |
280 | - for size in profile_size: | |
281 | - cfg.profile_size = size | |
282 | - run_strategy(cfg,user) | |
283 | - | |
284 | -def run_collaborative(user,cfg): | |
285 | - popcon_desktopapps = cfg.popcon_desktopapps | |
286 | - popcon_programs = cfg.popcon_programs | |
287 | - for strategy in collaborative: | |
288 | - cfg.strategy = strategy | |
289 | - for k in neighbors: | |
290 | - cfg.k_neighbors = k | |
291 | - #for size in popcon_size: | |
292 | - # if size: | |
293 | - # cfg.popcon_desktopapps = popcon_desktopapps+"_"+size | |
294 | - # cfg.popcon_programs = popcon_programs+"_"+size | |
295 | - run_strategy(cfg,user) | |
296 | - | |
297 | -def run_hybrid(user,cfg): | |
298 | - popcon_desktopapps = cfg.popcon_desktopapps | |
299 | - popcon_programs = cfg.popcon_programs | |
300 | - for strategy in hybrid: | |
301 | - cfg.strategy = strategy | |
302 | - for k in neighbors: | |
303 | - cfg.k_neighbors = k | |
304 | - #for size in popcon_size: | |
305 | - # if size: | |
306 | - # cfg.popcon_desktopapps = popcon_desktopapps+"_"+size | |
307 | - # cfg.popcon_programs = popcon_programs+"_"+size | |
308 | - for size in profile_size: | |
309 | - cfg.profile_size = size | |
310 | - run_strategy(cfg,user) | |
311 | - | |
312 | -if __name__ == '__main__': | |
313 | - #user = LocalSystem() | |
314 | - #user = RandomPopcon(cfg.popcon_dir,os.path.join(cfg.filters_dir,"desktopapps")) | |
315 | - | |
316 | - cfg = Config() | |
317 | - #user = PopconSystem("/root/.app-recommender/popcon-entries/8b/8b44fcdbcf676e711a153d5db09979d7") | |
318 | - user = PopconSystem("/root/.app-recommender/popcon-entries/4a/4a67a295ec14826db2aa1d90be2f1623") | |
319 | - #user = PopconSystem("/root/.app-recommender/popcon-entries/4a/4a5834eb2aba6b6f17312239e0761c70") | |
320 | - user.filter_pkg_profile(cfg.pkgs_filter) | |
321 | - user.maximal_pkg_profile() | |
322 | - | |
323 | - if "content" in sys.argv or len(sys.argv)<2: | |
324 | - run_content(user,cfg) | |
325 | - if "collaborative" in sys.argv or len(sys.argv)<2: | |
326 | - run_collaborative(user,cfg) | |
327 | - if "hybrid" in sys.argv or len(sys.argv)<2: | |
328 | - run_hybrid(user,cfg) |
src/experiments/runner.py
... | ... | @@ -1,171 +0,0 @@ |
1 | -#!/usr/bin/env python | |
2 | -""" | |
3 | - recommender suite - recommender experiments suite | |
4 | -""" | |
5 | -__author__ = "Tassia Camoes Araujo <tassia@gmail.com>" | |
6 | -__copyright__ = "Copyright (C) 2011 Tassia Camoes Araujo" | |
7 | -__license__ = """ | |
8 | - This program is free software: you can redistribute it and/or modify | |
9 | - it under the terms of the GNU General Public License as published by | |
10 | - the Free Software Foundation, either version 3 of the License, or | |
11 | - (at your option) any later version. | |
12 | - | |
13 | - This program is distributed in the hope that it will be useful, | |
14 | - but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | - GNU General Public License for more details. | |
17 | - | |
18 | - You should have received a copy of the GNU General Public License | |
19 | - along with this program. If not, see <http://www.gnu.org/licenses/>. | |
20 | -""" | |
21 | - | |
22 | -import expsuite | |
23 | -import sys | |
24 | -sys.path.insert(0,'../') | |
25 | -from config import Config | |
