Commit 39603f52c69754bb7f5ca02be2740c845f5c6009
1 parent
f01fc134
Exists in
rotvol
Added the code to reorient image and numpy styles
Showing
8 changed files
with
2450 additions
and
50 deletions
Show diff stats
... | ... | @@ -0,0 +1,5 @@ |
1 | +from .cy_my_types cimport image_t | |
2 | + | |
3 | +cdef inline double interpolate(image_t[:, :, :], double, double, double) nogil | |
4 | +cdef inline double tricub_interpolate(image_t[:, :, :], double, double, double) nogil | |
5 | +cdef inline double tricubicInterpolate (image_t[:, :, :], double, double, double) nogil | ... | ... |
... | ... | @@ -0,0 +1,314 @@ |
1 | +# from interpolation cimport interpolate | |
2 | + | |
3 | +import numpy as np | |
4 | +cimport numpy as np | |
5 | +cimport cython | |
6 | + | |
7 | +from libc.math cimport floor, ceil, sqrt, fabs, round | |
8 | +from cython.parallel import prange | |
9 | + | |
10 | +cdef double[64][64] temp = [ | |
11 | + [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
12 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
13 | + [-3, 3, 0, 0, 0, 0, 0, 0,-2,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
14 | + [ 2, -2, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
15 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
16 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
17 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
18 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
19 | + [-3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
20 | + [ 0, 0, 0, 0, 0, 0, 0, 0,-3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
21 | + [ 9, -9,-9, 9, 0, 0, 0, 0, 6, 3,-6,-3, 0, 0, 0, 0, 6,-6, 3,-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
22 | + [-6, 6, 6,-6, 0, 0, 0, 0,-3,-3, 3, 3, 0, 0, 0, 0,-4, 4,-2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2,-2,-1,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
23 | + [ 2, 0,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
24 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 2, 0,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
25 | + [-6, 6, 6,-6, 0, 0, 0, 0,-4,-2, 4, 2, 0, 0, 0, 0,-3, 3,-3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2,-1,-2,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
26 | + [ 4, -4,-4, 4, 0, 0, 0, 0, 2, 2,-2,-2, 0, 0, 0, 0, 2,-2, 2,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
27 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
28 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
29 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
30 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
31 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
32 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], | |
33 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 3, 0, 0, 0, 0, 0, 0,-2,-1, 0, 0, 0, 0, 0, 0], | |
34 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2,-2, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0], | |
35 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
36 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0,-1, 0, 0, 0, 0, 0], | |
37 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9,-9,-9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 3,-6,-3, 0, 0, 0, 0, 6,-6, 3,-3, 0, 0, 0, 0, 4, 2, 2, 1, 0, 0, 0, 0], | |
38 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-6, 6, 6,-6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3,-3, 3, 3, 0, 0, 0, 0,-4, 4,-2, 2, 0, 0, 0, 0,-2,-2,-1,-1, 0, 0, 0, 0], | |
39 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
40 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0], | |
41 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-6, 6, 6,-6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-4,-2, 4, 2, 0, 0, 0, 0,-3, 3,-3, 3, 0, 0, 0, 0,-2,-1,-2,-1, 0, 0, 0, 0], | |
42 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4,-4,-4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2,-2,-2, 0, 0, 0, 0, 2,-2, 2,-2, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0], | |
43 | + [-3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0, 0, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
44 | + [ 0, 0, 0, 0, 0, 0, 0, 0,-3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0, 0, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
45 | + [ 9, -9, 0, 0,-9, 9, 0, 0, 6, 3, 0, 0,-6,-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6,-6, 0, 0, 3,-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 2, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
46 | + [-6, 6, 0, 0, 6,-6, 0, 0,-3,-3, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-4, 4, 0, 0,-2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2,-2, 0, 0,-1,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
47 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0, 0, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
