Commit c673b9b2395d8d6128af4791057e5845517b20d1
1 parent
4d01144b
Exists in
master
and in
1 other branch
Updated experiments scripts
Showing
6 changed files
with
598 additions
and
172 deletions
Show diff stats
... | ... | @@ -0,0 +1,49 @@ |
1 | +#! /usr/bin/env python | |
2 | +""" | |
3 | + sample-popcon - extract a sample from popcon population | |
4 | +""" | |
5 | +__author__ = "Tassia Camoes Araujo <tassia@gmail.com>" | |
6 | +__copyright__ = "Copyright (C) 2011 Tassia Camoes Araujo" | |
7 | +__license__ = """ | |
8 | + This program is free software: you can redistribute it and/or modify | |
9 | + it under the terms of the GNU General Public License as published by | |
10 | + the Free Software Foundation, either version 3 of the License, or | |
11 | + (at your option) any later version. | |
12 | + | |
13 | + This program is distributed in the hope that it will be useful, | |
14 | + but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | + GNU General Public License for more details. | |
17 | + | |
18 | + You should have received a copy of the GNU General Public License | |
19 | + along with this program. If not, see <http://www.gnu.org/licenses/>. | |
20 | +""" | |
21 | + | |
22 | +import xapian | |
23 | +import os | |
24 | +import random | |
25 | +import sys | |
26 | + | |
27 | +if __name__ == '__main__': | |
28 | + try: | |
29 | + sample_file = sys.argv[1] | |
30 | + popcon = xapian.WritableDatabase(sys.argv[2],xapian.DB_OPEN) | |
31 | + except: | |
32 | + print "Usage: extract-sample-db sample_file popcon_index" | |
33 | + exit(1) | |
34 | + enquire = xapian.Enquire(popcon) | |
35 | + print sample_file.split("/") | |
36 | + new_popcon = xapian.WritableDatabase(sys.argv[2]+"-"+sample_file.split("/")[-1],xapian.DB_CREATE_OR_OVERWRITE) | |
37 | + print ("Popcon repository size: %d" % popcon.get_doccount()) | |
38 | + for submission in open(sample_file): | |
39 | + print "ID"+submission.strip() | |
40 | + query = xapian.Query("ID"+submission.strip()) | |
41 | + enquire.set_query(query) | |
42 | + mset = enquire.get_mset(0,20) | |
43 | + for m in mset: | |
44 | + print "Adding doc %s"%m.docid | |
45 | + new_popcon.add_document(popcon.get_document(m.docid)) | |
46 | + print "Removing doc %s"%m.docid | |
47 | + popcon.delete_document(m.docid) | |
48 | + print ("Popcon repository size: %d" % popcon.get_doccount()) | |
49 | + print ("Popcon repository size: %d" % new_popcon.get_doccount()) | ... | ... |
... | ... | @@ -0,0 +1,197 @@ |
1 | +#!/usr/bin/env python | |
2 | +""" | |
3 | + hybrid-suite | |
4 | +""" | |
5 | +__author__ = "Tassia Camoes Araujo <tassia@gmail.com>" | |
6 | +__copyright__ = "Copyright (C) 2011 Tassia Camoes Araujo" | |
7 | +__license__ = """ | |
8 | + This program is free software: you can redistribute it and/or modify | |
9 | + it under the terms of the GNU General Public License as published by | |
10 | + the Free Software Foundation, either version 3 of the License, or | |
11 | + (at your option) any later version. | |
12 | + | |
13 | + This program is distributed in the hope that it will be useful, | |
14 | + but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | + GNU General Public License for more details. | |
17 | + | |
18 | + You should have received a copy of the GNU General Public License | |
19 | + along with this program. If not, see <http://www.gnu.org/licenses/>. | |
20 | +""" | |
21 | + | |
22 | +import sys | |
23 | +sys.path.insert(0,'../') | |
24 | +from config import Config | |
25 | +from data import PopconXapianIndex, PopconSubmission | |
26 | +from recommender import Recommender | |
27 | +from user import LocalSystem, User | |
28 | +from evaluation import * | |
29 | +import logging | |
30 | +import random | |
31 | +import Gnuplot | |
32 | +import numpy | |
33 | + | |
34 | +if __name__ == '__main__': | |
35 | + if len(sys.argv)<2: | |
36 | + print "Usage: hybrid strategy sample_file" | |
37 | + exit(1) | |
38 | + | |
39 | + iterations = 20 | |
40 | + profile_size = [10,40,70,100,170,240] | |
41 | + neighbor_size = [3,10,50,100,200,400] | |
42 | + | |
43 | + #hybrid_strategies = ['knnco','knnco_eset'] | |
44 | + | |
45 | + #iterations = 1 | |
46 | + #profile_size = [10,20,30] | |
47 | + #neighbor_size = [10,20,30] | |
48 | + | |
49 | + cfg = Config() | |
50 | + population_sample = [] | |
51 | + strategy = sys.argv[1] | |
52 | + sample_file = sys.argv[2] | |
53 | + sample_str = sample_file.split('/')[-1] | |
54 | + with open(sample_file,'r') as f: | |
55 | + for line in f.readlines(): | |
56 | + user_id = line.strip('\n') | |
57 | + population_sample.append(os.path.join(cfg.popcon_dir,user_id[:2],user_id)) | |
58 | + sample_dir = ("results/hybrid/%s" % sample_str) | |
59 | + if not os.path.exists(sample_dir): | |
60 | + os.makedirs(sample_dir) | |
61 | + | |
62 | + cfg.strategy = strategy | |
63 | + p_20_summary = {} | |
64 | + f05_100_summary = {} | |
65 | + c_20 = {} | |
66 | + c_100 = {} | |
67 | + | |
68 | + log_file = os.path.join(sample_dir,sample_str+"-"+cfg.strategy) | |
69 | + graph_20 = {} | |
70 | + graph_100 = {} | |
71 | + graph_20_jpg = {} | |
72 | + graph_100_jpg = {} | |
73 | + comment_20 = {} | |
74 | + comment_100 = {} | |
75 | + for k in neighbor_size: | |
76 | + graph_20[k] = log_file+("-neighboorhod%.3d-020.png"%k) | |
77 | + graph_100[k] = log_file+("-neighboorhod%.3d-100.png"%k) | |
78 | + graph_20_jpg[k] = graph_20[k].strip(".png")+".jpg" | |
79 | + graph_100_jpg[k] = graph_100[k].strip(".png")+".jpg" | |
80 | + comment_20[k] = graph_20_jpg[k]+".comment" | |
81 | + comment_100[k] = graph_100_jpg[k]+".comment" | |
82 | + | |
83 | + with open(comment_20[k],'w') as f: | |