26 | -from data import PopconXapianIndex, PopconSubmission | |
27 | -from recommender import Recommender | |
28 | -from user import LocalSystem, User | |
29 | -from evaluation import * | |
30 | -import logging | |
31 | -import random | |
32 | -import Gnuplot | |
33 | - | |
34 | -class ClusteringSuite(expsuite.PyExperimentSuite): | |
35 | - def reset(self, params, rep): | |
36 | - self.cfg = Config() | |
37 | - self.cfg.popcon_index = "../tests/test_data/.sample_pxi" | |
38 | - self.cfg.popcon_dir = "../tests/test_data/popcon_dir" | |
39 | - self.cfg.clusters_dir = "../tests/test_data/clusters_dir" | |
40 | - | |
41 | - if params['name'] == "clustering": | |
42 | - logging.info("Starting 'clustering' experiments suite...") | |
43 | - self.cfg.index_mode = "recluster" | |
44 | - | |
45 | - def iterate(self, params, rep, n): | |
46 | - if params['name'] == "clustering": | |
47 | - logging.info("Running iteration %d" % params['medoids'][n]) | |
48 | - self.cfg.k_medoids = params['medoids'][n] | |
49 | - pxi = PopconXapianIndex(self.cfg) | |
50 | - result = {'k_medoids': params['medoids'][n], | |
51 | - 'dispersion': pxi.cluster_dispersion} | |
52 | - else: | |
53 | - result = {} | |
54 | - return result | |
55 | - | |
56 | -class ContentBasedSuite(expsuite.PyExperimentSuite): | |
57 | - def reset(self, params, rep): | |
58 | - if params['name'].startswith("content"): | |
59 | - cfg = Config() | |
60 | - #if the index was not built yet | |
61 | - #app_axi = AppAptXapianIndex(cfg.axi,"results/arnaldo/AppAxi") | |
62 | - cfg.axi = "data/AppAxi" | |
63 | - cfg.index_mode = "old" | |
64 | - cfg.weight = params['weight'] | |
65 | - self.rec = Recommender(cfg) | |
66 | - self.rec.set_strategy(params['strategy']) | |
67 | - self.repo_size = self.rec.items_repository.get_doccount() | |
68 | - self.user = LocalSystem() | |
69 | - self.user.app_pkg_profile(self.rec.items_repository) | |
70 | - self.user.no_auto_pkg_profile() | |
71 | - self.sample_size = int(len(self.user.pkg_profile)*params['sample']) | |
72 | - # iteration should be set to 10 in config file | |
73 | - #self.profile_size = range(10,101,10) | |
74 | - | |
75 | - def iterate(self, params, rep, n): | |
76 | - if params['name'].startswith("content"): | |
77 | - item_score = dict.fromkeys(self.user.pkg_profile,1) | |
78 | - # Prepare partition | |
79 | - sample = {} | |
80 | - for i in range(self.sample_size): | |
81 | - key = random.choice(item_score.keys()) | |
82 | - sample[key] = item_score.pop(key) | |
83 | - # Get full recommendation | |
84 | - user = User(item_score) | |
85 | - recommendation = self.rec.get_recommendation(user,self.repo_size) | |
86 | - # Write recall log | |
87 | - recall_file = "results/content/recall/%s-%s-%.2f-%d" % \ | |
88 | - (params['strategy'],params['weight'],params['sample'],n) | |
89 | - output = open(recall_file,'w') | |
90 | - output.write("# weight=%s\n" % params['weight']) | |
91 | - output.write("# strategy=%s\n" % params['strategy']) | |
92 | - output.write("# sample=%f\n" % params['sample']) | |
93 | - output.write("\n%d %d %d\n" % \ | |
94 | - (self.repo_size,len(item_score),self.sample_size)) | |
95 | - notfound = [] | |
96 | - ranks = [] | |
97 | - for pkg in sample.keys(): | |
98 | - if pkg in recommendation.ranking: | |