48 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0, 0, 0,-1, 0, 0, 0], | |
49 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9,-9, 0, 0,-9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 3, 0, 0,-6,-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6,-6, 0, 0, 3,-3, 0, 0, 4, 2, 0, 0, 2, 1, 0, 0], | |
50 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-6, 6, 0, 0, 6,-6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3,-3, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-4, 4, 0, 0,-2, 2, 0, 0,-2,-2, 0, 0,-1,-1, 0, 0], | |
51 | + [ 9, 0,-9, 0,-9, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 3, 0,-6, 0,-3, 0, 6, 0,-6, 0, 3, 0,-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 2, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
52 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 9, 0,-9, 0,-9, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 3, 0,-6, 0,-3, 0, 6, 0,-6, 0, 3, 0,-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 2, 0, 2, 0, 1, 0], | |
53 | + [-27, 27,27,-27,27,-27,-27,27,-18,-9,18, 9,18, 9,-18,-9,-18,18,-9, 9,18,-18, 9,-9,-18,18,18,-18,-9, 9, 9,-9,-12,-6,-6,-3,12, 6, 6, 3,-12,-6,12, 6,-6,-3, 6, 3,-12,12,-6, 6,-6, 6,-3, 3,-8,-4,-4,-2,-4,-2,-2,-1], | |
54 | + [18, -18,-18,18,-18,18,18,-18, 9, 9,-9,-9,-9,-9, 9, 9,12,-12, 6,-6,-12,12,-6, 6,12,-12,-12,12, 6,-6,-6, 6, 6, 6, 3, 3,-6,-6,-3,-3, 6, 6,-6,-6, 3, 3,-3,-3, 8,-8, 4,-4, 4,-4, 2,-2, 4, 4, 2, 2, 2, 2, 1, 1], | |
55 | + [-6, 0, 6, 0, 6, 0,-6, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 0,-3, 0, 3, 0, 3, 0,-4, 0, 4, 0,-2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0,-2, 0,-1, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
56 | + [ 0, 0, 0, 0, 0, 0, 0, 0,-6, 0, 6, 0, 6, 0,-6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 0,-3, 0, 3, 0, 3, 0,-4, 0, 4, 0,-2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0,-2, 0,-1, 0,-1, 0], | |
57 | + [18, -18,-18,18,-18,18,18,-18,12, 6,-12,-6,-12,-6,12, 6, 9,-9, 9,-9,-9, 9,-9, 9,12,-12,-12,12, 6,-6,-6, 6, 6, 3, 6, 3,-6,-3,-6,-3, 8, 4,-8,-4, 4, 2,-4,-2, 6,-6, 6,-6, 3,-3, 3,-3, 4, 2, 4, 2, 2, 1, 2, 1], | |
58 | + [-12, 12,12,-12,12,-12,-12,12,-6,-6, 6, 6, 6, 6,-6,-6,-6, 6,-6, 6, 6,-6, 6,-6,-8, 8, 8,-8,-4, 4, 4,-4,-3,-3,-3,-3, 3, 3, 3, 3,-4,-4, 4, 4,-2,-2, 2, 2,-4, 4,-4, 4,-2, 2,-2, 2,-2,-2,-2,-2,-1,-1,-1,-1], | |
59 | + [ 2, 0, 0, 0,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
60 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
61 | + [-6, 6, 0, 0, 6,-6, 0, 0,-4,-2, 0, 0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 3, 0, 0,-3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2,-1, 0, 0,-2,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
62 | + [ 4, -4, 0, 0,-4, 4, 0, 0, 2, 2, 0, 0,-2,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2,-2, 0, 0, 2,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
63 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
64 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0], | |
65 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-6, 6, 0, 0, 6,-6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-4,-2, 0, 0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 3, 0, 0,-3, 3, 0, 0,-2,-1, 0, 0,-2,-1, 0, 0], | |
66 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4,-4, 0, 0,-4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0,-2,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2,-2, 0, 0, 2,-2, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0], | |
67 | + [-6, 0, 6, 0, 6, 0,-6, 0, 0, 0, 0, 0, 0, 0, 0, 0,-4, 0,-2, 0, 4, 0, 2, 0,-3, 0, 3, 0,-3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0,-1, 0,-2, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
68 | + [ 0, 0, 0, 0, 0, 0, 0, 0,-6, 0, 6, 0, 6, 0,-6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-4, 0,-2, 0, 4, 0, 2, 0,-3, 0, 3, 0,-3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0,-1, 0,-2, 0,-1, 0], | |
69 | + [18, -18,-18,18,-18,18,18,-18,12, 6,-12,-6,-12,-6,12, 6,12,-12, 6,-6,-12,12,-6, 6, 9,-9,-9, 9, 9,-9,-9, 9, 8, 4, 4, 2,-8,-4,-4,-2, 6, 3,-6,-3, 6, 3,-6,-3, 6,-6, 3,-3, 6,-6, 3,-3, 4, 2, 2, 1, 4, 2, 2, 1], | |
70 | + [-12, 12,12,-12,12,-12,-12,12,-6,-6, 6, 6, 6, 6,-6,-6,-8, 8,-4, 4, 8,-8, 4,-4,-6, 6, 6,-6,-6, 6, 6,-6,-4,-4,-2,-2, 4, 4, 2, 2,-3,-3, 3, 3,-3,-3, 3, 3,-4, 4,-2, 2,-4, 4,-2, 2,-2,-2,-1,-1,-2,-2,-1,-1], | |
71 | + [ 4, 0,-4, 0,-4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0,-2, 0,-2, 0, 2, 0,-2, 0, 2, 0,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
72 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 4, 0,-4, 0,-4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0,-2, 0,-2, 0, 2, 0,-2, 0, 2, 0,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0], | |
