Commit e2be2c33b1e481ae26daffa35f532e6e4c7dd336
1 parent
0c315647
Exists in
master
and in
1 other branch
Up-to-date roc testes.
Showing
2 changed files
with
509 additions
and
0 deletions
Show diff stats
... | ... | @@ -0,0 +1,240 @@ |
1 | +#!/usr/bin/env python | |
2 | +""" | |
3 | + recommender suite - recommender experiments suite | |
4 | +""" | |
5 | +__author__ = "Tassia Camoes Araujo <tassia@gmail.com>" | |
6 | +__copyright__ = "Copyright (C) 2011 Tassia Camoes Araujo" | |
7 | +__license__ = """ | |
8 | + This program is free software: you can redistribute it and/or modify | |
9 | + it under the terms of the GNU General Public License as published by | |
10 | + the Free Software Foundation, either version 3 of the License, or | |
11 | + (at your option) any later version. | |
12 | + | |
13 | + This program is distributed in the hope that it will be useful, | |
14 | + but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | + GNU General Public License for more details. | |
17 | + | |
18 | + You should have received a copy of the GNU General Public License | |
19 | + along with this program. If not, see <http://www.gnu.org/licenses/>. | |
20 | +""" | |
21 | + | |
22 | +import sys | |
23 | +sys.path.insert(0,'../') | |
24 | +from config import Config | |
25 | +from data import PopconXapianIndex, PopconSubmission | |
26 | +from recommender import Recommender | |
27 | +from user import LocalSystem, User | |
28 | +from evaluation import * | |
29 | +import logging | |
30 | +import random | |
31 | +import Gnuplot | |
32 | +import numpy | |
33 | +import shutil | |
34 | + | |
35 | +def plot_roc(results,log_file,mean=0): | |
36 | + g = Gnuplot.Gnuplot() | |
37 | + g('set style data lines') | |
38 | + g.xlabel('False Positive Rate') | |
39 | + g.ylabel('True Positive Rate') | |
40 | + g('set xrange [0:1.0]') | |
41 | + g('set yrange [0:1.0]') | |
42 | + g.title("Setup: %s" % log_file.split("/")[-1]) | |
43 | + g('set label "C %.4f" at 0.68,0.2' % results.coverage()) | |
44 | + g('set label "AUC %.4f" at 0.68,0.15' % results.get_auc()) | |
45 | + g('set label "P(10) %.2f +- %.2f" at 0.68,0.10' % (numpy.mean(results.precision[10]),numpy.std(results.precision[10]))) | |
46 | + g('set label "F05(100) %.2f +- %.2f" at 0.68,0.05' % (numpy.mean(results.f05[100]),numpy.std(results.f05[100]))) | |
47 | + if mean==1: | |
48 | + g.plot(Gnuplot.Data(results.get_roc_points(),title="mean ROC"), | |
49 | + Gnuplot.Data([[0,0],[1,1]],with_="lines lt 7")) | |
50 | + g.hardcopy(log_file+"-roc-mean.png",terminal="png") | |
51 | + g.hardcopy(log_file+"-roc-mean.ps",terminal="postscript",enhanced=1,color=1) | |
52 | + else: | |
53 | + g.plot(Gnuplot.Data(results.get_roc_points(),title="ROC",with_="xyerrorbars"), | |
54 | + Gnuplot.Data([[0,0],[1,1]],with_="lines lt 7")) | |
55 | + g.hardcopy(log_file+"-roc.png",terminal="png") | |
56 | + g.hardcopy(log_file+"-roc.ps",terminal="postscript",enhanced=1,color=1) | |
57 | + | |
58 | +def get_label(cfg): | |
59 | + label = {} | |
60 | + if cfg.strategy in content_based: | |
61 | + label["description"] = "strategy-profile" | |
62 | + label["values"] = ("%s-profile%.3d" % | |
63 | + (cfg.strategy,cfg.profile_size)) | |
64 | + elif cfg.strategy in collaborative: | |