99 | - ranks.append(recommendation.ranking.index(pkg)) | |
100 | - else: | |
101 | - notfound.append(pkg) | |
102 | - for r in sorted(ranks): | |
103 | - output.write(str(r)+"\n") | |
104 | - if notfound: | |
105 | - output.write("Out of recommendation:\n") | |
106 | - for pkg in notfound: | |
107 | - output.write(pkg+"\n") | |
108 | - output.close() | |
109 | - # Plot metrics summary | |
110 | - accuracy = [] | |
111 | - precision = [] | |
112 | - recall = [] | |
113 | - f1 = [] | |
114 | - g = Gnuplot.Gnuplot() | |
115 | - g('set style data lines') | |
116 | - g.xlabel('Recommendation size') | |
117 | - for size in range(1,len(recommendation.ranking)+1,100): | |
118 | - predicted = RecommendationResult(dict.fromkeys(recommendation.ranking[:size],1)) | |
119 | - real = RecommendationResult(sample) | |
120 | - evaluation = Evaluation(predicted,real,self.repo_size) | |
121 | - accuracy.append([size,evaluation.run(Accuracy())]) | |
122 | - precision.append([size,evaluation.run(Precision())]) | |
123 | - recall.append([size,evaluation.run(Recall())]) | |
124 | - f1.append([size,evaluation.run(F1())]) | |
125 | - g.plot(Gnuplot.Data(accuracy,title="Accuracy"), | |
126 | - Gnuplot.Data(precision,title="Precision"), | |
127 | - Gnuplot.Data(recall,title="Recall"), | |
128 | - Gnuplot.Data(f1,title="F1")) | |
129 | - g.hardcopy(recall_file+"-plot.ps", enhanced=1, color=1) | |
130 | - # Iteration log | |
131 | - result = {'iteration': n, | |
132 | - 'weight': params['weight'], | |
133 | - 'strategy': params['strategy'], | |
134 | - 'accuracy': accuracy[20], | |
135 | - 'precision': precision[20], | |
136 | - 'recall:': recall[20], | |
137 | - 'f1': f1[20]} | |
138 | - return result | |
139 | - | |
140 | -#class CollaborativeSuite(expsuite.PyExperimentSuite): | |
141 | -# def reset(self, params, rep): | |
142 | -# if params['name'].startswith("collaborative"): | |
143 | -# | |
144 | -# def iterate(self, params, rep, n): | |
145 | -# if params['name'].startswith("collaborative"): | |
146 | -# for root, dirs, files in os.walk(self.source_dir): | |
147 | -# for popcon_file in files: | |
148 | -# submission = PopconSubmission(os.path.join(root,popcon_file)) | |
149 | -# user = User(submission.packages) | |
150 | -# user.maximal_pkg_profile() | |
151 | -# rec.get_recommendation(user) | |
152 | -# precision = 0 | |
153 | -# result = {'weight': params['weight'], | |
154 | -# 'strategy': params['strategy'], | |
155 | -# 'profile_size': self.profile_size[n], | |
156 | -# 'accuracy': accuracy, | |
157 | -# 'precision': precision, | |
158 | -# 'recall:': recall, | |
159 | -# 'f1': } | |
160 | -# else: | |
161 | -# result = {} | |
162 | -# return result | |
163 | - | |
164 | -if __name__ == '__main__': | |
165 | - | |
166 | - if "clustering" in sys.argv or len(sys.argv)<3: | |
167 | - ClusteringSuite().start() | |
168 | - if "content" in sys.argv or len(sys.argv)<3: | |
169 | - ContentBasedSuite().start() | |
170 | - #if "collaborative" in sys.argv or len(sys.argv)<3: | |
171 | - #CollaborativeSuite().start() |
... | ... | @@ -0,0 +1,44 @@ |
1 | +#! /usr/bin/env python | |
2 | +""" | |
3 | + sample-popcon-arch - extract a sample of a specific arch | |
4 | +""" | |
5 | +__author__ = "Tassia Camoes Araujo <tassia@gmail.com>" | |