73 | + [-12, 12,12,-12,12,-12,-12,12,-8,-4, 8, 4, 8, 4,-8,-4,-6, 6,-6, 6, 6,-6, 6,-6,-6, 6, 6,-6,-6, 6, 6,-6,-4,-2,-4,-2, 4, 2, 4, 2,-4,-2, 4, 2,-4,-2, 4, 2,-3, 3,-3, 3,-3, 3,-3, 3,-2,-1,-2,-1,-2,-1,-2,-1], | |
74 | + [ 8, -8,-8, 8,-8, 8, 8,-8, 4, 4,-4,-4,-4,-4, 4, 4, 4,-4, 4,-4,-4, 4,-4, 4, 4,-4,-4, 4, 4,-4,-4, 4, 2, 2, 2, 2,-2,-2,-2,-2, 2, 2,-2,-2, 2, 2,-2,-2, 2,-2, 2,-2, 2,-2, 2,-2, 1, 1, 1, 1, 1, 1, 1, 1] | |
75 | +] | |
76 | + | |
77 | +@cython.boundscheck(False) # turn of bounds-checking for entire function | |
78 | +@cython.cdivision(True) | |
79 | +@cython.wraparound(False) | |
80 | +cdef inline double interpolate(image_t[:, :, :] V, double x, double y, double z) nogil: | |
81 | + cdef double xd, yd, zd | |
82 | + cdef double c00, c10, c01, c11 | |
83 | + cdef double c0, c1 | |
84 | + cdef double c | |
85 | + | |
86 | + cdef int x0 = <int>floor(x) | |
87 | + cdef int x1 = x0 + 1 | |
88 | + | |
89 | + cdef int y0 = <int>floor(y) | |
90 | + cdef int y1 = y0 + 1 | |
91 | + | |
92 | + cdef int z0 = <int>floor(z) | |
93 | + cdef int z1 = z0 + 1 | |
94 | + | |
95 | + if x0 == x1: | |
96 | + xd = 1.0 | |
97 | + else: | |
98 | + xd = (x - x0) / (x1 - x0) | |
99 | + | |
100 | + if y0 == y1: | |
101 | + yd = 1.0 | |
102 | + else: | |
103 | + yd = (y - y0) / (y1 - y0) | |
104 | + | |
105 | + if z0 == z1: | |
106 | + zd = 1.0 | |
107 | + else: | |
108 | + zd = (z - z0) / (z1 - z0) | |
109 | + | |
110 | + c00 = _G(V, x0, y0, z0)*(1 - xd) + _G(V, x1, y0, z0)*xd | |
111 | + c10 = _G(V, x0, y1, z0)*(1 - xd) + _G(V, x1, y1, z0)*xd | |
112 | + c01 = _G(V, x0, y0, z1)*(1 - xd) + _G(V, x1, y0, z1)*xd | |
113 | + c11 = _G(V, x0, y1, z1)*(1 - xd) + _G(V, x1, y1, z1)*xd | |
114 | + | |
115 | + c0 = c00*(1 - yd) + c10*yd | |
116 | + c1 = c01*(1 - yd) + c11*yd | |
117 | + | |
118 | + c = c0*(1 - zd) + c1*zd | |
119 | + | |
120 | + return c | |
121 | + | |
122 | + | |
123 | +@cython.boundscheck(False) # turn of bounds-checking for entire function | |
124 | +@cython.cdivision(True) | |
125 | +@cython.wraparound(False) | |
126 | +cdef inline image_t _G(image_t[:, :, :] V, int x, int y, int z) nogil: | |
127 | + cdef int dz, dy, dx | |
128 | + dz = V.shape[0] - 1 | |
129 | + dy = V.shape[1] - 1 | |
130 | + dx = V.shape[2] - 1 | |
131 | + | |
132 | + if x < 0: | |
133 | + x = dx + x + 1 | |
134 | + elif x > dx: | |
135 | + x = x - dx - 1 | |
136 | + | |
137 | + if y < 0: | |
138 | + y = dy + y + 1 | |
139 | + elif y > dy: | |
140 | + y = y - dy - 1 | |
141 | + | |
142 | + if z < 0: | |
143 | + z = dz + z + 1 | |
144 | + elif z > dz: | |
145 | + z = z - dz - 1 | |
146 | + | |
147 | + return V[z, y, x] | |
148 | + | |
149 | + | |
150 | +@cython.boundscheck(False) # turn of bounds-checking for entire function | |
151 | +@cython.cdivision(True) | |
152 | +@cython.wraparound(False) | |
153 | +cdef void calc_coef_tricub(image_t[:, :, :] V, double x, double y, double z, double [64] coef) nogil: | |
154 | + cdef int xi = <int>floor(x) | |
155 | + cdef int yi = <int>floor(y) | |
156 | + cdef int zi = <int>floor(z) | |
157 | + | |
158 | + cdef double[64] _x | |
159 | + | |
160 | + cdef int i, j | |
161 | + | |
162 | + _x[0] = _G(V, xi, yi, zi) | |
163 | + _x[1] = _G(V, xi + 1, yi, zi) | |
164 | + _x[2] = _G(V, xi, yi + 1, zi) | |
165 | + _x[3] = _G(V, xi + 1, yi + 1, zi) | |
166 | + _x[4] = _G(V, xi, yi, zi + 1) | |
167 | + _x[5] = _G(V, xi + 1, yi, zi + 1) | |
168 | + _x[6] = _G(V, xi, yi + 1, zi + 1) | |
169 | + _x[7] = _G(V, xi + 1, yi + 1, zi + 1) | |
170 | + | |
171 | + _x[8] = 0.5*(_G(V, xi+1,yi,zi) - _G(V, xi-1, yi, zi)) | |
172 | + _x[9] = 0.5*(_G(V, xi+2,yi,zi) - _G(V, xi, yi, zi)) | |
173 | + _x[10] = 0.5*(_G(V, xi+1, yi+1,zi) - _G(V, xi-1, yi+1, zi)) | |
174 | + _x[11] = 0.5*(_G(V, xi+2, yi+1,zi) - _G(V, xi, yi+1, zi)) | |
175 | + _x[12] = 0.5*(_G(V, xi+1, yi,zi+1) - _G(V, xi-1, yi, zi+1)) | |
176 | + _x[13] = 0.5*(_G(V, xi+2, yi,zi+1) - _G(V, xi, yi, zi+1)) | |
177 | + _x[14] = 0.5*(_G(V, xi+1, yi+1,zi+1) - _G(V, xi-1, yi+1, zi+1)) | |
178 | + _x[15] = 0.5*(_G(V, xi+2, yi+1,zi+1) - _G(V, xi, yi+1, zi+1)) | |
179 | + _x[16] = 0.5*(_G(V, xi, yi+1,zi) - _G(V, xi, yi-1, zi)) | |
180 | + _x[17] = 0.5*(_G(V, xi+1, yi+1,zi) - _G(V, xi+1, yi-1, zi)) | |
181 | + _x[18] = 0.5*(_G(V, xi, yi+2,zi) - _G(V, xi, yi, zi)) | |
182 | + _x[19] = 0.5*(_G(V, xi+1, yi+2,zi) - _G(V, xi+1, yi, zi)) | |
183 | + _x[20] = 0.5*(_G(V, xi, yi+1,zi+1) - _G(V, xi, yi-1, zi+1)) | |
184 | + _x[21] = 0.5*(_G(V, xi+1, yi+1,zi+1) - _G(V, xi+1, yi-1, zi+1)) | |
185 | + _x[22] = 0.5*(_G(V, xi, yi+2,zi+1) - _G(V, xi, yi, zi+1)) | |
186 | + _x[23] = 0.5*(_G(V, xi+1, yi+2,zi+1) - _G(V, xi+1, yi, zi+1)) | |
187 | + _x[24] = 0.5*(_G(V, xi, yi,zi+1) - _G(V, xi, yi, zi-1)) | |
188 | + _x[25] = 0.5*(_G(V, xi+1, yi,zi+1) - _G(V, xi+1, yi, zi-1)) | |
189 | + _x[26] = 0.5*(_G(V, xi, yi+1,zi+1) - _G(V, xi, yi+1, zi-1)) | |
190 | + _x[27] = 0.5*(_G(V, xi+1, yi+1,zi+1) - _G(V, xi+1, yi+1, zi-1)) | |