84 | + f.write("# %s\n" % sample_str) | |
85 | + f.write("# strategy %s\n# threshold 20\n# iterations %d\n\n" % | |
86 | + (cfg.strategy,iterations)) | |
87 | + f.write("# neighboorhood\tprofile\tp_20\tc_20\n\n") | |
88 | + with open(comment_100[k],'w') as f: | |
89 | + f.write("# %s\n" % sample_str) | |
90 | + f.write("# strategy %s\n# threshold 100\n# iterations %d\n\n" % | |
91 | + (cfg.strategy,iterations)) | |
92 | + f.write("# neighboorhood\tprofile\tf05_100\tc_100\n\n") | |
93 | + | |
94 | + c_20[k] = {} | |
95 | + c_100[k] = {} | |
96 | + p_20_summary[k] = {} | |
97 | + f05_100_summary[k] = {} | |
98 | + for size in profile_size: | |
99 | + c_20[k][size] = set() | |
100 | + c_100[k][size] = set() | |
101 | + p_20_summary[k][size] = [] | |
102 | + f05_100_summary[k][size] = [] | |
103 | + with open(log_file+"-neighboorhood%.3d-profile%.3d"%(k,size),'w') as f: | |
104 | + f.write("# %s\n" % sample_str) | |
105 | + f.write("# strategy %s-neighboorhood%.3d-profile%.3d\n\n" % (cfg.strategy,k,size)) | |
106 | + f.write("# p_20\t\tf05_100\n\n") | |
107 | + | |
108 | + # main loop per user | |
109 | + for submission_file in population_sample: | |
110 | + user = PopconSystem(submission_file) | |
111 | + user.filter_pkg_profile(cfg.pkgs_filter) | |
112 | + user.maximal_pkg_profile() | |
113 | + for k in neighbor_size: | |
114 | + cfg.k_neighbors = k | |
115 | + for size in profile_size: | |
116 | + cfg.profile_size = size | |
117 | + rec = Recommender(cfg) | |
118 | + repo_size = rec.items_repository.get_doccount() | |
119 | + p_20 = [] | |
120 | + f05_100 = [] | |
121 | + for n in range(iterations): | |
122 | + # Fill sample profile | |
123 | + profile_len = len(user.pkg_profile) | |
124 | + item_score = {} | |
125 | + for pkg in user.pkg_profile: | |
126 | + item_score[pkg] = user.item_score[pkg] | |
127 | + sample = {} | |
128 | + sample_size = int(profile_len*0.9) | |
129 | + for i in range(sample_size): | |
130 | + key = random.choice(item_score.keys()) | |
131 | + sample[key] = item_score.pop(key) | |
132 | + iteration_user = User(item_score) | |
133 | + recommendation = rec.get_recommendation(iteration_user,repo_size) | |
134 | + if hasattr(recommendation,"ranking"): | |
135 | + ranking = recommendation.ranking | |
136 | + real = RecommendationResult(sample) | |
137 | + predicted_20 = RecommendationResult(dict.fromkeys(ranking[:20],1)) | |
138 | + evaluation = Evaluation(predicted_20,real,repo_size) | |
139 | + p_20.append(evaluation.run(Precision())) | |
140 | + predicted_100 = RecommendationResult(dict.fromkeys(ranking[:100],1)) | |
141 | + evaluation = Evaluation(predicted_100,real,repo_size) | |
142 | + f05_100.append(evaluation.run(F_score(0.5))) | |
143 | + c_20[k][size] = c_20[k][size].union(recommendation.ranking[:20]) | |
144 | + c_100[k][size] = c_100[k][size].union(recommendation.ranking[:100]) | |
145 | + # save summary | |
146 | + if p_20: | |
147 | + p_20_summary[k][size].append(sum(p_20)/len(p_20)) | |
148 | + if f05_100: | |
149 | + f05_100_summary[k][size].append(sum(f05_100)/len(f05_100)) | |
150 | + | |
151 | + with open(log_file+"-neighboorhood%.3d-profile%.3d"%(k,size),'a') as f: | |
152 | + f.write("%.4f\t\t%.4f\n" % | |
153 | + ((sum(p_20)/len(p_20),sum(f05_100)/len(f05_100)))) | |
154 | + | |
155 | + # back to main flow | |
156 | + coverage_20 = {} | |
157 | + coverage_100 = {} | |
158 | + for k in neighbor_size: | |
159 | + coverage_20[k] = {} | |
160 | + coverage_100[k] = {} | |
161 | + with open(comment_20[k],'a') as f: | |
162 | + for size in profile_size: | |
163 | + coverage_20[k][size] = len(c_20[k][size])/float(repo_size) | |
164 | + f.write("%3d\t\t%3d\t\t%.4f\t%.4f\n" % | |
165 | + (k,size,float(sum(p_20_summary[k][size]))/len(p_20_summary[k][size]),coverage_20[k][size])) | |
166 | + with open(comment_100[k],'a') as f: | |
167 | + for size in profile_size: | |
168 | + coverage_100[k][size] = len(c_100[k][size])/float(repo_size) | |
169 | + f.write("%3d\t\t%3d\t\t%.4f\t%.4f\n" % | |
170 | + (k,size,float(sum(f05_100_summary[k][size]))/len(f05_100_summary[k][size]),coverage_100[k][size])) | |
171 | + | |
172 | + for k in neighbor_size: | |
173 | + # plot results summary | |
174 | + g = Gnuplot.Gnuplot() | |
175 | + g('set style data lines') | |
176 | + g('set yrange [0:1.0]') | |
177 | + g.xlabel('Profile size') | |
178 | + g.title("Setup: %s-neighboorhood%3d (threshold 20)" % (cfg.strategy,k)) | |
179 | + g.plot(Gnuplot.Data(sorted([[i,sum(p_20_summary[k][i])/len(p_20_summary[k][i])] | |
180 | + for i in p_20_summary[k].keys()]),title="Precision"), | |
181 | + Gnuplot.Data(sorted([[i,coverage_20[k][i]] | |
182 | + for i in coverage_20[k].keys()]),title="Coverage")) | |
183 | + g.hardcopy(graph_20[k],terminal="png") | |
184 | + #commands.getoutput("convert -quality 100 %s %s" % | |
185 | + # (graph_20[k],graph_20_jpg[k])) | |
186 | + g = Gnuplot.Gnuplot() | |
187 | + g('set style data lines') | |
188 | + g('set yrange [0:1.0]') | |
189 | + g.xlabel('Profile size') | |
190 | + g.title("Setup: %s-neighboorhood%3d (threshold 100)" % (cfg.strategy,k)) | |
191 | + g.plot(Gnuplot.Data(sorted([[i,sum(f05_100_summary[k][i])/len(f05_100_summary[k][i])] | |
192 | + for i in f05_100_summary[k].keys()]),title="F05"), | |
193 | + Gnuplot.Data(sorted([[i,coverage_100[k][i]] | |
194 | + for i in coverage_100[k].keys()]),title="Coverage")) | |
195 | + g.hardcopy(graph_100[k],terminal="png") | |
196 | + #commands.getoutput("convert -quality 100 %s %s" % | |
197 | + # (graph_100[k],graph_100_jpg[k])) | ... | ... |
src/experiments/k-suite.py
1 | 1 | #!/usr/bin/env python |