6 | +__copyright__ = "Copyright (C) 2011 Tassia Camoes Araujo" | |
7 | +__license__ = """ | |
8 | + This program is free software: you can redistribute it and/or modify | |
9 | + it under the terms of the GNU General Public License as published by | |
10 | + the Free Software Foundation, either version 3 of the License, or | |
11 | + (at your option) any later version. | |
12 | + | |
13 | + This program is distributed in the hope that it will be useful, | |
14 | + but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | + GNU General Public License for more details. | |
17 | + | |
18 | + You should have received a copy of the GNU General Public License | |
19 | + along with this program. If not, see <http://www.gnu.org/licenses/>. | |
20 | +""" | |
21 | +import sys | |
22 | +sys.path.insert(0,'../') | |
23 | +import xapian | |
24 | +import os | |
25 | +import random | |
26 | +import sys | |
27 | +from user import RandomPopcon | |
28 | + | |
29 | +if __name__ == '__main__': | |
30 | + try: | |
31 | + size = int(sys.argv[1]) | |
32 | + arch = sys.argv[2] | |
33 | + popcon_dir = sys.argv[3] | |
34 | + pkgs_filter = sys.argv[4] | |
35 | + except: | |
36 | + print "Usage: sample-popcon-arch size arch popcon_dir pkgs_filter" | |
37 | + exit(1) | |
38 | + | |
39 | + sample_file = ("results/misc-popcon/sample-%s-%d" % (arch,size)) | |
40 | + with open(sample_file,'w') as f: | |
41 | + for n in range(1,size+1): | |
42 | + user = RandomPopcon(popcon_dir,arch,pkgs_filter) | |
43 | + f.write(user.user_id+'\n') | |
44 | + print "sample",n | ... | ... |
src/experiments/strategies-suite.py
... | ... | @@ -1,274 +0,0 @@ |
1 | -#!/usr/bin/env python | |
2 | -""" | |
3 | - recommender suite - recommender experiments suite | |
4 | -""" | |
5 | -__author__ = "Tassia Camoes Araujo <tassia@gmail.com>" | |
6 | -__copyright__ = "Copyright (C) 2011 Tassia Camoes Araujo" | |
7 | -__license__ = """ | |
8 | - This program is free software: you can redistribute it and/or modify | |
9 | - it under the terms of the GNU General Public License as published by | |
10 | - the Free Software Foundation, either version 3 of the License, or | |
11 | - (at your option) any later version. | |
12 | - | |
13 | - This program is distributed in the hope that it will be useful, | |
14 | - but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | - GNU General Public License for more details. | |
17 | - | |
18 | - You should have received a copy of the GNU General Public License | |
19 | - along with this program. If not, see <http://www.gnu.org/licenses/>. | |
20 | -""" | |
21 | - | |
22 | -import sys | |
23 | -sys.path.insert(0,'../') | |
24 | -from config import Config | |
25 | -from data import PopconXapianIndex, PopconSubmission, AppAptXapianIndex | |
26 | -from recommender import Recommender | |
27 | -from user import LocalSystem, User | |
28 | -from evaluation import * | |
29 | -import logging | |
30 | -import random | |
31 | -import Gnuplot | |
32 | - | |
33 | -#iterations = 3 | |
34 | -#sample_proportions = [0.9] | |
35 | -#weighting = [('bm25',1.2)] | |
36 | -#collaborative = ['knn'] | |
37 | -#content_based = [] | |
38 | -#hybrid = ['knnco'] | |
39 | -#profile_size = [50,100] | |
40 | -#popcon_size = ["1000"] | |
41 | -#neighbors = [50] | |
42 | - | |
43 | -iterations = 10 | |
