Commit c9e910a1211092d35b5ce500bb1b2b65a3ff8866
1 parent
e70ddffd
Exists in
master
and in
1 other branch
Added max_popcon option and fixed bug with getting intergers values from config.
Showing
2 changed files
with
36 additions
and
21 deletions
Show diff stats
src/config.py
| ... | ... | @@ -46,6 +46,7 @@ class Config(): |
| 46 | 46 | self.popcon_dir = os.path.expanduser("~/.app-recommender/popcon_dir") |
| 47 | 47 | self.clusters_dir = os.path.expanduser("~/.app-recommender/clusters_dir") |
| 48 | 48 | self.k_medoids = 100 |
| 49 | + self.max_popcon = 1000 | |
| 49 | 50 | self.index_mode = "old" |
| 50 | 51 | self.strategy = "cb" |
| 51 | 52 | self.weight = "bm25" |
| ... | ... | @@ -71,6 +72,7 @@ class Config(): |
| 71 | 72 | print " -u, --indexmode= 'old'|'reindex'|'cluster'|'recluster'" |
| 72 | 73 | print " -l, --clustersdir=PATH Path to popcon clusters dir" |
| 73 | 74 | print " -c, --medoids=k Number of medoids for clustering" |
| 75 | + print " -x, --maxpopcon=k Number of submissions to be considered" | |
| 74 | 76 | print "" |
| 75 | 77 | print " [ recommender ]" |
| 76 | 78 | print " -w, --weight=OPTION Search weighting scheme" |
| ... | ... | @@ -112,8 +114,8 @@ class Config(): |
| 112 | 114 | logging.error("Error in config file syntax: %s", str(err)) |
| 113 | 115 | os.abort() |
| 114 | 116 | |
| 115 | - self.debug = self.read_option('general', 'debug') | |
| 116 | - self.debug = self.read_option('general', 'verbose') | |
| 117 | + self.debug = int(self.read_option('general', 'debug')) | |
| 118 | + self.debug = int(self.read_option('general', 'verbose')) | |
| 117 | 119 | self.output_filename = self.read_option('general', 'output') |
| 118 | 120 | self.survey_mode = self.read_option('general', 'survey_mode') |
| 119 | 121 | |
| ... | ... | @@ -123,16 +125,18 @@ class Config(): |
| 123 | 125 | self.popcon_dir = os.path.expanduser(self.read_option('data_sources', 'popcon_dir')) |
| 124 | 126 | self.index_mode = self.read_option('data_sources', 'index_mode') |
| 125 | 127 | self.clusters_dir = os.path.expanduser(self.read_option('data_sources', 'clusters_dir')) |
| 126 | - self.k_medoids = self.read_option('data_sources', 'k_medoids') | |
| 128 | + self.k_medoids = int(self.read_option('data_sources', 'k_medoids')) | |
| 129 | + self.max_popcon = int(self.read_option('data_sources', 'max_popcon')) | |
| 127 | 130 | |
| 128 | 131 | self.weight = self.read_option('recommender', 'weight') |
| 129 | 132 | self.strategy = self.read_option('recommender', 'strategy') |
| 130 | - self.profile_size = self.read_option('recommender', 'profile_size') | |
| 133 | + self.profile_size = int(self.read_option('recommender', | |
| 134 | + 'profile_size')) | |
| 131 | 135 | |
| 132 | - short_options = "hdvo:a:e:p:m:ul:c:w:s:z:" | |
| 136 | + short_options = "hdvo:a:e:p:m:ul:c:x:w:s:z:" | |
| 133 | 137 | long_options = ["help", "debug", "verbose", "output=", |
| 134 | 138 | "axi=", "dde=", "popconindex=", "popcondir=", "indexmode=", |
| 135 | - "clustersdir=", "kmedoids=", "weight=", "strategy=", | |
| 139 | + "clustersdir=", "kmedoids=", "max_popcon=", "weight=", "strategy=", | |
| 136 | 140 | "profile_size="] |
| 137 | 141 | try: |
| 138 | 142 | opts, args = getopt.getopt(sys.argv[1:], short_options, |
| ... | ... | @@ -166,13 +170,15 @@ class Config(): |
| 166 | 170 | elif o in ("-l", "--clustersdir"): |
| 167 | 171 | self.clusters_dir = p |
| 168 | 172 | elif o in ("-c", "--kmedoids"): |
| 169 | - self.k_medoids = p | |
| 173 | + self.k_medoids = int(p) | |
| 174 | + elif o in ("-x", "--max_popcon"): | |
| 175 | + self.max_popcon = int(p) | |
| 170 | 176 | elif o in ("-w", "--weight"): |
| 171 | 177 | self.weight = p |
| 172 | 178 | elif o in ("-s", "--strategy"): |
| 173 | 179 | self.strategy = p |
| 174 | 180 | elif o in ("-z", "--profile_size"): |
| 175 | - self.strategy = p | |
| 181 | + self.strategy = int(p) | |
| 176 | 182 | else: |
| 177 | 183 | assert False, "unhandled option" |
| 178 | 184 | ... | ... |
src/data.py
| ... | ... | @@ -82,7 +82,7 @@ class AppAptXapianIndex(xapian.WritableDatabase): |
| 82 | 82 | except: |
| 83 | 83 | logging.info("Doc %d not found in axi." % docid) |
| 84 | 84 | logging.info("AppAptXapianIndex size: %d (lastdocid: %d)." % |
| 85 | - self.get_doccount(), self.get_lastdocid()) | |
| 85 | + (self.get_doccount(), self.get_lastdocid())) | |
| 86 | 86 | |
| 87 | 87 | def __str__(self): |