2 | 2 | """ |
3 | - recommender suite - recommender experiments suite | |
3 | + k-suite - experiment different neighborhood sizes | |
4 | 4 | """ |
5 | 5 | __author__ = "Tassia Camoes Araujo <tassia@gmail.com>" |
6 | 6 | __copyright__ = "Copyright (C) 2011 Tassia Camoes Araujo" |
... | ... | @@ -31,25 +31,38 @@ import random |
31 | 31 | import Gnuplot |
32 | 32 | import numpy |
33 | 33 | |
34 | -def plot_roc(p,roc_points,log_file): | |
34 | +def plot_roc(k,roc_points,log_file): | |
35 | 35 | g = Gnuplot.Gnuplot() |
36 | 36 | g('set style data points') |
37 | 37 | g.xlabel('False Positive Rate') |
38 | 38 | g.ylabel('True Positive Rate') |
39 | 39 | g('set xrange [0:1.0]') |
40 | 40 | g('set yrange [0:1.0]') |
41 | - g.title("Setup: %s" % log_file.split("/")[-1]) | |
41 | + g.title("Setup: %s-k%d" % (log_file.split("/")[-1],k)) | |
42 | 42 | g.plot(Gnuplot.Data([[0,0],[1,1]],with_="lines lt 7"), |
43 | - Gnuplot.Data(roc_points,title="k %d"%k)) | |
43 | + Gnuplot.Data(roc_points)) | |
44 | 44 | g.hardcopy(log_file+("-k%.3d.png"%k),terminal="png") |
45 | 45 | g.hardcopy(log_file+("-k%.3d.ps"%k),terminal="postscript",enhanced=1,color=1) |
46 | 46 | |
47 | +def plot_summary(precision,f05,mcc,log_file): | |
48 | + g = Gnuplot.Gnuplot() | |
49 | + g('set style data lines') | |
50 | + g.xlabel('Neighborhood (k)') | |
51 | + g.title("Setup: %s-size20" % (log_file.split("/")[-1])) | |
52 | + g.plot(Gnuplot.Data([[k,sum(precision[k])/len(precision[k])] for k in precision.keys()],title="P"), | |
53 | + Gnuplot.Data([[k,sum(f05[k])/len(f05[k])] for k in f05.keys()],title="F05"), | |
54 | + Gnuplot.Data([[k,sum(mcc[k])/len(mcc[k])] for k in mcc.keys()],title="MCC")) | |
55 | + g.hardcopy(log_file+(".png"),terminal="png") | |
56 | + g.hardcopy(log_file+(".ps"),terminal="postscript",enhanced=1,color=1) | |
57 | + | |
47 | 58 | class ExperimentResults: |
48 | 59 | def __init__(self,repo_size): |
49 | 60 | self.repository_size = repo_size |
50 | 61 | self.precision = [] |
51 | 62 | self.recall = [] |
52 | 63 | self.fpr = [] |
64 | + self.f05 = [] | |
65 | + self.mcc = [] | |
53 | 66 | |
54 | 67 | def add_result(self,ranking,sample): |
55 | 68 | predicted = RecommendationResult(dict.fromkeys(ranking,1)) |
... | ... | @@ -58,49 +71,72 @@ class ExperimentResults: |
58 | 71 | self.precision.append(evaluation.run(Precision())) |
59 | 72 | self.recall.append(evaluation.run(Recall())) |
60 | 73 | self.fpr.append(evaluation.run(FPR())) |
74 | + self.f05.append(evaluation.run(F_score(0.5))) | |
75 | + self.mcc.append(evaluation.run(MCC())) | |
61 | 76 | |
62 | - # Average ROC by threshold (whici is the size) | |
63 | 77 | def get_roc_point(self): |
64 | 78 | tpr = self.recall |
65 | 79 | fpr = self.fpr |
80 | + if not tpr or not fpr: | |
81 | + return [0,0] | |
66 | 82 | return [sum(fpr)/len(fpr),sum(tpr)/len(tpr)] |
67 | 83 | |
68 | 84 | def get_precision_summary(self): |
85 | + if not self.precision: return 0 | |
69 | 86 | return sum(self.precision)/len(self.precision) |
70 | 87 | |
71 | - def get_recall_summary(self): | |
72 | - return sum(self.recall)/len(self.recall) | |
88 | + def get_f05_summary(self): | |
89 | + if not self.f05: return 0 | |
90 | + return sum(self.f05)/len(self.f05) | |
91 | + | |
92 | + def get_mcc_summary(self): | |
93 | + if not self.mcc: return 0 | |
94 | + return sum(self.mcc)/len(self.mcc) | |
73 | 95 | |
74 | 96 | if __name__ == '__main__': |
75 | - # experiment parameters | |
97 | + if len(sys.argv)<3: | |
98 | + print "Usage: k-suite strategy_str sample_file" | |
99 | + exit(1) | |
76 | 100 | threshold = 20 |
77 | 101 | iterations = 30 |
78 | - sample_file = "results/misc-popcon/sample-050-100" | |
79 | 102 | neighbors = [3,5,10,50,100,150,200,300,400,500] |
80 | 103 | cfg = Config() |
81 | - cfg.strategy = "knn" | |
82 | - print cfg.popcon_index | |
83 | - sample = [] | |
104 | + cfg.strategy = sys.argv[1] | |
105 | + sample_file = sys.argv[2] | |
106 | + population_sample = [] | |
84 | 107 | with open(sample_file,'r') as f: |
85 | 108 | for line in f.readlines(): |
86 | 109 | user_id = line.strip('\n') |
87 | - sample.append(os.path.join(cfg.popcon_dir,user_id[:2],user_id)) | |
110 | + population_sample.append(os.path.join(cfg.popcon_dir,user_id[:2],user_id)) | |
88 | 111 | # setup dictionaries and files |
89 | - roc_points = {} | |
112 | + roc_summary = {} | |
90 | 113 | recommended = {} |
91 | - precisions = {} | |
92 | - aucs = {} | |
93 | - log_file = "results/k-suite/sample-050-100/%s" % (cfg.strategy) | |
114 | + precision_summary = {} | |
115 | + f05_summary = {} | |
116 | + mcc_summary = {} | |
117 | + sample_dir = ("results/k-suite/%s" % sample_file.split('/')[-1]) | |
118 | + if not os.path.exists(sample_dir): | |
119 | + os.makedirs(sample_dir) | |
120 | + log_file = os.path.join(sample_dir,cfg.strategy) | |
121 | + with open(log_file,'w') as f: | |
122 | + f.write("# %s\n\n" % sample_file.split('/')[-1]) | |
123 | + f.write("# strategy %s recommendation_size %d iterations %d\n\n" % | |
124 | + (cfg.strategy,threshold,iterations)) | |
125 | + f.write("# k coverage \tprecision \tf05 \tmcc\n\n") | |
126 | + | |
94 | 127 | for k in neighbors: |
95 | - roc_points[k] = [] | |
128 | + roc_summary[k] = [] | |
96 | 129 | recommended[k] = set() |
97 | - precisions[k] = [] | |
98 | - aucs[k] = [] | |
130 | + precision_summary[k] = [] | |
131 | + f05_summary[k] = [] | |
132 | + mcc_summary[k] = [] | |
99 | 133 | with open(log_file+"-k%.3d"%k,'w') as f: |
134 | + f.write("# %s\n\n" % sample_file.split('/')[-1]) | |
100 | 135 | f.write("# strategy-k %s-k%.3d\n\n" % (cfg.strategy,k)) |