65 | + label["description"] = "strategy-knn" | |
66 | + label["values"] = ("%s-k%.3d" % | |
67 | + (cfg.strategy,cfg.k_neighbors)) | |
68 | + elif cfg.strategy in hybrid: | |
69 | + label["description"] = "strategy-knn-profile" | |
70 | + label["values"] = ("%s-k%.3d-profile%.3d" % | |
71 | + (cfg.strategy,cfg.k_neighbors,cfg.profile_size)) | |
72 | + return label | |
73 | + | |
74 | +class ExperimentResults: | |
75 | + def __init__(self,repo_size): | |
76 | + self.repository_size = repo_size | |
77 | + self.precision = {} | |
78 | + self.recall = {} | |
79 | + self.fpr = {} | |
80 | + self.f05 = {} | |
81 | + self.recommended = {} | |
82 | + self.thresholds = [1]+range(10,self.repository_size,10) | |
83 | + for size in self.thresholds: | |
84 | + self.precision[size] = [] | |
85 | + self.recall[size] = [] | |
86 | + self.fpr[size] = [] | |
87 | + self.f05[size] = [] | |
88 | + self.recommended[size] = set() | |
89 | + | |
90 | + def add_result(self,ranking,sample): | |
91 | + for size in self.thresholds: | |
92 | + recommendation = ranking[:size] | |
93 | + self.recommended[size] = self.recommended[size].union(recommendation) | |
94 | + predicted = RecommendationResult(dict.fromkeys(recommendation,1)) | |
95 | + real = RecommendationResult(sample) | |
96 | + evaluation = Evaluation(predicted,real,self.repository_size) | |
97 | + self.precision[size].append(evaluation.run(Precision())) | |
98 | + self.recall[size].append(evaluation.run(Recall())) | |
99 | + self.f05[size].append(evaluation.run(F_score(0.5))) | |
100 | + self.fpr[size].append(evaluation.run(FPR())) | |
101 | + | |
102 | + def precision_summary(self): | |
103 | + return [[size,numpy.mean(self.precision[size])] for size in self.thresholds] | |
104 | + | |
105 | + def recall_summary(self): | |
106 | + return [[size,numpy.mean(self.recall[size])] for size in self.thresholds] | |
107 | + | |
108 | + def f05_summary(self): | |
109 | + return [[size,numpy.mean(self.f05[size])] for size in self.thresholds] | |
110 | + | |
111 | + def coverage_summary(self): | |
112 | + return [[size,self.coverage(size)] for size in self.thresholds] | |
113 | + | |
114 | + def coverage(self,size=0): | |
115 | + if not size: | |
116 | + size = self.thresholds[-1] | |
117 | + return len(self.recommended[size])/float(self.repository_size) | |
118 | + | |
119 | + def precision(self,size): | |
120 | + return numpy.mean(results.precision[size]) | |
121 | + | |
122 | + def get_auc(self): | |
123 | + roc_points = self.get_roc_points() | |
124 | + x_roc = [p[0] for p in roc_points] | |
125 | + y_roc = [p[1] for p in roc_points] | |
126 | + x_roc.insert(0,0) | |
127 | + y_roc.insert(0,0) | |
128 | + x_roc.append(1) | |
129 | + y_roc.append(1) | |
130 | + return numpy.trapz(y=y_roc, x=x_roc) | |
131 | + | |
132 | + # Average ROC by threshold (= size of recommendation) | |
133 | + def get_roc_points(self): | |
134 | + points = [] | |
135 | + for size in self.recall.keys(): | |
136 | + tpr = self.recall[size] | |
137 | + fpr = self.fpr[size] | |
138 | + points.append([numpy.mean(fpr),numpy.mean(tpr),numpy.std(fpr),numpy.std(tpr)]) | |
139 | + return sorted(points) | |
140 | + | |
141 | +def run_strategy(cfg,sample_file): | |