| 88 | 88 | return print_index(self) |
| ... | ... | @@ -166,6 +166,7 @@ class PopconXapianIndex(xapian.WritableDatabase): |
| 166 | 166 | raise Error |
| 167 | 167 | if cfg.index_mode == "reindex": |
| 168 | 168 | self.source_dir = os.path.expanduser(cfg.popcon_dir) |
| 169 | + logging.debug(self.source_dir) | |
| 169 | 170 | else: |
| 170 | 171 | self.source_dir = os.path.expanduser(cfg.clusters_dir) |
| 171 | 172 | if not os.path.exists(cfg.clusters_dir): |
| ... | ... | @@ -180,10 +181,12 @@ class PopconXapianIndex(xapian.WritableDatabase): |
| 180 | 181 | % cfg.clusters_dir) |
| 181 | 182 | distance = JaccardDistance() |
| 182 | 183 | data = self.get_submissions(cfg.popcon_dir) |
| 184 | + logging.debug(type(data)) | |
| 183 | 185 | self.cluster_dispersion = \ |
| 184 | 186 | self.kmedoids_clustering(data, cfg.clusters_dir, |
| 185 | - distance, cfg.k_medoids) | |
| 186 | - logging.info("Clusters dispersion: %f.2", | |
| 187 | + distance, cfg.k_medoids, | |
| 188 | + cfg.max_popcon) | |
| 189 | + logging.info("Clusters dispersion: %.2f", | |
| 187 | 190 | self.cluster_dispersion) |
| 188 | 191 | else: |
| 189 | 192 | logging.info("Using clusters from \'%s\'" % |
| ... | ... | @@ -221,8 +224,9 @@ class PopconXapianIndex(xapian.WritableDatabase): |
| 221 | 224 | self.path) |
| 222 | 225 | xapian.WritableDatabase.__init__(self,self.path, |
| 223 | 226 | xapian.DB_CREATE_OR_OVERWRITE) |
| 224 | - except xapian.DatabaseError: | |
| 227 | + except xapian.DatabaseError as e: | |
| 225 | 228 | logging.critical("Could not create popcon xapian index.") |
| 229 | + logging.critical(str(e)) | |
| 226 | 230 | raise Error |
| 227 | 231 | |
| 228 | 232 | for root, dirs, files in os.walk(self.source_dir): |
| ... | ... | @@ -254,29 +258,32 @@ class PopconXapianIndex(xapian.WritableDatabase): |
| 254 | 258 | submissions = [] |
| 255 | 259 | for root, dirs, files in os.walk(submissions_dir): |
| 256 | 260 | for popcon_file in files: |
| 261 | + logging.debug("Parsing submission %s" % popcon_file) | |
| 257 | 262 | submission = PopconSubmission(os.path.join(root, popcon_file)) |
| 258 | 263 | submissions.append(submission) |
| 259 | 264 | return submissions |
| 260 | 265 | |
| 261 | - def kmedoids_clustering(self,data,clusters_dir,distance,k_medoids): | |
| 266 | + def kmedoids_clustering(self,data,clusters_dir,distance,k_medoids,max_popcon): | |
| 262 | 267 | clusters = KMedoidsClustering(data,lambda x,y: |
| 263 | 268 | distance(x.packages.keys(), |
| 264 | - y.packages.keys())) | |
| 269 | + y.packages.keys()),max_popcon) | |
| 265 | 270 | medoids,dispersion = clusters.getMedoids(k_medoids) |
| 266 | 271 | for submission in medoids: |
| 272 | + logging.debug("Copying submission %s" % submission.user_id) | |
| 267 | 273 | shutil.copyfile(submission.path,os.path.join(clusters_dir, |
| 268 | 274 | submission.user_id)) |
| 269 | 275 | return dispersion |
| 270 | 276 | |
| 271 | 277 | class KMedoidsClustering(cluster.KMeansClustering): |
| 272 | 278 | |
| 273 | - def __init__(self,data,distance,max_data=100): | |
| 274 | - # if len(data)<max_data: | |
| 275 | - # data_sample = data | |
| 276 | - # else: | |
| 277 | - # data_sample = random.sample(data,max_data) | |
| 278 | - # cluster.KMeansClustering.__init__(self, data_sample, distance) | |
| 279 | - cluster.KMeansClustering.__init__(self, data, distance) | |
| 279 | + def __init__(self,data,distance,max_data): | |
| 280 | + if len(data)<max_data: | |
| 281 | + data_sample = data | |
| 282 | + else: | |
| 283 | + data_sample = random.sample(data,max_data) | |
| 284 | + print data_sample | |
| 285 | + cluster.KMeansClustering.__init__(self, data_sample, distance) | |
| 286 | + # cluster.KMeansClustering.__init__(self, data, distance) | |
| 280 | 287 | self.distanceMatrix = {} |
| 281 | 288 | for submission in self._KMeansClustering__data: |
| 282 | 289 | self.distanceMatrix[submission.user_id] = {} |
| ... | ... | @@ -335,6 +342,8 @@ class KMedoidsClustering(cluster.KMeansClustering): |
| 335 | 342 | """ |
| 336 | 343 | #medoids_distances = [self.getMedoid(cluster) for cluster in self.getclusters(n)] |
| 337 | 344 | medoids_distances = [] |
| 345 | + logging.debug("initial length %s" % self._KMeansClustering__initial_length) | |
| 346 | + logging.debug("n %d" % n) | |
| 338 | 347 | for cluster in self.getclusters(n): |
| 339 | 348 | type(cluster) |
| 340 | 349 | print cluster | ... | ... |