101 | - f.write("# roc_point \tp(20) \tauc\n\n") | |
136 | + f.write("# roc_point \tprecision \tf05 \tmcc\n\n") | |
137 | + | |
102 | 138 | # main loop per user |
103 | - for submission_file in sample: | |
139 | + for submission_file in population_sample: | |
104 | 140 | user = PopconSystem(submission_file) |
105 | 141 | user.filter_pkg_profile(cfg.pkgs_filter) |
106 | 142 | user.maximal_pkg_profile() |
... | ... | @@ -112,12 +148,12 @@ if __name__ == '__main__': |
112 | 148 | # n iterations for same recommender and user |
113 | 149 | for n in range(iterations): |
114 | 150 | # Fill sample profile |
115 | - profile_size = len(user.pkg_profile) | |
151 | + profile_len = len(user.pkg_profile) | |
116 | 152 | item_score = {} |
117 | 153 | for pkg in user.pkg_profile: |
118 | 154 | item_score[pkg] = user.item_score[pkg] |
119 | 155 | sample = {} |
120 | - sample_size = int(profile_size*0.9) | |
156 | + sample_size = int(profile_len*0.9) | |
121 | 157 | for i in range(sample_size): |
122 | 158 | key = random.choice(item_score.keys()) |
123 | 159 | sample[key] = item_score.pop(key) |
... | ... | @@ -125,28 +161,26 @@ if __name__ == '__main__': |
125 | 161 | recommendation = rec.get_recommendation(iteration_user,threshold) |
126 | 162 | if hasattr(recommendation,"ranking"): |
127 | 163 | results.add_result(recommendation.ranking,sample) |
128 | - print "ranking",recommendation.ranking | |
129 | - print "recommended_%d"%k,recommended[k] | |
130 | 164 | recommended[k] = recommended[k].union(recommendation.ranking) |
131 | - print recommended[k] | |
132 | 165 | # save summary |
133 | 166 | roc_point = results.get_roc_point() |
134 | - auc = numpy.trapz(y=[0,roc_point[1],1],x=[0,roc_point[0],1]) | |
135 | - p_20 = results.get_precision_summary() | |
136 | - roc_points[k].append(roc_point) | |
137 | - aucs[k].append(auc) | |
138 | - precisions[k].append(p_20) | |
167 | + roc_summary[k].append(roc_point) | |
168 | + precision = results.get_precision_summary() | |
169 | + precision_summary[k].append(precision) | |
170 | + f05 = results.get_f05_summary() | |
171 | + f05_summary[k].append(f05) | |
172 | + mcc = results.get_mcc_summary() | |
173 | + mcc_summary[k].append(mcc) | |
139 | 174 | with open(log_file+"-k%.3d"%k,'a') as f: |
140 | - f.write("%s \t%.2f \t%.4f\n" % (str(roc_point),p_20,auc)) | |
175 | + f.write("[%.2f,%.2f] \t%.4f \t%.4f \t%.4f\n" % | |
176 | + (roc_point[0],roc_point[1],precision,f05,mcc)) | |
141 | 177 | # back to main flow |
142 | - with open(log_file,'w') as f: | |
143 | - f.write("# k coverage \tp(20) \tauc\n\n") | |
178 | + with open(log_file,'a') as f: | |
179 | + plot_summary(precision_summary,f05_summary,mcc_summary,log_file) | |
144 | 180 | for k in neighbors: |
145 | - print "len_recommended_%d"%k,len(recommended[k]) | |
146 | - print "repo_size",repo_size | |
147 | - coverage = len(recommended[k])/float(repo_size) | |
148 | - print coverage | |
149 | - f.write("%d \t%.2f \t%.2f \t%.2fi\n" % | |
150 | - (k,coverage,float(sum(precisions[k]))/len(precisions[k]), | |
151 | - float(sum(aucs[k]))/len(aucs[k]))) | |
152 | - plot_roc(k,roc_points[k],log_file) | |
181 | + coverage = len(recommended[size])/float(repo_size) | |
182 | + f.write("%3d \t%.2f \t%.4f \t%.4f \t%.4f\n" % | |
183 | + (k,coverage,float(sum(precision_summary[k]))/len(precision_summary[k]), | |
184 | + float(sum(f05_summary[k]))/len(f05_summary[k]), | |
185 | + float(sum(mcc_summary[k]))/len(mcc_summary[k]))) | |
186 | + plot_roc(k,roc_summary[k],log_file) | ... | ... |
... | ... | @@ -0,0 +1,199 @@ |
1 | +#!/usr/bin/env python | |
2 | +""" | |
3 | + profile-suite - experiment different profile sizes | |
4 | +""" | |
5 | +__author__ = "Tassia Camoes Araujo <tassia@gmail.com>" | |
6 | +__copyright__ = "Copyright (C) 2011 Tassia Camoes Araujo" | |
7 | +__license__ = """ | |
8 | + This program is free software: you can redistribute it and/or modify | |
9 | + it under the terms of the GNU General Public License as published by | |
10 | + the Free Software Foundation, either version 3 of the License, or | |
11 | + (at your option) any later version. | |
12 | + | |
13 | + This program is distributed in the hope that it will be useful, | |
14 | + but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | + GNU General Public License for more details. | |
17 | + | |
18 | + You should have received a copy of the GNU General Public License | |
19 | + along with this program. If not, see <http://www.gnu.org/licenses/>. | |
20 | +""" | |
21 | + | |
22 | +import sys | |
23 | +sys.path.insert(0,'../') | |
24 | +from config import Config | |
25 | +from data import PopconXapianIndex, PopconSubmission | |
26 | +from recommender import Recommender | |
27 | +from user import LocalSystem, User | |
28 | +from evaluation import * | |
29 | +import logging | |
30 | +import random | |
31 | +import Gnuplot | |
32 | +import numpy | |
33 | + | |
34 | +if __name__ == '__main__': | |
35 | + if len(sys.argv)<2: | |
36 | + print "Usage: profile-suite strategy_category sample_file" | |
37 | + exit(1) | |
38 | + | |
39 | + iterations = 20 | |
40 | + profile_size = [10,20,40,70,100,140,170,200,240] | |
41 | + neighbor_size = [3,5,10,50,100,150,200,300,400,500] | |
42 | + | |
43 | + content_strategies = ['cb','cbt','cbd','cbh','cb_eset','cbt_eset','cbd_eset','cbh_eset'] | |
44 | + collaborative_strategies = ['knn_eset']#,'knn_eset','knn_plus'] | |
45 | + #collaborative_strategies = ['knn','knn_eset','knn_plus'] | |
46 | + | |
47 | + #iterations = 1 | |
48 | + #profile_size = [10,20,30] | |
49 | + #neighbor_size = [10,20,30] | |
50 | + #content_strategies = ['cb'] | |
