Commit c9e910a1211092d35b5ce500bb1b2b65a3ff8866
1 parent
e70ddffd
Exists in
master
and in
1 other branch
Added max_popcon option and fixed bug with getting intergers values from config.
Showing
2 changed files
with
36 additions
and
21 deletions
Show diff stats
src/config.py
... | ... | @@ -46,6 +46,7 @@ class Config(): |
46 | 46 | self.popcon_dir = os.path.expanduser("~/.app-recommender/popcon_dir") |
47 | 47 | self.clusters_dir = os.path.expanduser("~/.app-recommender/clusters_dir") |
48 | 48 | self.k_medoids = 100 |
49 | + self.max_popcon = 1000 | |
49 | 50 | self.index_mode = "old" |
50 | 51 | self.strategy = "cb" |
51 | 52 | self.weight = "bm25" |
... | ... | @@ -71,6 +72,7 @@ class Config(): |
71 | 72 | print " -u, --indexmode= 'old'|'reindex'|'cluster'|'recluster'" |
72 | 73 | print " -l, --clustersdir=PATH Path to popcon clusters dir" |
73 | 74 | print " -c, --medoids=k Number of medoids for clustering" |
75 | + print " -x, --maxpopcon=k Number of submissions to be considered" | |
74 | 76 | print "" |
75 | 77 | print " [ recommender ]" |
76 | 78 | print " -w, --weight=OPTION Search weighting scheme" |
... | ... | @@ -112,8 +114,8 @@ class Config(): |
112 | 114 | logging.error("Error in config file syntax: %s", str(err)) |
113 | 115 | os.abort() |
114 | 116 | |
115 | - self.debug = self.read_option('general', 'debug') | |
116 | - self.debug = self.read_option('general', 'verbose') | |
117 | + self.debug = int(self.read_option('general', 'debug')) | |
118 | + self.debug = int(self.read_option('general', 'verbose')) | |
117 | 119 | self.output_filename = self.read_option('general', 'output') |
118 | 120 | self.survey_mode = self.read_option('general', 'survey_mode') |
119 | 121 | |
... | ... | @@ -123,16 +125,18 @@ class Config(): |
123 | 125 | self.popcon_dir = os.path.expanduser(self.read_option('data_sources', 'popcon_dir')) |
124 | 126 | self.index_mode = self.read_option('data_sources', 'index_mode') |
125 | 127 | self.clusters_dir = os.path.expanduser(self.read_option('data_sources', 'clusters_dir')) |
126 | - self.k_medoids = self.read_option('data_sources', 'k_medoids') | |
128 | + self.k_medoids = int(self.read_option('data_sources', 'k_medoids')) | |
129 | + self.max_popcon = int(self.read_option('data_sources', 'max_popcon')) | |
127 | 130 | |
128 | 131 | self.weight = self.read_option('recommender', 'weight') |
129 | 132 | self.strategy = self.read_option('recommender', 'strategy') |
130 | - self.profile_size = self.read_option('recommender', 'profile_size') | |
133 | + self.profile_size = int(self.read_option('recommender', | |
134 | + 'profile_size')) | |
131 | 135 | |
132 | - short_options = "hdvo:a:e:p:m:ul:c:w:s:z:" | |
136 | + short_options = "hdvo:a:e:p:m:ul:c:x:w:s:z:" | |
133 | 137 | long_options = ["help", "debug", "verbose", "output=", |
134 | 138 | "axi=", "dde=", "popconindex=", "popcondir=", "indexmode=", |
135 | - "clustersdir=", "kmedoids=", "weight=", "strategy=", | |
139 | + "clustersdir=", "kmedoids=", "max_popcon=", "weight=", "strategy=", | |
136 | 140 | "profile_size="] |
137 | 141 | try: |
138 | 142 | opts, args = getopt.getopt(sys.argv[1:], short_options, |
... | ... | @@ -166,13 +170,15 @@ class Config(): |
166 | 170 | elif o in ("-l", "--clustersdir"): |
167 | 171 | self.clusters_dir = p |
168 | 172 | elif o in ("-c", "--kmedoids"): |
169 | - self.k_medoids = p | |
173 | + self.k_medoids = int(p) | |
174 | + elif o in ("-x", "--max_popcon"): | |
175 | + self.max_popcon = int(p) | |
170 | 176 | elif o in ("-w", "--weight"): |
171 | 177 | self.weight = p |
172 | 178 | elif o in ("-s", "--strategy"): |
173 | 179 | self.strategy = p |
174 | 180 | elif o in ("-z", "--profile_size"): |
175 | - self.strategy = p | |
181 | + self.strategy = int(p) | |
176 | 182 | else: |
177 | 183 | assert False, "unhandled option" |
178 | 184 | ... | ... |
src/data.py
... | ... | @@ -82,7 +82,7 @@ class AppAptXapianIndex(xapian.WritableDatabase): |
82 | 82 | except: |
83 | 83 | logging.info("Doc %d not found in axi." % docid) |
84 | 84 | logging.info("AppAptXapianIndex size: %d (lastdocid: %d)." % |
85 | - self.get_doccount(), self.get_lastdocid()) | |
85 | + (self.get_doccount(), self.get_lastdocid())) | |
86 | 86 | |
87 | 87 | def __str__(self): |