191 | + _x[28] = 0.5*(_G(V, xi, yi,zi+2) - _G(V, xi, yi, zi)) | |
192 | + _x[29] = 0.5*(_G(V, xi+1, yi,zi+2) - _G(V, xi+1, yi, zi)) | |
193 | + _x[30] = 0.5*(_G(V, xi, yi+1,zi+2) - _G(V, xi, yi+1, zi)) | |
194 | + _x[31] = 0.5*(_G(V, xi+1, yi+1,zi+2) - _G(V, xi+1, yi+1, zi)) | |
195 | + | |
196 | + _x [32] = 0.25*(_G(V, xi+1, yi+1, zi) - _G(V, xi-1, yi+1, zi) - _G(V, xi+1, yi-1, zi) + _G(V, xi-1, yi-1, zi)) | |
197 | + _x [33] = 0.25*(_G(V, xi+2, yi+1, zi) - _G(V, xi, yi+1, zi) - _G(V, xi+2, yi-1, zi) + _G(V, xi, yi-1, zi)) | |
198 | + _x [34] = 0.25*(_G(V, xi+1, yi+2, zi) - _G(V, xi-1, yi+2, zi) - _G(V, xi+1, yi, zi) + _G(V, xi-1, yi, zi)) | |
199 | + _x [35] = 0.25*(_G(V, xi+2, yi+2, zi) - _G(V, xi, yi+2, zi) - _G(V, xi+2, yi, zi) + _G(V, xi, yi, zi)) | |
200 | + _x [36] = 0.25*(_G(V, xi+1, yi+1, zi+1) - _G(V, xi-1, yi+1, zi+1) - _G(V, xi+1, yi-1, zi+1) + _G(V, xi-1, yi-1, zi+1)) | |
201 | + _x [37] = 0.25*(_G(V, xi+2, yi+1, zi+1) - _G(V, xi, yi+1, zi+1) - _G(V, xi+2, yi-1, zi+1) + _G(V, xi, yi-1, zi+1)) | |
202 | + _x [38] = 0.25*(_G(V, xi+1, yi+2, zi+1) - _G(V, xi-1, yi+2, zi+1) - _G(V, xi+1, yi, zi+1) + _G(V, xi-1, yi, zi+1)) | |
203 | + _x [39] = 0.25*(_G(V, xi+2, yi+2, zi+1) - _G(V, xi, yi+2, zi+1) - _G(V, xi+2, yi, zi+1) + _G(V, xi, yi, zi+1)) | |
204 | + _x [40] = 0.25*(_G(V, xi+1, yi, zi+1) - _G(V, xi-1, yi, zi+1) - _G(V, xi+1, yi, zi-1) + _G(V, xi-1, yi, zi-1)) | |
205 | + _x [41] = 0.25*(_G(V, xi+2, yi, zi+1) - _G(V, xi, yi, zi+1) - _G(V, xi+2, yi, zi-1) + _G(V, xi, yi, zi-1)) | |
206 | + _x [42] = 0.25*(_G(V, xi+1, yi+1, zi+1) - _G(V, xi-1, yi+1, zi+1) - _G(V, xi+1, yi+1, zi-1) + _G(V, xi-1, yi+1, zi-1)) | |
207 | + _x [43] = 0.25*(_G(V, xi+2, yi+1, zi+1) - _G(V, xi, yi+1, zi+1) - _G(V, xi+2, yi+1, zi-1) + _G(V, xi, yi+1, zi-1)) | |
208 | + _x [44] = 0.25*(_G(V, xi+1, yi, zi+2) - _G(V, xi-1, yi, zi+2) - _G(V, xi+1, yi, zi) + _G(V, xi-1, yi, zi)) | |
209 | + _x [45] = 0.25*(_G(V, xi+2, yi, zi+2) - _G(V, xi, yi, zi+2) - _G(V, xi+2, yi, zi) + _G(V, xi, yi, zi)) | |
210 | + _x [46] = 0.25*(_G(V, xi+1, yi+1, zi+2) - _G(V, xi-1, yi+1, zi+2) - _G(V, xi+1, yi+1, zi) + _G(V, xi-1, yi+1, zi)) | |
211 | + _x [47] = 0.25*(_G(V, xi+2, yi+1, zi+2) - _G(V, xi, yi+1, zi+2) - _G(V, xi+2, yi+1, zi) + _G(V, xi, yi+1, zi)) | |
212 | + _x [48] = 0.25*(_G(V, xi, yi+1, zi+1) - _G(V, xi, yi-1, zi+1) - _G(V, xi, yi+1, zi-1) + _G(V, xi, yi-1, zi-1)) | |
213 | + _x [49] = 0.25*(_G(V, xi+1, yi+1, zi+1) - _G(V, xi+1, yi-1, zi+1) - _G(V, xi+1, yi+1, zi-1) + _G(V, xi+1, yi-1, zi-1)) | |
214 | + _x [50] = 0.25*(_G(V, xi, yi+2, zi+1) - _G(V, xi, yi, zi+1) - _G(V, xi, yi+2, zi-1) + _G(V, xi, yi, zi-1)) | |
215 | + _x [51] = 0.25*(_G(V, xi+1, yi+2, zi+1) - _G(V, xi+1, yi, zi+1) - _G(V, xi+1, yi+2, zi-1) + _G(V, xi+1, yi, zi-1)) | |
216 | + _x [52] = 0.25*(_G(V, xi, yi+1, zi+2) - _G(V, xi, yi-1, zi+2) - _G(V, xi, yi+1, zi) + _G(V, xi, yi-1, zi)) | |
217 | + _x [53] = 0.25*(_G(V, xi+1, yi+1, zi+2) - _G(V, xi+1, yi-1, zi+2) - _G(V, xi+1, yi+1, zi) + _G(V, xi+1, yi-1, zi)) | |
218 | + _x [54] = 0.25*(_G(V, xi, yi+2, zi+2) - _G(V, xi, yi, zi+2) - _G(V, xi, yi+2, zi) + _G(V, xi, yi, zi)) | |
219 | + _x [55] = 0.25*(_G(V, xi+1, yi+2, zi+2) - _G(V, xi+1, yi, zi+2) - _G(V, xi+1, yi+2, zi) + _G(V, xi+1, yi, zi)) | |
220 | + | |
221 | + _x[56] = 0.125*(_G(V, xi+1, yi+1, zi+1) - _G(V, xi-1, yi+1, zi+1) - _G(V, xi+1, yi-1, zi+1) + _G(V, xi-1, yi-1, zi+1) - _G(V, xi+1, yi+1, zi-1) + _G(V, xi-1,yi+1,zi-1)+_G(V, xi+1,yi-1,zi-1)-_G(V, xi-1,yi-1,zi-1)) | |
222 | + _x[57] = 0.125*(_G(V, xi+2, yi+1, zi+1) - _G(V, xi, yi+1, zi+1) - _G(V, xi+2, yi-1, zi+1) + _G(V, xi, yi-1, zi+1) - _G(V, xi+2, yi+1, zi-1) + _G(V, xi,yi+1,zi-1)+_G(V, xi+2,yi-1,zi-1)-_G(V, xi,yi-1,zi-1)) | |
223 | + _x[58] = 0.125*(_G(V, xi+1, yi+2, zi+1) - _G(V, xi-1, yi+2, zi+1) - _G(V, xi+1, yi, zi+1) + _G(V, xi-1, yi, zi+1) - _G(V, xi+1, yi+2, zi-1) + _G(V, xi-1,yi+2,zi-1)+_G(V, xi+1,yi,zi-1)-_G(V, xi-1,yi,zi-1)) | |
224 | + _x[59] = 0.125*(_G(V, xi+2, yi+2, zi+1) - _G(V, xi, yi+2, zi+1) - _G(V, xi+2, yi, zi+1) + _G(V, xi, yi, zi+1) - _G(V, xi+2, yi+2, zi-1) + _G(V, xi,yi+2,zi-1)+_G(V, xi+2,yi,zi-1)-_G(V, xi,yi,zi-1)) | |
225 | + _x[60] = 0.125*(_G(V, xi+1, yi+1, zi+2) - _G(V, xi-1, yi+1, zi+2) - _G(V, xi+1, yi-1, zi+2) + _G(V, xi-1, yi-1, zi+2) - _G(V, xi+1, yi+1, zi) + _G(V, xi-1,yi+1,zi)+_G(V, xi+1,yi-1,zi)-_G(V, xi-1,yi-1,zi)) | |
226 | + _x[61] = 0.125*(_G(V, xi+2, yi+1, zi+2) - _G(V, xi, yi+1, zi+2) - _G(V, xi+2, yi-1, zi+2) + _G(V, xi, yi-1, zi+2) - _G(V, xi+2, yi+1, zi) + _G(V, xi,yi+1,zi)+_G(V, xi+2,yi-1,zi)-_G(V, xi,yi-1,zi)) | |
227 | + _x[62] = 0.125*(_G(V, xi+1, yi+2, zi+2) - _G(V, xi-1, yi+2, zi+2) - _G(V, xi+1, yi, zi+2) + _G(V, xi-1, yi, zi+2) - _G(V, xi+1, yi+2, zi) + _G(V, xi-1,yi+2,zi)+_G(V, xi+1,yi,zi)-_G(V, xi-1,yi,zi)) | |