44 | -sample_proportions = [0.5, 0.6, 0.7, 0.8, 0.9] | |
45 | -weighting = [('bm25',1.2), ('bm25',1.6), ('bm25',2.0), ('trad',0)] | |
46 | -content_based = ['cb','cbt','cbd','cbh','cb_eset','cbt_eset','cbd_eset','cbh_eset'] | |
47 | -collaborative = ['knn_eset','knn','knn_plus'] | |
48 | -hybrid = ['knnco','knnco_eset'] | |
49 | - | |
50 | -profile_size = range(20,100,20) | |
51 | -#popcon_size = [1000,10000,50000,'full'] | |
52 | -neighbors = range(10,510,50) | |
53 | - | |
54 | -def write_recall_log(label,n,sample,recommendation,profile_size,repo_size,log_file): | |
55 | - # Write recall log | |
56 | - output = open(("%s-%d" % (log_file,n)),'w') | |
57 | - output.write("# %s-n\n" % label["description"]) | |
58 | - output.write("# %s-%d\n" % (label["values"],n)) | |
59 | - output.write("\n%d %d %d\n" % \ | |
60 | - (repo_size,profile_size,len(sample))) | |
61 | - if hasattr(recommendation,"ranking"): | |
62 | - notfound = [] | |
63 | - ranks = [] | |
64 | - for pkg in sample.keys(): | |
65 | - if pkg in recommendation.ranking: | |
66 | - ranks.append(recommendation.ranking.index(pkg)) | |
67 | - else: | |
68 | - notfound.append(pkg) | |
69 | - for r in sorted(ranks): | |
70 | - output.write(str(r)+"\n") | |
71 | - if notfound: | |
72 | - output.write("Out of recommendation:\n") | |
73 | - for pkg in notfound: | |
74 | - output.write(pkg+"\n") | |
75 | - output.close() | |
76 | - | |
77 | -def plot_summary(precision,recall,f1,f05,accuracy,log_file): | |
78 | - # Plot metrics summary | |
79 | - g = Gnuplot.Gnuplot() | |
80 | - g('set style data lines') | |
81 | - g.xlabel('Recommendation size') | |
82 | - g.title("Setup: %s" % log_file.split("/")[-1]) | |
83 | - g.plot(Gnuplot.Data(accuracy,title="Accuracy"), | |
84 | - Gnuplot.Data(precision,title="Precision"), | |
85 | - Gnuplot.Data(recall,title="Recall"), | |
86 | - Gnuplot.Data(f1,title="F_1"), | |
87 | - Gnuplot.Data(f05,title="F_0.5")) | |
88 | - g.hardcopy(log_file+".png",terminal="png") | |
89 | - g.hardcopy(log_file+".ps",terminal="postscript",enhanced=1,color=1) | |
90 | - g('set logscale x') | |
91 | - g('replot') | |
92 | - g.hardcopy(log_file+"-logscale.png",terminal="png") | |
93 | - g.hardcopy(log_file+"-logscale.ps",terminal="postscript",enhanced=1,color=1) | |
94 | - | |
95 | -def get_label(cfg,sample_proportion): | |
96 | - label = {} | |
97 | - if cfg.strategy in content_based: | |
98 | - label["description"] = "strategy-filter-profile-k1_bm25-sample" | |
99 | - label["values"] = ("%s-profile%d-%s-kbm%.1f-sample%.1f" % | |
100 | - (cfg.strategy,cfg.profile_size, | |
101 | - cfg.pkgs_filter.split("/")[-1], | |
102 | - cfg.bm25_k1,sample_proportion)) | |
103 | - elif cfg.strategy in collaborative: | |
104 | - label["description"] = "strategy-knn-filter-k1_bm25-sample" | |
105 | - label["values"] = ("%s-k%d-%s-kbm%.1f-sample%.1f" % | |
106 | - (cfg.strategy,cfg.k_neighbors, | |
107 | - cfg.pkgs_filter.split("/")[-1], | |
108 | - cfg.bm25_k1,sample_proportion)) | |
109 | - elif cfg.strategy in hybrid: | |
110 | - label["description"] = "strategy-knn-filter-profile-k1_bm25-sample" | |
111 | - label["values"] = ("%s-k%d-profile%d-%s-kbm%.1f-sample%.1f" % | |
112 | - (cfg.strategy,cfg.k_neighbors,cfg.profile_size, | |
113 | - cfg.pkgs_filter.split("/")[-1], | |