142 | + rec = Recommender(cfg) | |
143 | + repo_size = rec.items_repository.get_doccount() | |
144 | + results = ExperimentResults(repo_size) | |
145 | + label = get_label(cfg) | |
146 | + population_sample = [] | |
147 | + sample_str = sample_file.split('/')[-1] | |
148 | + with open(sample_file,'r') as f: | |
149 | + for line in f.readlines(): | |
150 | + user_id = line.strip('\n') | |
151 | + population_sample.append(os.path.join(cfg.popcon_dir,user_id[:2],user_id)) | |
152 | + sample_dir = ("results/roc-sample/%s" % sample_str) | |
153 | + if not os.path.exists(sample_dir): | |
154 | + os.makedirs(sample_dir) | |
155 | + log_file = os.path.join(sample_dir,label["values"]) | |
156 | + | |
157 | + # n iterations per population user | |
158 | + for submission_file in population_sample: | |
159 | + user = PopconSystem(submission_file) | |
160 | + user.filter_pkg_profile(cfg.pkgs_filter) | |
161 | + user.maximal_pkg_profile() | |
162 | + for n in range(iterations): | |
163 | + # Fill sample profile | |
164 | + profile_len = len(user.pkg_profile) | |
165 | + item_score = {} | |
166 | + for pkg in user.pkg_profile: | |
167 | + item_score[pkg] = user.item_score[pkg] | |
168 | + sample = {} | |
169 | + sample_size = int(profile_len*0.9) | |
170 | + for i in range(sample_size): | |
171 | + key = random.choice(item_score.keys()) | |
172 | + sample[key] = item_score.pop(key) | |
173 | + iteration_user = User(item_score) | |
174 | + recommendation = rec.get_recommendation(iteration_user,repo_size) | |
175 | + if hasattr(recommendation,"ranking"): | |
176 | + results.add_result(recommendation.ranking,sample) | |
177 | + | |
178 | + plot_roc(results,log_file) | |
179 | + plot_roc(results,log_file,1) | |
180 | + with open(log_file+"-roc.jpg.comment",'w') as f: | |
181 | + f.write("# %s\n# %s\n\n" % | |
182 | + (label["description"],label["values"])) | |
183 | + f.write("# roc AUC\n%.4f\n\n"%results.get_auc()) | |
184 | + f.write("# threshold\tmean_fpr\tdev_fpr\t\tmean_tpr\tdev_tpr\t\tcoverage\n") | |
185 | + for size in results.thresholds: | |
186 | + f.write("%4d\t\t%.4f\t\t%.4f\t\t%.4f\t\t%.4f\t\t%.4f\n" % | |
187 | + (size,numpy.mean(results.fpr[size]), | |
188 | + numpy.std(results.fpr[size]), | |
189 | + numpy.mean(results.recall[size]), | |
190 | + numpy.std(results.recall[size]), | |
191 | + numpy.mean(results.coverage(size)))) | |
192 | + | |
193 | +def run_content(cfg,sample_file): | |
194 | + for size in profile_size: | |
195 | + cfg.profile_size = size | |
196 | + run_strategy(cfg,sample_file) | |
197 | + | |
198 | +def run_collaborative(cfg,sample_file): | |
199 | + for k in neighbors: | |
200 | + cfg.k_neighbors = k | |
201 | + run_strategy(cfg,sample_file) | |
202 | + | |
203 | +def run_hybrid(cfg,sample_file): | |
204 | + for k in neighbors: | |
205 | + cfg.k_neighbors = k | |
206 | + for size in profile_size: | |
207 | + cfg.profile_size = size | |
208 | + run_strategy(cfg,sample_file) | |
209 | + | |
210 | +if __name__ == '__main__': | |
211 | + if len(sys.argv)<2: | |
212 | + print "Usage: sample-roc strategy_str [popcon_sample_path]" | |
213 | + exit(1) | |
214 | + | |
215 | + #iterations = 3 | |
216 | + #content_based = ['cb'] | |