228 | + _x[63] = 0.125*(_G(V, xi+2, yi+2, zi+2) - _G(V, xi, yi+2, zi+2) - _G(V, xi+2, yi, zi+2) + _G(V, xi, yi, zi+2) - _G(V, xi+2, yi+2, zi) + _G(V, xi,yi+2,zi)+_G(V, xi+2,yi,zi)-_G(V, xi,yi,zi)) | |
229 | + | |
230 | + for j in prange(64): | |
231 | + coef[j] = 0.0 | |
232 | + for i in xrange(64): | |
233 | + coef[j] += (temp[j][i] * _x[i]) | |
234 | + | |
235 | + | |
236 | +@cython.boundscheck(False) # turn of bounds-checking for entire function | |
237 | +@cython.cdivision(True) | |
238 | +@cython.wraparound(False) | |
239 | +cdef inline double tricub_interpolate(image_t[:, :, :] V, double x, double y, double z) nogil: | |
240 | + # From: Tricubic interpolation in three dimensions. Lekien and Marsden | |
241 | + cdef double[64] coef | |
242 | + cdef double result = 0.0 | |
243 | + calc_coef_tricub(V, x, y, z, coef) | |
244 | + | |
245 | + cdef int i, j, k | |
246 | + | |
247 | + cdef int xi = <int>floor(x) | |
248 | + cdef int yi = <int>floor(y) | |
249 | + cdef int zi = <int>floor(z) | |
250 | + | |
251 | + for i in xrange(4): | |
252 | + for j in xrange(4): | |
253 | + for k in xrange(4): | |
254 | + result += (coef[i+4*j+16*k] * ((x-xi)**i) * ((y-yi)**j) * ((z-zi)**k)) | |
255 | + # return V[<int>z, <int>y, <int>x] | |
256 | + # with gil: | |
257 | + # print result | |
258 | + return result | |
259 | + | |
260 | + | |
261 | +@cython.boundscheck(False) # turn of bounds-checking for entire function | |
262 | +@cython.cdivision(True) | |
263 | +@cython.wraparound(False) | |
264 | +cdef inline double cubicInterpolate(double p[4], double x) nogil: | |
265 | + return p[1] + 0.5 * x*(p[2] - p[0] + x*(2.0*p[0] - 5.0*p[1] + 4.0*p[2] - p[3] + x*(3.0*(p[1] - p[2]) + p[3] - p[0]))) | |
266 | + | |
267 | + | |
268 | +@cython.boundscheck(False) # turn of bounds-checking for entire function | |
269 | +@cython.cdivision(True) | |
270 | +@cython.wraparound(False) | |
271 | +cdef inline double bicubicInterpolate (double p[4][4], double x, double y) nogil: | |
272 | + cdef double arr[4] | |
273 | + arr[0] = cubicInterpolate(p[0], y) | |
274 | + arr[1] = cubicInterpolate(p[1], y) | |
275 | + arr[2] = cubicInterpolate(p[2], y) | |
276 | + arr[3] = cubicInterpolate(p[3], y) | |
277 | + return cubicInterpolate(arr, x) | |
278 | + | |
279 | + | |
280 | +@cython.boundscheck(False) # turn of bounds-checking for entire function | |
281 | +@cython.cdivision(True) | |
282 | +@cython.wraparound(False) | |
283 | +cdef inline double tricubicInterpolate(image_t[:, :, :] V, double x, double y, double z) nogil: | |
284 | + # From http://www.paulinternet.nl/?page=bicubic | |
285 | + cdef double p[4][4][4] | |
286 | + | |
287 | + cdef int xi = <int>floor(x) | |
288 | + cdef int yi = <int>floor(y) | |
289 | + cdef int zi = <int>floor(z) | |
290 | + | |
291 | + cdef int i, j, k | |
292 | + | |
293 | + for i in xrange(4): | |
294 | + for j in xrange(4): | |
295 | + for k in xrange(4): | |
296 | + p[i][j][k] = _G(V, xi + i -1, yi + j -1, zi + k - 1) | |
297 | + | |
298 | + cdef double arr[4] | |
299 | + arr[0] = bicubicInterpolate(p[0], y-yi, z-zi) | |
300 | + arr[1] = bicubicInterpolate(p[1], y-yi, z-zi) | |
301 | + arr[2] = bicubicInterpolate(p[2], y-yi, z-zi) | |
302 | + arr[3] = bicubicInterpolate(p[3], y-yi, z-zi) | |
303 | + return cubicInterpolate(arr, x-xi) | |
304 | + | |
305 | + | |
306 | +def tricub_interpolate_py(image_t[:, :, :] V, double x, double y, double z): | |
307 | + return tricub_interpolate(V, x, y, z) | |
308 | + | |
309 | +def tricub_interpolate2_py(image_t[:, :, :] V, double x, double y, double z): | |
310 | + return tricubicInterpolate(V, x, y, z) | |
311 | + | |
312 | +def trilin_interpolate_py(image_t[:, :, :] V, double x, double y, double z): | |
313 | + return interpolate(V, x, y, z) | |
314 | + | ... | ... |
invesalius/data/slice_.py
... | ... | @@ -19,7 +19,7 @@ |
19 | 19 | import os |
20 | 20 | import tempfile |
21 | 21 | |
22 | -import numpy | |
22 | +import numpy as np | |
23 | 23 | import vtk |
24 | 24 | from wx.lib.pubsub import pub as Publisher |
25 | 25 | |
... | ... | @@ -34,6 +34,9 @@ from mask import Mask |
34 | 34 | from project import Project |
35 | 35 | from data import mips |
36 | 36 | |
37 | +from data import transforms | |
38 | +import transformations | |
39 | + | |
37 | 40 | OTHER=0 |
38 | 41 | PLIST=1 |
39 | 42 | WIDGET=2 |
... | ... | @@ -91,6 +94,7 @@ class Slice(object): |
91 | 94 | self.n_border = const.PROJECTION_BORDER_SIZE |
92 | 95 | |
93 | 96 | self.spacing = (1.0, 1.0, 1.0) |
97 | + self.rotations = (0, 0, 0) | |
94 | 98 | |
95 | 99 | self.number_of_colours = 256 |
96 | 100 | self.saturation_range = (0, 0) |
... | ... | @@ -120,7 +124,7 @@ class Slice(object): |
120 | 124 | self._matrix = value |
121 | 125 | i, e = value.min(), value.max() |
122 | 126 | r = int(e) - int(i) |
123 | - self.histogram = numpy.histogram(self._matrix, r, (i, e))[0] | |