114 | - cfg.bm25_k1,sample_proportion)) | |
115 | - else: | |
116 | - print "Unknown strategy" | |
117 | - return label | |
118 | - | |
119 | -class ExperimentResults: | |
120 | - def __init__(self,repo_size): | |
121 | - self.repository_size = repo_size | |
122 | - self.accuracy = {} | |
123 | - self.precision = {} | |
124 | - self.recall = {} | |
125 | - self.f1 = {} | |
126 | - self.f05 = {} | |
127 | - points = [1]+range(10,200,10)+range(200,self.repository_size,100) | |
128 | - for size in points: | |
129 | - self.accuracy[size] = [] | |
130 | - self.precision[size] = [] | |
131 | - self.recall[size] = [] | |
132 | - self.f1[size] = [] | |
133 | - self.f05[size] = [] | |
134 | - | |
135 | - def add_result(self,ranking,sample): | |
136 | - for size in self.accuracy.keys(): | |
137 | - predicted = RecommendationResult(dict.fromkeys(ranking[:size],1)) | |
138 | - real = RecommendationResult(sample) | |
139 | - evaluation = Evaluation(predicted,real,self.repository_size) | |
140 | - self.accuracy[size].append(evaluation.run(Accuracy())) | |
141 | - self.precision[size].append(evaluation.run(Precision())) | |
142 | - self.recall[size].append(evaluation.run(Recall())) | |
143 | - self.f1[size].append(evaluation.run(F_score(1))) | |
144 | - self.f05[size].append(evaluation.run(F_score(0.5))) | |
145 | - | |
146 | - def get_precision_summary(self): | |
147 | - summary = [[size,sum(values)/len(values)] for size,values in self.precision.items()] | |
148 | - return sorted(summary) | |
149 | - | |
150 | - def get_recall_summary(self): | |
151 | - summary = [[size,sum(values)/len(values)] for size,values in self.recall.items()] | |
152 | - return sorted(summary) | |
153 | - | |
154 | - def get_f1_summary(self): | |
155 | - summary = [[size,sum(values)/len(values)] for size,values in self.f1.items()] | |
156 | - return sorted(summary) | |
157 | - | |
158 | - def get_f05_summary(self): | |
159 | - summary = [[size,sum(values)/len(values)] for size,values in self.f05.items()] | |
160 | - return sorted(summary) | |
161 | - | |
162 | - def get_accuracy_summary(self): | |
163 | - summary = [[size,sum(values)/len(values)] for size,values in self.accuracy.items()] | |
164 | - return sorted(summary) | |
165 | - | |
166 | - def best_precision(self): | |
167 | - size = max(self.precision, key = lambda x: max(self.precision[x])) | |
168 | - return (size,max(self.precision[size])) | |
169 | - | |
170 | - def best_f1(self): | |
171 | - size = max(self.f1, key = lambda x: max(self.f1[x])) | |
172 | - return (size,max(self.f1[size])) | |
173 | - | |
174 | - def best_f05(self): | |
175 | - size = max(self.f05, key = lambda x: max(self.f05[x])) | |
176 | - return (size,max(self.f05[size])) | |
177 | - | |
178 | -def run_strategy(cfg,user): | |
179 | - for weight in weighting: | |
180 | - cfg.weight = weight[0] | |
181 | - cfg.bm25_k1 = weight[1] | |
182 | - rec = Recommender(cfg) | |
183 | - repo_size = rec.items_repository.get_doccount() | |
184 | - for proportion in sample_proportions: | |
185 | - results = ExperimentResults(repo_size) | |
186 | - label = get_label(cfg,proportion) | |
187 | - log_file = "results/strategies/"+label["values"] | |
188 | - for n in range(iterations): | |
189 | - # Fill sample profile | |