217 | + #collaborative = ['knn_eset'] | |
218 | + #hybrid = ['knnco'] | |
219 | + #profile_size = [50,100] | |
220 | + #neighbors = [50] | |
221 | + iterations = 20 | |
222 | + content_based = ['cb','cbt','cbd','cbh','cb_eset','cbt_eset','cbd_eset','cbh_eset'] | |
223 | + collaborative = ['knn_eset','knn','knn_plus'] | |
224 | + hybrid = ['knnco','knnco_eset'] | |
225 | + profile_size = [10,20,50,100,200] | |
226 | + neighbors = [200] | |
227 | + #neighbors = [3,10,50,100,200] | |
228 | + #profile_size = [10,20,40,60,80,100,140,170,200,240] | |
229 | + #neighbors = [3,5,10,20,30,50,70,100,150,200] | |
230 | + | |
231 | + cfg = Config() | |
232 | + cfg.strategy = sys.argv[1] | |
233 | + sample_file = sys.argv[2] | |
234 | + | |
235 | + if cfg.strategy in content_based: | |
236 | + run_content(cfg,sample_file) | |
237 | + if cfg.strategy in collaborative: | |
238 | + run_collaborative(cfg,sample_file) | |
239 | + if cfg.strategy in hybrid: | |
240 | + run_hybrid(cfg,sample_file) | ... | ... |
... | ... | @@ -0,0 +1,269 @@ |
1 | +#!/usr/bin/env python | |
2 | +""" | |
3 | + recommender suite - recommender experiments suite | |
4 | +""" | |
5 | +__author__ = "Tassia Camoes Araujo <tassia@gmail.com>" | |
6 | +__copyright__ = "Copyright (C) 2011 Tassia Camoes Araujo" | |
7 | +__license__ = """ | |
8 | + This program is free software: you can redistribute it and/or modify | |
9 | + it under the terms of the GNU General Public License as published by | |
10 | + the Free Software Foundation, either version 3 of the License, or | |
11 | + (at your option) any later version. | |
12 | + | |
13 | + This program is distributed in the hope that it will be useful, | |
14 | + but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | + GNU General Public License for more details. | |
17 | + | |
18 | + You should have received a copy of the GNU General Public License | |
19 | + along with this program. If not, see <http://www.gnu.org/licenses/>. | |
20 | +""" | |
21 | + | |
22 | +import sys | |
23 | +sys.path.insert(0,'../') | |
24 | +from config import Config | |
25 | +from data import PopconXapianIndex, PopconSubmission | |
26 | +from recommender import Recommender | |
27 | +from user import LocalSystem, User | |
28 | +from evaluation import * | |
29 | +import logging | |
30 | +import random | |
31 | +import Gnuplot | |
32 | +import numpy | |
33 | +import shutil | |
34 | + | |
35 | +def write_recall_log(label,n,sample,recommendation,profile_size,repo_size,log_file): | |
36 | + # Write recall log | |
37 | + output = open(("%s-%.2d" % (log_file,n)),'w') | |
38 | + output.write("# %s-n\n" % label["description"]) | |
39 | + output.write("# %s-%.2d\n" % (label["values"],n)) | |
40 | + output.write("\n# repository profile sample\n%d %d %d\n" % \ | |
41 | + (repo_size,profile_size,len(sample))) | |
42 | + if hasattr(recommendation,"ranking"): | |
43 | + notfound = [] | |
44 | + ranks = [] | |
45 | + for pkg in sample.keys(): | |
46 | + if pkg in recommendation.ranking: | |
47 | + ranks.append(recommendation.ranking.index(pkg)) | |
48 | + else: | |
49 | + notfound.append(pkg) | |
50 | + for r in sorted(ranks): | |
51 | + output.write(str(r)+"\n") | |
52 | + if notfound: | |
53 | + output.write("# out of recommendation:\n") | |