51 | + #collaborative_strategies = ['knn_eset'] | |
52 | + | |
53 | + strategy_category = sys.argv[1] | |
54 | + if strategy_category == "content": | |
55 | + strategies = content_strategies | |
56 | + sizes = profile_size | |
57 | + option_str = "profile" | |
58 | + elif strategy_category == "collaborative": | |
59 | + strategies = collaborative_strategies | |
60 | + sizes = neighbor_size | |
61 | + option_str = "neighborhood" | |
62 | + else: | |
63 | + print "Usage: profile-suite strategy_category sample_file" | |
64 | + exit(1) | |
65 | + | |
66 | + cfg = Config() | |
67 | + population_sample = [] | |
68 | + sample_file = sys.argv[2] | |
69 | + sample_str = sample_file.split('/')[-1] | |
70 | + with open(sample_file,'r') as f: | |
71 | + for line in f.readlines(): | |
72 | + user_id = line.strip('\n') | |
73 | + population_sample.append(os.path.join(cfg.popcon_dir,user_id[:2],user_id)) | |
74 | + sample_dir = ("results/%s/%s" % | |
75 | + (strategy_category,sample_str)) | |
76 | + if not os.path.exists(sample_dir): | |
77 | + os.makedirs(sample_dir) | |
78 | + | |
79 | + for strategy in strategies: | |
80 | + cfg.strategy = strategy | |
81 | + p_20_summary = {} | |
82 | + f05_100_summary = {} | |
83 | + c_20 = {} | |
84 | + c_100 = {} | |
85 | + | |
86 | + log_file = os.path.join(sample_dir,sample_str+"-"+cfg.strategy) | |
87 | + graph_20 = log_file+"-20.png" | |
88 | + graph_100 = log_file+"-100.png" | |
89 | + graph_20_jpg = graph_20.strip(".png")+".jpg" | |
90 | + graph_100_jpg = graph_100.strip(".png")+".jpg" | |
91 | + comment_20 = graph_20_jpg+".comment" | |
92 | + comment_100 = graph_100_jpg+".comment" | |
93 | + | |
94 | + with open(comment_20,'w') as f: | |
95 | + f.write("# sample %s\n" % sample_str) | |
96 | + f.write("# strategy %s\n# threshold 20\n# iterations %d\n\n" % | |
97 | + (cfg.strategy,iterations)) | |
98 | + f.write("# %s\tp_20\tc_20\n\n"%option_str) | |
99 | + with open(comment_100,'w') as f: | |
100 | + f.write("# sample %s\n" % sample_str) | |
101 | + f.write("# strategy %s\n# threshold 100\n# iterations %d\n\n" % | |
102 | + (cfg.strategy,iterations)) | |
103 | + f.write("# %s\t\tf05_100\t\tc_100\n\n"%option_str) | |
104 | + | |
105 | + for size in sizes: | |
106 | + c_20[size] = set() | |
107 | + c_100[size] = set() | |
108 | + p_20_summary[size] = [] | |
109 | + f05_100_summary[size] = [] | |
110 | + with open(log_file+"-%s%.3d"%(option_str,size),'w') as f: | |
111 | + f.write("# sample %s\n" % sample_str) | |
112 | + f.write("# strategy %s-%s%.3d\n\n" % (cfg.strategy,option_str,size)) | |
113 | + f.write("# p_20\tf05_100\n\n") | |
114 | + | |
115 | + # main loop per user | |
116 | + for submission_file in population_sample: | |
117 | + user = PopconSystem(submission_file) | |
118 | + user.filter_pkg_profile(cfg.pkgs_filter) | |
119 | + user.maximal_pkg_profile() | |
120 | + for size in sizes: | |
121 | + cfg.profile_size = size | |
122 | + cfg.k_neighbors = size | |
123 | + rec = Recommender(cfg) | |
124 | + repo_size = rec.items_repository.get_doccount() | |
125 | + p_20 = [] | |
126 | + f05_100 = [] | |
127 | + for n in range(iterations): | |
128 | + # Fill sample profile | |
129 | + profile_len = len(user.pkg_profile) | |
130 | + item_score = {} | |
131 | + for pkg in user.pkg_profile: | |
132 | + item_score[pkg] = user.item_score[pkg] | |
133 | + sample = {} | |
134 | + sample_size = int(profile_len*0.9) | |
135 | + for i in range(sample_size): | |
136 | + key = random.choice(item_score.keys()) | |
137 | + sample[key] = item_score.pop(key) | |
138 | + iteration_user = User(item_score) | |
139 | + recommendation = rec.get_recommendation(iteration_user,repo_size) | |
140 | + if hasattr(recommendation,"ranking"): | |
141 | + ranking = recommendation.ranking | |
142 | + real = RecommendationResult(sample) | |
143 | + predicted_20 = RecommendationResult(dict.fromkeys(ranking[:20],1)) | |
144 | + evaluation = Evaluation(predicted_20,real,repo_size) | |
145 | + p_20.append(evaluation.run(Precision())) | |
146 | + predicted_100 = RecommendationResult(dict.fromkeys(ranking[:100],1)) | |
147 | + evaluation = Evaluation(predicted_100,real,repo_size) | |
148 | + f05_100.append(evaluation.run(F_score(0.5))) | |
149 | + c_20[size] = c_20[size].union(recommendation.ranking[:20]) | |
150 | + c_100[size] = c_100[size].union(recommendation.ranking[:100]) | |
151 | + # save summary | |
152 | + if p_20: | |
153 | + p_20_summary[size].append(sum(p_20)/len(p_20)) | |
154 | + if f05_100: | |
155 | + f05_100_summary[size].append(sum(f05_100)/len(f05_100)) | |
156 | + | |
157 | + with open(log_file+"-%s%.3d"%(option_str,size),'a') as f: | |
158 | + f.write("%.4f \t%.4f\n" % | |
159 | + ((sum(p_20)/len(p_20),sum(f05_100)/len(f05_100)))) | |
160 | + | |
161 | + # back to main flow | |
162 | + coverage_20 = {} | |
163 | + coverage_100 = {} | |
164 | + with open(comment_20,'a') as f: | |
165 | + for size in sizes: | |
166 | + coverage_20[size] = len(c_20[size])/float(repo_size) | |
167 | + f.write("%3d\t\t%.4f\t\t%.4f\n" % | |
168 | + (size,float(sum(p_20_summary[size]))/len(p_20_summary[size]),coverage_20[size])) | |
169 | + with open(comment_100,'a') as f: | |
170 | + for size in sizes: | |
171 | + coverage_100[size] = len(c_100[size])/float(repo_size) | |
172 | + f.write("%3d\t\t%.4f\t\t%.4f\n" % | |
173 | + (size,float(sum(f05_100_summary[size]))/len(f05_100_summary[size]),coverage_100[size])) | |
174 | + | |
175 | + # plot results summary | |
176 | + g = Gnuplot.Gnuplot() | |
177 | + g('set style data lines') | |
178 | + g('set yrange [0:1.0]') | |
179 | + g.xlabel('%s size'%option_str.capitalize()) | |