190 | - profile_size = len(user.pkg_profile) | |
191 | - item_score = {} | |
192 | - for pkg in user.pkg_profile: | |
193 | - item_score[pkg] = user.item_score[pkg] | |
194 | - sample = {} | |
195 | - sample_size = int(profile_size*proportion) | |
196 | - for i in range(sample_size): | |
197 | - key = random.choice(item_score.keys()) | |
198 | - sample[key] = item_score.pop(key) | |
199 | - iteration_user = User(item_score) | |
200 | - recommendation = rec.get_recommendation(iteration_user,repo_size) | |
201 | - write_recall_log(label,n,sample,recommendation,profile_size,repo_size,log_file) | |
202 | - if hasattr(recommendation,"ranking"): | |
203 | - results.add_result(recommendation.ranking,sample) | |
204 | - with open(log_file,'w') as f: | |
205 | - precision_10 = sum(results.precision[10])/len(results.precision[10]) | |
206 | - f1_10 = sum(results.f1[10])/len(results.f1[10]) | |
207 | - f05_10 = sum(results.f05[10])/len(results.f05[10]) | |
208 | - f.write("# %s\n# %s\n\ncoverage %d\n\n" % | |
209 | - (label["description"],label["values"],recommendation.size)) | |
210 | - f.write("# best results (recommendation size; metric)\n") | |
211 | - f.write("precision (%d; %.2f)\nf1 (%d; %.2f)\nf05 (%d; %.2f)\n\n" % | |
212 | - (results.best_precision()[0],results.best_precision()[1], | |
213 | - results.best_f1()[0],results.best_f1()[1], | |
214 | - results.best_f05()[0],results.best_f05()[1])) | |
215 | - f.write("# recommendation size 10\nprecision (10; %.2f)\nf1 (10; %.2f)\nf05 (10; %.2f)" % | |
216 | - (precision_10,f1_10,f05_10)) | |
217 | - precision = results.get_precision_summary() | |
218 | - recall = results.get_recall_summary() | |
219 | - f1 = results.get_f1_summary() | |
220 | - f05 = results.get_f05_summary() | |
221 | - accuracy = results.get_accuracy_summary() | |
222 | - plot_summary(precision,recall,f1,f05,accuracy,log_file) | |
223 | - | |
224 | -def run_content(user,cfg): | |
225 | - for strategy in content_based: | |
226 | - cfg.strategy = strategy | |
227 | - for size in profile_size: | |
228 | - cfg.profile_size = size | |
229 | - run_strategy(cfg,user) | |
230 | - | |
231 | -def run_collaborative(user,cfg): | |
232 | - popcon_desktopapps = cfg.popcon_desktopapps | |
233 | - popcon_programs = cfg.popcon_programs | |
234 | - for strategy in collaborative: | |
235 | - cfg.strategy = strategy | |
236 | - for k in neighbors: | |
237 | - cfg.k_neighbors = k | |
238 | - #for size in popcon_size: | |
239 | - # if size: | |
240 | - # cfg.popcon_desktopapps = popcon_desktopapps+"_"+size | |
241 | - # cfg.popcon_programs = popcon_programs+"_"+size | |
242 | - run_strategy(cfg,user) | |
243 | - | |
244 | -def run_hybrid(user,cfg): | |
245 | - popcon_desktopapps = cfg.popcon_desktopapps | |
246 | - popcon_programs = cfg.popcon_programs | |
247 | - for strategy in hybrid: | |
248 | - cfg.strategy = strategy | |
249 | - for k in neighbors: | |
250 | - cfg.k_neighbors = k | |
251 | - #for size in popcon_size: | |
252 | - # if size: | |
253 | - # cfg.popcon_desktopapps = popcon_desktopapps+"_"+size | |
254 | - # cfg.popcon_programs = popcon_programs+"_"+size | |
255 | - for size in profile_size: | |
256 | - cfg.profile_size = size | |
257 | - run_strategy(cfg,user) | |
258 | - | |
259 | -if __name__ == '__main__': | |