54 | + for pkg in notfound: | |
55 | + output.write(pkg+"\n") | |
56 | + output.close() | |
57 | + | |
58 | +def plot_summary(results,log_file): | |
59 | + # Plot metrics summary | |
60 | + g = Gnuplot.Gnuplot() | |
61 | + g('set style data lines') | |
62 | + g('set yrange [0:1.0]') | |
63 | + g.xlabel('Threshold (recommendation size)') | |
64 | + g.title("Setup: %s" % log_file.split("/")[-1]) | |
65 | + g.plot(Gnuplot.Data(results.precision_summary(),title="Precision"), | |
66 | + Gnuplot.Data(results.recall_summary(),title="Recall"), | |
67 | + Gnuplot.Data(results.f05_summary(),title="F05"), | |
68 | + Gnuplot.Data(results.coverage_summary(),title="Coverage")) | |
69 | + g.hardcopy(log_file+".png",terminal="png") | |
70 | + g.hardcopy(log_file+".ps",terminal="postscript",enhanced=1,color=1) | |
71 | + g('set logscale x') | |
72 | + g('replot') | |
73 | + g.hardcopy(log_file+"-logscale.png",terminal="png") | |
74 | + g.hardcopy(log_file+"-logscale.ps",terminal="postscript",enhanced=1,color=1) | |
75 | + | |
76 | +def plot_roc(results,log_file): | |
77 | + g = Gnuplot.Gnuplot() | |
78 | + g('set style data lines') | |
79 | + g.xlabel('False Positive Rate') | |
80 | + g.ylabel('True Positive Rate') | |
81 | + g('set xrange [0:1.0]') | |
82 | + g('set yrange [0:1.0]') | |
83 | + g.title("Setup: %s" % log_file.split("/")[-1]) | |
84 | + g('set label "C %.2f" at 0.8,0.25' % results.coverage()) | |
85 | + g('set label "AUC %.2f" at 0.8,0.2' % results.get_auc()) | |
86 | + g('set label "P(10) %.2f" at 0.8,0.15' % numpy.mean(results.precision[10])) | |
87 | + g('set label "P(20) %.2f" at 0.8,0.10' % numpy.mean(results.precision[20])) | |
88 | + g('set label "F05(100) %.2f" at 0.8,0.05' % numpy.mean(results.f05[100])) | |
89 | + g.plot(Gnuplot.Data(results.get_roc_points(),title="ROC"), | |
90 | + Gnuplot.Data([[0,0],[1,1]],with_="lines lt 7")) | |
91 | + #Gnuplot.Data([roc_points[-1],[1,1]],with_="lines lt 6")) | |
92 | + g.hardcopy(log_file+"-roc.png",terminal="png") | |
93 | + g.hardcopy(log_file+"-roc.ps",terminal="postscript",enhanced=1,color=1) | |
94 | + | |
95 | +def get_label(cfg): | |
96 | + label = {} | |
97 | + if cfg.strategy in content_based: | |
98 | + label["description"] = "strategy-profile" | |
99 | + label["values"] = ("%s-profile%.3d" % | |
100 | + (cfg.strategy,cfg.profile_size)) | |
101 | + elif cfg.strategy in collaborative: | |
102 | + label["description"] = "strategy-knn" | |
103 | + label["values"] = ("%s-k%.3d" % | |
104 | + (cfg.strategy,cfg.k_neighbors)) | |
105 | + elif cfg.strategy in hybrid: | |
106 | + label["description"] = "strategy-knn-profile" | |
107 | + label["values"] = ("%s-k%.3d-profile%.3d" % | |
108 | + (cfg.strategy,cfg.k_neighbors,cfg.profile_size)) | |
109 | + return label | |
110 | + | |
111 | +class ExperimentResults: | |
112 | + def __init__(self,repo_size): | |
113 | + self.repository_size = repo_size | |
114 | + self.precision = {} | |
115 | + self.recall = {} | |
116 | + self.fpr = {} | |
117 | + self.f05 = {} | |
118 | + self.recommended = {} | |
119 | + self.thresholds = [1]+range(10,self.repository_size,10) | |
120 | + for size in self.thresholds: | |
121 | + self.precision[size] = [] | |