127 | + self.histogram = np.histogram(self._matrix, r, (i, e))[0] | |
124 | 128 | |
125 | 129 | def __bind_events(self): |
126 | 130 | # General slice control |
... | ... | @@ -402,7 +406,7 @@ class Slice(object): |
402 | 406 | def create_temp_mask(self): |
403 | 407 | temp_file = tempfile.mktemp() |
404 | 408 | shape = self.matrix.shape |
405 | - matrix = numpy.memmap(temp_file, mode='w+', dtype='uint8', shape=shape) | |
409 | + matrix = np.memmap(temp_file, mode='w+', dtype='uint8', shape=shape) | |
406 | 410 | return temp_file, matrix |
407 | 411 | |
408 | 412 | def edit_mask_pixel(self, operation, index, position, radius, orientation): |
... | ... | @@ -560,145 +564,168 @@ class Slice(object): |
560 | 564 | and self.buffer_slices[orientation].image is not None: |
561 | 565 | n_image = self.buffer_slices[orientation].image |
562 | 566 | else: |
567 | + if self._type_projection == const.PROJECTION_NORMAL: | |
568 | + number_slices = 1 | |
569 | + | |
570 | + if np.any(self.rotations): | |
571 | + dz, dy, dx = self.matrix.shape | |
572 | + rx, ry, rz = self.rotations | |
573 | + sx, sy, sz = self.spacing | |
574 | + T0 = transformations.translation_matrix((-dz/2.0 * sz, -dy/2.0 * sy, -dx/2.0 * sx)) | |
575 | + Rx = transformations.rotation_matrix(rx, (0, 0, 1)) | |
576 | + Ry = transformations.rotation_matrix(ry, (0, 1, 0)) | |
577 | + Rz = transformations.rotation_matrix(rz, (1, 0, 0)) | |
578 | + # R = transformations.euler_matrix(rz, ry, rx, 'rzyx') | |
579 | + R = transformations.concatenate_matrices(Rx, Ry, Rz) | |
580 | + T1 = transformations.translation_matrix((dz/2.0 * sz, dy/2.0 * sy, dx/2.0 * sx)) | |
581 | + M = transformations.concatenate_matrices(T1, R.T, T0) | |
582 | + | |
563 | 583 | |
564 | 584 | if orientation == 'AXIAL': |
585 | + tmp_array = np.array(self.matrix[slice_number:slice_number + number_slices]) | |
586 | + if np.any(self.rotations): | |
587 | + transforms.apply_view_matrix_transform(self.matrix, self.spacing, M, slice_number, orientation, 1, self.matrix.min(), tmp_array) | |
565 | 588 | if self._type_projection == const.PROJECTION_NORMAL: |
566 | - n_image = numpy.array(self.matrix[slice_number]) | |
589 | + n_image = tmp_array.squeeze() | |
567 | 590 | else: |
568 | - tmp_array = numpy.array(self.matrix[slice_number: | |
569 | - slice_number + number_slices]) | |
570 | 591 | if inverted: |
571 | 592 | tmp_array = tmp_array[::-1] |
572 | 593 | |
573 | 594 | if self._type_projection == const.PROJECTION_MaxIP: |
574 | - n_image = numpy.array(tmp_array).max(0) | |
595 | + n_image = np.array(tmp_array).max(0) | |
575 | 596 | elif self._type_projection == const.PROJECTION_MinIP: |
576 | - n_image = numpy.array(tmp_array).min(0) | |
597 | + n_image = np.array(tmp_array).min(0) | |
577 | 598 | elif self._type_projection == const.PROJECTION_MeanIP: |
578 | - n_image = numpy.array(tmp_array).mean(0) | |
599 | + n_image = np.array(tmp_array).mean(0) | |
579 | 600 | elif self._type_projection == const.PROJECTION_LMIP: |
580 | - n_image = numpy.empty(shape=(tmp_array.shape[1], | |
601 | + n_image = np.empty(shape=(tmp_array.shape[1], | |
581 | 602 | tmp_array.shape[2]), |
582 | 603 | dtype=tmp_array.dtype) |
583 | 604 | mips.lmip(tmp_array, 0, self.window_level, self.window_level, n_image) |
584 | 605 | elif self._type_projection == const.PROJECTION_MIDA: |
585 | - n_image = numpy.empty(shape=(tmp_array.shape[1], | |
606 | + n_image = np.empty(shape=(tmp_array.shape[1], | |
586 | 607 | tmp_array.shape[2]), |
587 | 608 | dtype=tmp_array.dtype) |
588 | 609 | mips.mida(tmp_array, 0, self.window_level, self.window_level, n_image) |
589 | 610 | elif self._type_projection == const.PROJECTION_CONTOUR_MIP: |
590 | - n_image = numpy.empty(shape=(tmp_array.shape[1], | |
611 | + n_image = np.empty(shape=(tmp_array.shape[1], | |
591 | 612 | tmp_array.shape[2]), |
592 | 613 | dtype=tmp_array.dtype) |
593 | 614 | mips.fast_countour_mip(tmp_array, border_size, 0, self.window_level, |
594 | 615 | self.window_level, 0, n_image) |
595 | 616 | elif self._type_projection == const.PROJECTION_CONTOUR_LMIP: |
596 | - n_image = numpy.empty(shape=(tmp_array.shape[1], | |
617 | + n_image = np.empty(shape=(tmp_array.shape[1], | |
597 | 618 | tmp_array.shape[2]), |
598 | 619 | dtype=tmp_array.dtype) |
599 | 620 | mips.fast_countour_mip(tmp_array, border_size, 0, self.window_level, |
600 | 621 | self.window_level, 1, n_image) |
601 | 622 | elif self._type_projection == const.PROJECTION_CONTOUR_MIDA: |
602 | - n_image = numpy.empty(shape=(tmp_array.shape[1], | |
623 | + n_image = np.empty(shape=(tmp_array.shape[1], | |
603 | 624 | tmp_array.shape[2]), |
604 | 625 | dtype=tmp_array.dtype) |
605 | 626 | mips.fast_countour_mip(tmp_array, border_size, 0, self.window_level, |
606 | 627 | self.window_level, 2, n_image) |