88 | 88 | return print_index(self) |
... | ... | @@ -166,6 +166,7 @@ class PopconXapianIndex(xapian.WritableDatabase): |
166 | 166 | raise Error |
167 | 167 | if cfg.index_mode == "reindex": |
168 | 168 | self.source_dir = os.path.expanduser(cfg.popcon_dir) |
169 | + logging.debug(self.source_dir) | |
169 | 170 | else: |
170 | 171 | self.source_dir = os.path.expanduser(cfg.clusters_dir) |
171 | 172 | if not os.path.exists(cfg.clusters_dir): |
... | ... | @@ -180,10 +181,12 @@ class PopconXapianIndex(xapian.WritableDatabase): |
180 | 181 | % cfg.clusters_dir) |
181 | 182 | distance = JaccardDistance() |
182 | 183 | data = self.get_submissions(cfg.popcon_dir) |
184 | + logging.debug(type(data)) | |
183 | 185 | self.cluster_dispersion = \ |
184 | 186 | self.kmedoids_clustering(data, cfg.clusters_dir, |
185 | - distance, cfg.k_medoids) | |
186 | - logging.info("Clusters dispersion: %f.2", | |
187 | + distance, cfg.k_medoids, | |
188 | + cfg.max_popcon) | |
189 | + logging.info("Clusters dispersion: %.2f", | |
187 | 190 | self.cluster_dispersion) |
188 | 191 | else: |
189 | 192 | logging.info("Using clusters from \'%s\'" % |
... | ... | @@ -221,8 +224,9 @@ class PopconXapianIndex(xapian.WritableDatabase): |
221 | 224 | self.path) |
222 | 225 | xapian.WritableDatabase.__init__(self,self.path, |
223 | 226 | xapian.DB_CREATE_OR_OVERWRITE) |
224 | - except xapian.DatabaseError: | |
227 | + except xapian.DatabaseError as e: | |
225 | 228 | logging.critical("Could not create popcon xapian index.") |
229 | + logging.critical(str(e)) | |
226 | 230 | raise Error |
227 | 231 | |
228 | 232 | for root, dirs, files in os.walk(self.source_dir): |
... | ... | @@ -254,29 +258,32 @@ class PopconXapianIndex(xapian.WritableDatabase): |
254 | 258 | submissions = [] |
255 | 259 | for root, dirs, files in os.walk(submissions_dir): |
256 | 260 | for popcon_file in files: |
261 | + logging.debug("Parsing submission %s" % popcon_file) | |
257 | 262 | submission = PopconSubmission(os.path.join(root, popcon_file)) |
258 | 263 | submissions.append(submission) |
259 | 264 | return submissions |
260 | 265 | |
261 | - def kmedoids_clustering(self,data,clusters_dir,distance,k_medoids): | |
266 | + def kmedoids_clustering(self,data,clusters_dir,distance,k_medoids,max_popcon): | |
262 | 267 | clusters = KMedoidsClustering(data,lambda x,y: |
263 | 268 | distance(x.packages.keys(), |
264 | - y.packages.keys())) | |
269 | + y.packages.keys()),max_popcon) | |
265 | 270 | medoids,dispersion = clusters.getMedoids(k_medoids) |
266 | 271 | for submission in medoids: |
272 | + logging.debug("Copying submission %s" % submission.user_id) | |
267 | 273 | shutil.copyfile(submission.path,os.path.join(clusters_dir, |
268 | 274 | submission.user_id)) |
269 | 275 | return dispersion |
270 | 276 | |
271 | 277 | class KMedoidsClustering(cluster.KMeansClustering): |
272 | 278 | |
273 | - def __init__(self,data,distance,max_data=100): | |
274 | - # if len(data)<max_data: | |
275 | - # data_sample = data | |
276 | - # else: | |
277 | - # data_sample = random.sample(data,max_data) | |
278 | - # cluster.KMeansClustering.__init__(self, data_sample, distance) | |
279 | - cluster.KMeansClustering.__init__(self, data, distance) | |
279 | + def __init__(self,data,distance,max_data): | |
280 | + if len(data)<max_data: | |
281 | + data_sample = data | |
282 | + else: | |
283 | + data_sample = random.sample(data,max_data) | |
284 | + print data_sample | |
285 | + cluster.KMeansClustering.__init__(self, data_sample, distance) | |
286 | + # cluster.KMeansClustering.__init__(self, data, distance) | |
280 | 287 | self.distanceMatrix = {} |
281 | 288 | for submission in self._KMeansClustering__data: |
282 | 289 | self.distanceMatrix[submission.user_id] = {} |
... | ... | @@ -335,6 +342,8 @@ class KMedoidsClustering(cluster.KMeansClustering): |
335 | 342 | """ |
336 | 343 | #medoids_distances = [self.getMedoid(cluster) for cluster in self.getclusters(n)] |
337 | 344 | medoids_distances = [] |
345 | + logging.debug("initial length %s" % self._KMeansClustering__initial_length) | |
346 | + logging.debug("n %d" % n) | |
338 | 347 | for cluster in self.getclusters(n): |
339 | 348 | type(cluster) |
340 | 349 | print cluster | ... | ... |