180 | + g.title("Setup: %s (threshold 20)" % cfg.strategy) | |
181 | + g.plot(Gnuplot.Data(sorted([[k,sum(p_20_summary[k])/len(p_20_summary[k])] | |
182 | + for k in p_20_summary.keys()]),title="Precision"), | |
183 | + Gnuplot.Data(sorted([[k,coverage_20[k]] | |
184 | + for k in coverage_20.keys()]),title="Coverage")) | |
185 | + g.hardcopy(graph_20,terminal="png") | |
186 | + commands.getoutput("convert -quality 20 %s %s" % | |
187 | + (graph_100,graph_20_jpg)) | |
188 | + g = Gnuplot.Gnuplot() | |
189 | + g('set style data lines') | |
190 | + g('set yrange [0:1.0]') | |
191 | + g.xlabel('%s size'%option_str.capitalize()) | |
192 | + g.title("Setup: %s (threshold 100)" % cfg.strategy) | |
193 | + g.plot(Gnuplot.Data(sorted([[k,sum(f05_100_summary[k])/len(f05_100_summary[k])] | |
194 | + for k in f05_100_summary.keys()]),title="F05"), | |
195 | + Gnuplot.Data(sorted([[k,coverage_100[k]] | |
196 | + for k in coverage_100.keys()]),title="Coverage")) | |
197 | + g.hardcopy(graph_100,terminal="png") | |
198 | + commands.getoutput("convert -quality 100 %s %s" % | |
199 | + (graph_100,graph_100_jpg)) | ... | ... |
src/experiments/roc-suite.py
... | ... | @@ -43,11 +43,11 @@ import numpy |
43 | 43 | |
44 | 44 | iterations = 30 |
45 | 45 | sample_proportions = [0.9] |
46 | -weighting = [('bm25',1.0),('bm25',1.2),('bm25',2.0),('trad',0)] | |
46 | +weighting = [('bm25',1.0)] | |
47 | 47 | content_based = ['cb','cbt','cbd','cbh','cb_eset','cbt_eset','cbd_eset','cbh_eset'] |
48 | 48 | collaborative = ['knn_eset','knn','knn_plus'] |
49 | 49 | hybrid = ['knnco','knnco_eset'] |
50 | -profile_size = range(20,200,20) | |
50 | +profile_size = range(20,200,40) | |
51 | 51 | neighbors = range(10,510,50) |
52 | 52 | |
53 | 53 | def write_recall_log(label,n,sample,recommendation,profile_size,repo_size,log_file): |
... | ... | @@ -73,7 +73,7 @@ def write_recall_log(label,n,sample,recommendation,profile_size,repo_size,log_fi |
73 | 73 | output.write(pkg+"\n") |
74 | 74 | output.close() |
75 | 75 | |
76 | -def plot_roc(roc_points,auc,eauc,c,p,log_file): | |
76 | +def plot_roc(roc_points,eauc,c,p,log_file): | |
77 | 77 | g = Gnuplot.Gnuplot() |
78 | 78 | g('set style data lines') |
79 | 79 | g.xlabel('False Positive Rate') |
... | ... | @@ -83,52 +83,27 @@ def plot_roc(roc_points,auc,eauc,c,p,log_file): |
83 | 83 | g.title("Setup: %s" % log_file.split("/")[-1]) |
84 | 84 | g('set label "C %.2f" at 0.8,0.25' % c) |
85 | 85 | g('set label "P(20) %.2f" at 0.8,0.2' % p) |
86 | - g('set label "AUC %.4f" at 0.8,0.15' % auc) | |
87 | - g('set label "EAUC %.4f" at 0.8,0.1' % eauc) | |
86 | + g('set label "AUC %.4f" at 0.8,0.15' % eauc) | |
88 | 87 | g.plot(Gnuplot.Data(roc_points,title="ROC"), |
89 | - Gnuplot.Data([[0,0],[1,1]],with_="lines lt 7"), | |
90 | - Gnuplot.Data([roc_points[-1],[1,1]],with_="lines lt 6")) | |
88 | + Gnuplot.Data([[0,0],[1,1]],with_="lines lt 7")) | |
89 | + #Gnuplot.Data([roc_points[-1],[1,1]],with_="lines lt 6")) | |
91 | 90 | g.hardcopy(log_file+"-roc.png",terminal="png") |
92 | 91 | g.hardcopy(log_file+"-roc.ps",terminal="postscript",enhanced=1,color=1) |
93 | 92 | |
94 | -def plot_summary(precision,recall,f1,f05,accuracy,log_file): | |
95 | - # Plot metrics summary | |
96 | - g = Gnuplot.Gnuplot() | |
97 | - g('set style data lines') | |
98 | - g.xlabel('Recommendation size') | |
99 | - g.title("Setup: %s" % log_file.split("/")[-1]) | |
100 | - g.plot(Gnuplot.Data(accuracy,title="Accuracy"), | |
101 | - Gnuplot.Data(precision,title="Precision"), | |
102 | - Gnuplot.Data(recall,title="Recall"), | |
103 | - Gnuplot.Data(f1,title="F_1"), | |
104 | - Gnuplot.Data(f05,title="F_0.5")) | |
105 | - g.hardcopy(log_file+".png",terminal="png") | |
106 | - g.hardcopy(log_file+".ps",terminal="postscript",enhanced=1,color=1) | |
107 | - g('set logscale x') | |
108 | - g('replot') | |
109 | - g.hardcopy(log_file+"-logscale.png",terminal="png") | |
110 | - g.hardcopy(log_file+"-logscale.ps",terminal="postscript",enhanced=1,color=1) | |
111 | - | |
112 | 93 | def get_label(cfg,sample_proportion): |
113 | 94 | label = {} |
114 | 95 | if cfg.strategy in content_based: |
115 | - label["description"] = "strategy-filter-profile-k1_bm25" | |
116 | - label["values"] = ("%s-profile%.3d-%s-kbm%.1f" % | |
117 | - (cfg.strategy,cfg.profile_size, | |
118 | - cfg.pkgs_filter.split("/")[-1], | |
119 | - cfg.bm25_k1)) | |
96 | + label["description"] = "strategy-profile" | |
97 | + label["values"] = ("%s-profile%.3d" % | |
98 | + (cfg.strategy,cfg.profile_size)) | |
120 | 99 | elif cfg.strategy in collaborative: |
121 | - label["description"] = "strategy-knn-filter-k1_bm25" | |
122 | - label["values"] = ("%s-k%.3d-%s-kbm%.1f" % | |
123 | - (cfg.strategy,cfg.k_neighbors, | |
124 | - cfg.pkgs_filter.split("/")[-1], | |
125 | - cfg.bm25_k1)) | |
100 | + label["description"] = "strategy-knn" | |
101 | + label["values"] = ("%s-k%.3d" % | |
102 | + (cfg.strategy,cfg.k_neighbors)) | |
126 | 103 | elif cfg.strategy in hybrid: |
127 | - label["description"] = "strategy-knn-filter-profile-k1_bm25" | |
128 | - label["values"] = ("%s-k%.3d-profile%.3d-%s-kbm%.1f" % | |
129 | - (cfg.strategy,cfg.k_neighbors,cfg.profile_size, | |
130 | - cfg.pkgs_filter.split("/")[-1], | |
131 | - cfg.bm25_k1)) | |
104 | + label["description"] = "strategy-knn-profile" | |
105 | + label["values"] = ("%s-k%.3d-profile%.3d" % | |
106 | + (cfg.strategy,cfg.k_neighbors,cfg.profile_size)) | |
132 | 107 | else: |
133 | 108 | print "Unknown strategy" |
134 | 109 | return label |
... | ... | @@ -136,41 +111,28 @@ def get_label(cfg,sample_proportion): |
136 | 111 | class ExperimentResults: |