607 | 628 | else: |
608 | - n_image = numpy.array(self.matrix[slice_number]) | |
629 | + n_image = np.array(self.matrix[slice_number]) | |
609 | 630 | |
610 | 631 | elif orientation == 'CORONAL': |
632 | + tmp_array = np.array(self.matrix[:, slice_number: slice_number + number_slices, :]) | |
633 | + if np.any(self.rotations): | |
634 | + transforms.apply_view_matrix_transform(self.matrix, self.spacing, M, slice_number, orientation, 1, self.matrix.min(), tmp_array) | |
635 | + | |
611 | 636 | if self._type_projection == const.PROJECTION_NORMAL: |
612 | - n_image = numpy.array(self.matrix[..., slice_number, ...]) | |
637 | + n_image = tmp_array.squeeze() | |
613 | 638 | else: |
614 | 639 | #if slice_number == 0: |
615 | 640 | #slice_number = 1 |
616 | 641 | #if slice_number - number_slices < 0: |
617 | 642 | #number_slices = slice_number |
618 | - tmp_array = numpy.array(self.matrix[..., slice_number: slice_number + number_slices, ...]) | |
619 | 643 | if inverted: |
620 | - tmp_array = tmp_array[..., ::-1, ...] | |
644 | + tmp_array = tmp_array[:, ::-1, :] | |
621 | 645 | if self._type_projection == const.PROJECTION_MaxIP: |
622 | - n_image = numpy.array(tmp_array).max(1) | |
646 | + n_image = np.array(tmp_array).max(1) | |
623 | 647 | elif self._type_projection == const.PROJECTION_MinIP: |
624 | - n_image = numpy.array(tmp_array).min(1) | |
648 | + n_image = np.array(tmp_array).min(1) | |
625 | 649 | elif self._type_projection == const.PROJECTION_MeanIP: |
626 | - n_image = numpy.array(tmp_array).mean(1) | |
650 | + n_image = np.array(tmp_array).mean(1) | |
627 | 651 | elif self._type_projection == const.PROJECTION_LMIP: |
628 | - n_image = numpy.empty(shape=(tmp_array.shape[0], | |
652 | + n_image = np.empty(shape=(tmp_array.shape[0], | |
629 | 653 | tmp_array.shape[2]), |
630 | 654 | dtype=tmp_array.dtype) |
631 | 655 | mips.lmip(tmp_array, 1, self.window_level, self.window_level, n_image) |
632 | 656 | elif self._type_projection == const.PROJECTION_MIDA: |
633 | - n_image = numpy.empty(shape=(tmp_array.shape[0], | |
657 | + n_image = np.empty(shape=(tmp_array.shape[0], | |
634 | 658 | tmp_array.shape[2]), |
635 | 659 | dtype=tmp_array.dtype) |
636 | 660 | mips.mida(tmp_array, 1, self.window_level, self.window_level, n_image) |
637 | 661 | elif self._type_projection == const.PROJECTION_CONTOUR_MIP: |
638 | - n_image = numpy.empty(shape=(tmp_array.shape[0], | |
662 | + n_image = np.empty(shape=(tmp_array.shape[0], | |
639 | 663 | tmp_array.shape[2]), |
640 | 664 | dtype=tmp_array.dtype) |
641 | 665 | mips.fast_countour_mip(tmp_array, border_size, 1, self.window_level, |
642 | 666 | self.window_level, 0, n_image) |
643 | 667 | elif self._type_projection == const.PROJECTION_CONTOUR_LMIP: |
644 | - n_image = numpy.empty(shape=(tmp_array.shape[0], | |
668 | + n_image = np.empty(shape=(tmp_array.shape[0], | |
645 | 669 | tmp_array.shape[2]), |
646 | 670 | dtype=tmp_array.dtype) |
647 | 671 | mips.fast_countour_mip(tmp_array, border_size, 1, self.window_level, |
648 | 672 | self.window_level, 1, n_image) |
649 | 673 | elif self._type_projection == const.PROJECTION_CONTOUR_MIDA: |
650 | - n_image = numpy.empty(shape=(tmp_array.shape[0], | |
674 | + n_image = np.empty(shape=(tmp_array.shape[0], | |
651 | 675 | tmp_array.shape[2]), |
652 | 676 | dtype=tmp_array.dtype) |
653 | 677 | mips.fast_countour_mip(tmp_array, border_size, 1, self.window_level, |
654 | 678 | self.window_level, 2, n_image) |
655 | 679 | else: |
656 | - n_image = numpy.array(self.matrix[..., slice_number, ...]) | |
680 | + n_image = np.array(self.matrix[:, slice_number, :]) | |
657 | 681 | elif orientation == 'SAGITAL': |
682 | + tmp_array = np.array(self.matrix[:, :, slice_number: slice_number + number_slices]) | |
683 | + if np.any(self.rotations): | |
684 | + transforms.apply_view_matrix_transform(self.matrix, self.spacing, M, slice_number, orientation, 1, self.matrix.min(), tmp_array) | |
685 | + | |
658 | 686 | if self._type_projection == const.PROJECTION_NORMAL: |
659 | - n_image = numpy.array(self.matrix[..., ..., slice_number]) | |
687 | + n_image = tmp_array.squeeze() | |
660 | 688 | else: |
661 | - tmp_array = numpy.array(self.matrix[..., ..., | |
662 | - slice_number: slice_number + number_slices]) | |
663 | 689 | if inverted: |
664 | - tmp_array = tmp_array[..., ..., ::-1] | |
690 | + tmp_array = tmp_array[:, :, ::-1] | |
665 | 691 | if self._type_projection == const.PROJECTION_MaxIP: |
666 | - n_image = numpy.array(tmp_array).max(2) | |
692 | + n_image = np.array(tmp_array).max(2) | |
667 | 693 | elif self._type_projection == const.PROJECTION_MinIP: |
668 | - n_image = numpy.array(tmp_array).min(2) | |
694 | + n_image = np.array(tmp_array).min(2) | |
669 | 695 | elif self._type_projection == const.PROJECTION_MeanIP: |
670 | - n_image = numpy.array(tmp_array).mean(2) | |