122 | + self.recall[size] = [] | |
123 | + self.fpr[size] = [] | |
124 | + self.f05[size] = [] | |
125 | + self.recommended[size] = set() | |
126 | + | |
127 | + def add_result(self,ranking,sample): | |
128 | + for size in self.thresholds: | |
129 | + recommendation = ranking[:size] | |
130 | + self.recommended[size] = self.recommended[size].union(recommendation) | |
131 | + predicted = RecommendationResult(dict.fromkeys(recommendation,1)) | |
132 | + real = RecommendationResult(sample) | |
133 | + evaluation = Evaluation(predicted,real,self.repository_size) | |
134 | + print evaluation.run(Precision()) | |
135 | + self.precision[size].append(evaluation.run(Precision())) | |
136 | + self.recall[size].append(evaluation.run(Recall())) | |
137 | + self.f05[size].append(evaluation.run(F_score(0.5))) | |
138 | + self.fpr[size].append(evaluation.run(FPR())) | |
139 | + | |
140 | + def precision_summary(self): | |
141 | + return [[size,numpy.mean(self.precision[size])] for size in self.thresholds] | |
142 | + | |
143 | + def recall_summary(self): | |
144 | + return [[size,numpy.mean(self.recall[size])] for size in self.thresholds] | |
145 | + | |
146 | + def f05_summary(self): | |
147 | + return [[size,numpy.mean(self.f05[size])] for size in self.thresholds] | |
148 | + | |
149 | + def coverage_summary(self): | |
150 | + return [[size,self.coverage(size)] for size in self.thresholds] | |
151 | + | |
152 | + def coverage(self,size=0): | |
153 | + if not size: | |
154 | + size = self.thresholds[-1] | |
155 | + return len(self.recommended[size])/float(self.repository_size) | |
156 | + | |
157 | + def precision(self,size): | |
158 | + return numpy.mean(results.precision[size]) | |
159 | + | |
160 | + def get_auc(self): | |
161 | + roc_points = self.get_roc_points() | |
162 | + x_roc = [p[0] for p in roc_points] | |
163 | + y_roc = [p[1] for p in roc_points] | |
164 | + x_roc.insert(0,0) | |
165 | + y_roc.insert(0,0) | |
166 | + x_roc.append(1) | |
167 | + y_roc.append(1) | |
168 | + return numpy.trapz(y=y_roc, x=x_roc) | |
169 | + | |
170 | + # Average ROC by threshold (= size of recommendation) | |
171 | + def get_roc_points(self): | |
172 | + points = [] | |
173 | + for size in self.recall.keys(): | |
174 | + tpr = self.recall[size] | |
175 | + fpr = self.fpr[size] | |
176 | + points.append([sum(fpr)/len(fpr),sum(tpr)/len(tpr)]) | |
177 | + return sorted(points) | |
178 | + | |
179 | +def run_strategy(cfg,user): | |
180 | + rec = Recommender(cfg) | |
181 | + repo_size = rec.items_repository.get_doccount() | |
182 | + results = ExperimentResults(repo_size) | |
183 | + label = get_label(cfg) | |
184 | + user_dir = ("results/roc-suite/%s/%s" % (user.user_id[:8],cfg.strategy)) | |
185 | + if not os.path.exists(user_dir): | |
186 | + os.makedirs(user_dir) | |
187 | + log_file = os.path.join(user_dir,label["values"]) | |
188 | + for n in range(iterations): | |
189 | + # Fill sample profile | |
190 | + profile_len = len(user.pkg_profile) | |
191 | + item_score = {} | |
192 | + for pkg in user.pkg_profile: | |
193 | + item_score[pkg] = user.item_score[pkg] | |
194 | + sample = {} | |
195 | + sample_size = int(profile_len*0.9) | |
196 | + for i in range(sample_size): | |