137 | 112 | def __init__(self,repo_size): |
138 | 113 | self.repository_size = repo_size |
139 | - self.accuracy = {} | |
140 | 114 | self.precision = {} |
141 | 115 | self.recall = {} |
142 | - self.f1 = {} | |
143 | - self.f05 = {} | |
144 | 116 | self.fpr = {} |
145 | - #points = [1]+range(10,200,10)+range(200,self.repository_size,100) | |
146 | 117 | points = [1]+range(10,self.repository_size,10) |
147 | 118 | self.recommended = set() |
148 | 119 | for size in points: |
149 | - self.accuracy[size] = [] | |
150 | 120 | self.precision[size] = [] |
151 | 121 | self.recall[size] = [] |
152 | - self.f1[size] = [] | |
153 | - self.f05[size] = [] | |
154 | 122 | self.fpr[size] = [] |
155 | 123 | |
156 | 124 | def add_result(self,ranking,sample): |
157 | - print "len_recommended", len(self.recommended) | |
158 | - print "len_rank", len(ranking) | |
159 | 125 | self.recommended = self.recommended.union(ranking) |
160 | - print "len_recommended", len(self.recommended) | |
161 | 126 | # get data only for point |
162 | - for size in self.accuracy.keys(): | |
127 | + for size in self.precision.keys(): | |
163 | 128 | predicted = RecommendationResult(dict.fromkeys(ranking[:size],1)) |
164 | 129 | real = RecommendationResult(sample) |
165 | 130 | evaluation = Evaluation(predicted,real,self.repository_size) |
166 | - #self.accuracy[size].append(evaluation.run(Accuracy())) | |
167 | 131 | self.precision[size].append(evaluation.run(Precision())) |
168 | 132 | self.recall[size].append(evaluation.run(Recall())) |
169 | - #self.f1[size].append(evaluation.run(F_score(1))) | |
170 | - #self.f05[size].append(evaluation.run(F_score(0.5))) | |
171 | 133 | self.fpr[size].append(evaluation.run(FPR())) |
172 | 134 | |
173 | - # Average ROC by threshold (whici is the size) | |
135 | + # Average ROC by threshold (= size of recommendation) | |
174 | 136 | def get_roc_points(self): |
175 | 137 | points = [] |
176 | 138 | for size in self.recall.keys(): |
... | ... | @@ -179,38 +141,6 @@ class ExperimentResults: |
179 | 141 | points.append([sum(fpr)/len(fpr),sum(tpr)/len(tpr)]) |
180 | 142 | return sorted(points) |
181 | 143 | |
182 | - def get_precision_summary(self): | |
183 | - summary = [[size,sum(values)/len(values)] for size,values in self.precision.items()] | |
184 | - return sorted(summary) | |
185 | - | |
186 | - def get_recall_summary(self): | |
187 | - summary = [[size,sum(values)/len(values)] for size,values in self.recall.items()] | |
188 | - return sorted(summary) | |
189 | - | |
190 | - def get_f1_summary(self): | |
191 | - summary = [[size,sum(values)/len(values)] for size,values in self.f1.items()] | |
192 | - return sorted(summary) | |
193 | - | |
194 | - def get_f05_summary(self): | |
195 | - summary = [[size,sum(values)/len(values)] for size,values in self.f05.items()] | |
196 | - return sorted(summary) | |
197 | - | |
198 | - def get_accuracy_summary(self): | |
199 | - summary = [[size,sum(values)/len(values)] for size,values in self.accuracy.items()] | |
200 | - return sorted(summary) | |
201 | - | |
202 | - def best_precision(self): | |
203 | - size = max(self.precision, key = lambda x: max(self.precision[x]) and x>10) | |
204 | - return (size,max(self.precision[size])) | |
205 | - | |
206 | - def best_f1(self): | |
207 | - size = max(self.f1, key = lambda x: max(self.f1[x])) | |
208 | - return (size,max(self.f1[size])) | |
209 | - | |
210 | - def best_f05(self): | |
211 | - size = max(self.f05, key = lambda x: max(self.f05[x])) | |
212 | - return (size,max(self.f05[size])) | |
213 | - | |
214 | 144 | def run_strategy(cfg,user): |
215 | 145 | for weight in weighting: |
216 | 146 | cfg.weight = weight[0] |
... | ... | @@ -220,22 +150,24 @@ def run_strategy(cfg,user): |
220 | 150 | for proportion in sample_proportions: |
221 | 151 | results = ExperimentResults(repo_size) |
222 | 152 | label = get_label(cfg,proportion) |
223 | - #log_file = "results/20110906/4a67a295/"+label["values"] | |
224 | - log_file = "results/"+label["values"] | |
153 | + user_dir = ("results/roc-suite/%s" % user.user_id[:8]) | |
154 | + if not os.path.exists(user_dir): | |
155 | + os.mkdir(user_dir) | |
156 | + log_file = os.path.join(user_dir,label["values"]) | |
225 | 157 | for n in range(iterations): |
226 | 158 | # Fill sample profile |
227 | - profile_size = len(user.pkg_profile) | |
159 | + profile_len = len(user.pkg_profile) | |
228 | 160 | item_score = {} |
229 | 161 | for pkg in user.pkg_profile: |
230 | 162 | item_score[pkg] = user.item_score[pkg] |
231 | 163 | sample = {} |
232 | - sample_size = int(profile_size*proportion) | |
164 | + sample_size = int(profile_len*proportion) | |
233 | 165 | for i in range(sample_size): |
234 | 166 | key = random.choice(item_score.keys()) |
235 | 167 | sample[key] = item_score.pop(key) |
236 | 168 | iteration_user = User(item_score) |
237 | 169 | recommendation = rec.get_recommendation(iteration_user,repo_size) |
238 | - #write_recall_log(label,n,sample,recommendation,profile_size,repo_size,log_file) | |
170 | + write_recall_log(label,n,sample,recommendation,profile_len,repo_size,log_file) | |
239 | 171 | if hasattr(recommendation,"ranking"): |
240 | 172 | results.add_result(recommendation.ranking,sample) |
241 | 173 | with open(log_file,'w') as f: |
... | ... | @@ -247,32 +179,12 @@ def run_strategy(cfg,user): |
247 | 179 | numpy.trapz(y=[0,roc_points[0][1]],x=[0,roc_points[0][0]])+ |
248 | 180 | numpy.trapz(y=[roc_points[-1][1],1],x=[roc_points[-1][0],1])) |
249 | 181 | precision_20 = sum(results.precision[10])/len(results.precision[10]) |
250 | - print results.recommended | |
251 | - print "len",len(results.recommended) | |