260 | - #user = LocalSystem() | |
261 | - #user = RandomPopcon(cfg.popcon_dir,os.path.join(cfg.filters_dir,"desktopapps")) | |
262 | - | |
263 | - cfg = Config() | |
264 | - user = PopconSystem("/root/.app-recommender/popcon-entries/8b/8b44fcdbcf676e711a153d5db09979d7") | |
265 | - #user = PopconSystem("/root/.app-recommender/popcon-entries/4a/4a67a295ec14826db2aa1d90be2f1623") | |
266 | - user.filter_pkg_profile(cfg.pkgs_filter) | |
267 | - user.maximal_pkg_profile() | |
268 | - | |
269 | - if "content" in sys.argv or len(sys.argv)<2: | |
270 | - run_content(user,cfg) | |
271 | - if "collaborative" in sys.argv or len(sys.argv)<2: | |
272 | - run_collaborative(user,cfg) | |
273 | - if "hybrid" in sys.argv or len(sys.argv)<2: | |
274 | - run_hybrid(user,cfg) |
src/user.py
... | ... | @@ -111,7 +111,7 @@ class User: |
111 | 111 | """ |
112 | 112 | Define a user of a recommender. |
113 | 113 | """ |
114 | - def __init__(self,item_score,user_id=0,demo_profiles_set=0): | |
114 | + def __init__(self,item_score,user_id=0,arch=0,demo_profiles_set=0): | |
115 | 115 | """ |
116 | 116 | Set initial user attributes. pkg_profile gets the whole set of items, |
117 | 117 | a random user_id is set if none was provided and the demographic |
... | ... | @@ -119,6 +119,7 @@ class User: |
119 | 119 | """ |
120 | 120 | self.item_score = item_score |
121 | 121 | self.pkg_profile = self.items() |
122 | + self.arch = arch | |
122 | 123 | |
123 | 124 | if user_id: |
124 | 125 | self.user_id = user_id |
... | ... | @@ -272,21 +273,28 @@ class User: |
272 | 273 | return self.pkg_profile |
273 | 274 | |
274 | 275 | class RandomPopcon(User): |
275 | - def __init__(self,submissions_dir,pkgs_filter=0): | |
276 | + def __init__(self,submissions_dir,arch=0,pkgs_filter=0): | |
276 | 277 | """ |
277 | 278 | Set initial parameters. |
278 | 279 | """ |
279 | 280 | len_profile = 0 |
280 | - while len_profile < 100: | |
281 | + match_arch = False | |
282 | + while len_profile < 100 or not match_arch: | |
281 | 283 | path = random.choice([os.path.join(root, submission) for |
282 | 284 | root, dirs, files in os.walk(submissions_dir) |
283 | 285 | for submission in files]) |
284 | 286 | user = PopconSystem(path) |
287 | + print arch | |
288 | + print user.arch | |
289 | + if arch and user.arch==arch: | |
290 | + match_arch = True | |
291 | + print "match" | |
285 | 292 | if pkgs_filter: |
286 | 293 | user.filter_pkg_profile(pkgs_filter) |
287 | 294 | len_profile = len(user.pkg_profile) |
295 | + print "p",len_profile | |
288 | 296 | submission = data.PopconSubmission(path) |
289 | - User.__init__(self,submission.packages,submission.user_id) | |
297 | + User.__init__(self,submission.packages,submission.user_id,submission.arch) | |
290 | 298 | |
291 | 299 | class PopconSystem(User): |
292 | 300 | def __init__(self,path,user_id=0): |
... | ... | @@ -296,7 +304,7 @@ class PopconSystem(User): |
296 | 304 | submission = data.PopconSubmission(path) |
297 | 305 | if not user_id: |
298 | 306 | user_id = submission.user_id |
299 | - User.__init__(self,submission.packages,user_id) | |
307 | + User.__init__(self,submission.packages,user_id,submission.arch) | |
300 | 308 | |
301 | 309 | class PkgsListSystem(User): |
302 | 310 | def __init__(self,pkgs_list_or_file,user_id=0): | ... | ... |