197 | + key = random.choice(item_score.keys()) | |
198 | + sample[key] = item_score.pop(key) | |
199 | + iteration_user = User(item_score) | |
200 | + recommendation = rec.get_recommendation(iteration_user,repo_size) | |
201 | + write_recall_log(label,n,sample,recommendation,profile_len,repo_size,log_file) | |
202 | + if hasattr(recommendation,"ranking"): | |
203 | + results.add_result(recommendation.ranking,sample) | |
204 | + with open(log_file+"-roc.jpg.comment",'w') as f: | |
205 | + f.write("# %s\n# %s\n\n" % | |
206 | + (label["description"],label["values"])) | |
207 | + f.write("# roc AUC\n%.4f\n\n"%results.get_auc()) | |
208 | + f.write("# threshold\tprecision\trecall\t\tf05\t\tcoverage\n") | |
209 | + for size in results.thresholds: | |
210 | + f.write("%4d\t\t%.4f\t\t%.4f\t\t%.4f\t\t%.4f\n" % | |
211 | + (size,numpy.mean(results.precision[size]), | |
212 | + numpy.mean(results.recall[size]), | |
213 | + numpy.mean(results.f05[size]), | |
214 | + numpy.mean(results.coverage(size)))) | |
215 | + shutil.copy(log_file+"-roc.jpg.comment",log_file+".jpg.comment") | |
216 | + shutil.copy(log_file+"-roc.jpg.comment",log_file+"-logscale.jpg.comment") | |
217 | + plot_roc(results,log_file) | |
218 | + plot_summary(results,log_file) | |
219 | + | |
220 | +def run_content(user,cfg): | |
221 | + for size in profile_size: | |
222 | + cfg.profile_size = size | |
223 | + run_strategy(cfg,user) | |
224 | + | |
225 | +def run_collaborative(user,cfg): | |
226 | + for k in neighbors: | |
227 | + cfg.k_neighbors = k | |
228 | + run_strategy(cfg,user) | |
229 | + | |
230 | +def run_hybrid(user,cfg): | |
231 | + for k in neighbors: | |
232 | + cfg.k_neighbors = k | |
233 | + for size in profile_size: | |
234 | + cfg.profile_size = size | |
235 | + run_strategy(cfg,user) | |
236 | + | |
237 | +if __name__ == '__main__': | |
238 | + if len(sys.argv)<2: | |
239 | + print "Usage: roc-suite strategy_str [popcon_submission_path]" | |
240 | + exit(1) | |
241 | + | |
242 | + #iterations = 3 | |
243 | + #content_based = ['cb'] | |
244 | + #collaborative = ['knn_eset'] | |
245 | + #hybrid = ['knnco'] | |
246 | + #profile_size = [50,100] | |
247 | + #neighbors = [50] | |
248 | + iterations = 20 | |
249 | + content_based = ['cb','cbt','cbd','cbh','cb_eset','cbt_eset','cbd_eset','cbh_eset'] | |
250 | + collaborative = ['knn_eset','knn','knn_plus'] | |
251 | + hybrid = ['knnco','knnco_eset'] | |
252 | + profile_size = [10,20,40,60,80,100,140,170,200,240] | |
253 | + neighbors = [3,5,10,20,30,50,70,100,150,200] | |
254 | + | |
255 | + cfg = Config() | |
256 | + cfg.strategy = sys.argv[1] | |
257 | + | |
258 | + #user = PopconSystem("/root/.app-recommender/popcon-entries/4a/4a67a295ec14826db2aa1d90be2f1623") | |
259 | + user = PopconSystem("/root/.app-recommender/popcon-entries/8b/8b44fcdbcf676e711a153d5db09979d7") | |
260 | + #user = PopconSystem(sys.argv[1]) | |
261 | + user.filter_pkg_profile(cfg.pkgs_filter) | |
262 | + user.maximal_pkg_profile() | |
263 | + | |
264 | + if cfg.strategy in content_based: | |
265 | + run_content(user,cfg) | |
266 | + if cfg.strategy in collaborative: | |
267 | + run_collaborative(user,cfg) | |
268 | + if cfg.strategy in hybrid: | |
269 | + run_hybrid(user,cfg) | ... | ... |