252 | 182 | coverage = len(results.recommended)/float(repo_size) |
253 | - print "repo_size: ", float(repo_size) | |
254 | - print coverage | |
255 | - exit(1) | |
256 | - #f1_10 = sum(results.f1[10])/len(results.f1[10]) | |
257 | - #f05_10 = sum(results.f05[10])/len(results.f05[10]) | |
258 | 183 | f.write("# %s\n# %s\n\n" % |
259 | 184 | (label["description"],label["values"])) |
260 | 185 | f.write("# coverage \tp(20) \tauc \teauc\n\t%.2f \t%.2f \t%.4f \t%.4f\n\n" % |
261 | 186 | (coverage,precision_20,auc,eauc)) |
262 | - #f.write("# best results (recommendation size; metric)\n") | |
263 | - #f.write("precision (%d; %.2f)\nf1 (%d; %.2f)\nf05 (%d; %.2f)\n\n" % | |
264 | - # (results.best_precision()[0],results.best_precision()[1], | |
265 | - # results.best_f1()[0],results.best_f1()[1], | |
266 | - # results.best_f05()[0],results.best_f05()[1])) | |
267 | - #f.write("# recommendation size 10\nprecision (10; %.2f)\nf1 (10; %.2f)\nf05 (10; %.2f)" % | |
268 | - # (precision_10,f1_10,f05_10)) | |
269 | - #precision = results.get_precision_summary() | |
270 | - #recall = results.get_recall_summary() | |
271 | - #f1 = results.get_f1_summary() | |
272 | - #f05 = results.get_f05_summary() | |
273 | - #accuracy = results.get_accuracy_summary() | |
274 | - #plot_summary(precision,recall,f1,f05,accuracy,log_file) | |
275 | - plot_roc(roc_points,auc,eauc,coverage,precision_20,log_file) | |
187 | + plot_roc(roc_points,eauc,coverage,precision_20,log_file) | |
276 | 188 | |
277 | 189 | def run_content(user,cfg): |
278 | 190 | for strategy in content_based: |
... | ... | @@ -288,10 +200,6 @@ def run_collaborative(user,cfg): |
288 | 200 | cfg.strategy = strategy |
289 | 201 | for k in neighbors: |
290 | 202 | cfg.k_neighbors = k |
291 | - #for size in popcon_size: | |
292 | - # if size: | |
293 | - # cfg.popcon_desktopapps = popcon_desktopapps+"_"+size | |
294 | - # cfg.popcon_programs = popcon_programs+"_"+size | |
295 | 203 | run_strategy(cfg,user) |
296 | 204 | |
297 | 205 | def run_hybrid(user,cfg): |
... | ... | @@ -301,28 +209,23 @@ def run_hybrid(user,cfg): |
301 | 209 | cfg.strategy = strategy |
302 | 210 | for k in neighbors: |
303 | 211 | cfg.k_neighbors = k |
304 | - #for size in popcon_size: | |
305 | - # if size: | |
306 | - # cfg.popcon_desktopapps = popcon_desktopapps+"_"+size | |
307 | - # cfg.popcon_programs = popcon_programs+"_"+size | |
308 | 212 | for size in profile_size: |
309 | 213 | cfg.profile_size = size |
310 | 214 | run_strategy(cfg,user) |
311 | 215 | |
312 | 216 | if __name__ == '__main__': |
313 | - #user = LocalSystem() | |
314 | - #user = RandomPopcon(cfg.popcon_dir,os.path.join(cfg.filters_dir,"desktopapps")) | |
217 | + if len(sys.argv)<2: | |
218 | + print "Usage: roc-suite popcon_submission_path [content|collaborative|hybrid]" | |
219 | + exit(1) | |
315 | 220 | |
316 | 221 | cfg = Config() |
317 | - #user = PopconSystem("/root/.app-recommender/popcon-entries/8b/8b44fcdbcf676e711a153d5db09979d7") | |
318 | - user = PopconSystem("/root/.app-recommender/popcon-entries/4a/4a67a295ec14826db2aa1d90be2f1623") | |
319 | - #user = PopconSystem("/root/.app-recommender/popcon-entries/4a/4a5834eb2aba6b6f17312239e0761c70") | |
222 | + user = PopconSystem(sys.argv[1]) | |
320 | 223 | user.filter_pkg_profile(cfg.pkgs_filter) |
321 | 224 | user.maximal_pkg_profile() |
322 | 225 | |
323 | - if "content" in sys.argv or len(sys.argv)<2: | |
226 | + if "content" in sys.argv or len(sys.argv)<3: | |
324 | 227 | run_content(user,cfg) |
325 | - if "collaborative" in sys.argv or len(sys.argv)<2: | |
228 | + if "collaborative" in sys.argv or len(sys.argv)<3: | |
326 | 229 | run_collaborative(user,cfg) |
327 | - if "hybrid" in sys.argv or len(sys.argv)<2: | |
230 | + if "hybrid" in sys.argv or len(sys.argv)<3: | |
328 | 231 | run_hybrid(user,cfg) | ... | ... |
... | ... | @@ -0,0 +1,44 @@ |
1 | +#! /usr/bin/env python | |
2 | +""" | |
3 | + sample-popcon-arch - extract a sample of a specific arch | |
4 | +""" | |
5 | +__author__ = "Tassia Camoes Araujo <tassia@gmail.com>" | |
6 | +__copyright__ = "Copyright (C) 2011 Tassia Camoes Araujo" | |
7 | +__license__ = """ | |
8 | + This program is free software: you can redistribute it and/or modify | |
9 | + it under the terms of the GNU General Public License as published by | |
10 | + the Free Software Foundation, either version 3 of the License, or | |
11 | + (at your option) any later version. | |
12 | + | |
13 | + This program is distributed in the hope that it will be useful, | |
14 | + but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | + GNU General Public License for more details. | |
17 | + | |
18 | + You should have received a copy of the GNU General Public License | |
19 | + along with this program. If not, see <http://www.gnu.org/licenses/>. | |
20 | +""" | |
21 | +import sys | |
22 | +sys.path.insert(0,'../') | |
23 | +import xapian | |
24 | +import os | |
25 | +import random | |
26 | +import sys | |
27 | +from user import RandomPopcon | |
28 | + | |
29 | +if __name__ == '__main__': | |
30 | + try: | |
31 | + size = int(sys.argv[1]) | |
32 | + arch = sys.argv[2] | |
33 | + popcon_dir = sys.argv[3] | |
34 | + pkgs_filter = sys.argv[4] | |
35 | + except: | |
36 | + print "Usage: sample-popcon-arch size arch popcon_dir pkgs_filter" | |
37 | + exit(1) | |
38 | + | |
39 | + sample_file = ("results/misc-popcon/sample-%s-%d" % (arch,size)) | |
40 | + with open(sample_file,'w') as f: | |
41 | + for n in range(1,size+1): | |
42 | + user = RandomPopcon(popcon_dir,arch,pkgs_filter) | |
43 | + f.write(user.user_id+'\n') | |
44 | + print "sample",n | ... | ... |