696 | + n_image = np.array(tmp_array).mean(2) | |
671 | 697 | elif self._type_projection == const.PROJECTION_LMIP: |
672 | - n_image = numpy.empty(shape=(tmp_array.shape[0], | |
698 | + n_image = np.empty(shape=(tmp_array.shape[0], | |
673 | 699 | tmp_array.shape[1]), |
674 | 700 | dtype=tmp_array.dtype) |
675 | 701 | mips.lmip(tmp_array, 2, self.window_level, self.window_level, n_image) |
676 | 702 | elif self._type_projection == const.PROJECTION_MIDA: |
677 | - n_image = numpy.empty(shape=(tmp_array.shape[0], | |
703 | + n_image = np.empty(shape=(tmp_array.shape[0], | |
678 | 704 | tmp_array.shape[1]), |
679 | 705 | dtype=tmp_array.dtype) |
680 | 706 | mips.mida(tmp_array, 2, self.window_level, self.window_level, n_image) |
681 | 707 | |
682 | 708 | elif self._type_projection == const.PROJECTION_CONTOUR_MIP: |
683 | - n_image = numpy.empty(shape=(tmp_array.shape[0], | |
709 | + n_image = np.empty(shape=(tmp_array.shape[0], | |
684 | 710 | tmp_array.shape[1]), |
685 | 711 | dtype=tmp_array.dtype) |
686 | 712 | mips.fast_countour_mip(tmp_array, border_size, 2, self.window_level, |
687 | 713 | self.window_level, 0, n_image) |
688 | 714 | elif self._type_projection == const.PROJECTION_CONTOUR_LMIP: |
689 | - n_image = numpy.empty(shape=(tmp_array.shape[0], | |
715 | + n_image = np.empty(shape=(tmp_array.shape[0], | |
690 | 716 | tmp_array.shape[1]), |
691 | 717 | dtype=tmp_array.dtype) |
692 | 718 | mips.fast_countour_mip(tmp_array, border_size, 2, self.window_level, |
693 | 719 | self.window_level, 1, n_image) |
694 | 720 | elif self._type_projection == const.PROJECTION_CONTOUR_MIDA: |
695 | - n_image = numpy.empty(shape=(tmp_array.shape[0], | |
721 | + n_image = np.empty(shape=(tmp_array.shape[0], | |
696 | 722 | tmp_array.shape[1]), |
697 | 723 | dtype=tmp_array.dtype) |
698 | 724 | mips.fast_countour_mip(tmp_array, border_size, 2, self.window_level, |
699 | 725 | self.window_level, 2, n_image) |
700 | 726 | else: |
701 | - n_image = numpy.array(self.matrix[..., ..., slice_number]) | |
727 | + n_image = np.array(self.matrix[:, :, slice_number]) | |
728 | + | |
702 | 729 | return n_image |
703 | 730 | |
704 | 731 | def get_mask_slice(self, orientation, slice_number): |
... | ... | @@ -719,7 +746,7 @@ class Slice(object): |
719 | 746 | slice_number), |
720 | 747 | mask) |
721 | 748 | self.current_mask.matrix[n, 0, 0] = 1 |
722 | - n_mask = numpy.array(self.current_mask.matrix[n, 1:, 1:], | |
749 | + n_mask = np.array(self.current_mask.matrix[n, 1:, 1:], | |
723 | 750 | dtype=self.current_mask.matrix.dtype) |
724 | 751 | |
725 | 752 | elif orientation == 'CORONAL': |
... | ... | @@ -729,7 +756,7 @@ class Slice(object): |
729 | 756 | slice_number), |
730 | 757 | mask) |
731 | 758 | self.current_mask.matrix[0, n, 0] = 1 |
732 | - n_mask = numpy.array(self.current_mask.matrix[1:, n, 1:], | |
759 | + n_mask = np.array(self.current_mask.matrix[1:, n, 1:], | |
733 | 760 | dtype=self.current_mask.matrix.dtype) |
734 | 761 | |
735 | 762 | elif orientation == 'SAGITAL': |
... | ... | @@ -739,7 +766,7 @@ class Slice(object): |
739 | 766 | slice_number), |
740 | 767 | mask) |
741 | 768 | self.current_mask.matrix[0, 0, n] = 1 |
742 | - n_mask = numpy.array(self.current_mask.matrix[1:, 1:, n], | |
769 | + n_mask = np.array(self.current_mask.matrix[1:, 1:, n], | |
743 | 770 | dtype=self.current_mask.matrix.dtype) |
744 | 771 | |
745 | 772 | return n_mask |
... | ... | @@ -747,11 +774,11 @@ class Slice(object): |
747 | 774 | def get_aux_slice(self, name, orientation, n): |
748 | 775 | m = self.aux_matrices[name] |
749 | 776 | if orientation == 'AXIAL': |
750 | - return numpy.array(m[n]) | |
777 | + return np.array(m[n]) | |
751 | 778 | elif orientation == 'CORONAL': |
752 | - return numpy.array(m[:, n, :]) | |
779 | + return np.array(m[:, n, :]) | |
753 | 780 | elif orientation == 'SAGITAL': |
754 | - return numpy.array(m[:, :, n]) | |
781 | + return np.array(m[:, :, n]) | |
755 | 782 | |
756 | 783 | def GetNumberOfSlices(self, orientation): |
757 | 784 | if orientation == 'AXIAL': |
... | ... | @@ -809,7 +836,7 @@ class Slice(object): |
809 | 836 | # TODO: find out a better way to do threshold |
810 | 837 | if slice_number is None: |
811 | 838 | for n, slice_ in enumerate(self.matrix): |
812 | - m = numpy.ones(slice_.shape, self.current_mask.matrix.dtype) | |
839 | + m = np.ones(slice_.shape, self.current_mask.matrix.dtype) | |
813 | 840 | m[slice_ < thresh_min] = 0 |
814 | 841 | m[slice_ > thresh_max] = 0 |
815 | 842 | m[m == 1] = 255 |
... | ... | @@ -1271,7 +1298,7 @@ class Slice(object): |
1271 | 1298 | m[:] = ((m1 > 2) & (m2 > 2)) * 255 |
1272 | 1299 | |
1273 | 1300 | elif op == const.BOOLEAN_XOR: |
1274 | - m[:] = numpy.logical_xor((m1 > 2), (m2 > 2)) * 255 | |
1301 | + m[:] = np.logical_xor((m1 > 2), (m2 > 2)) * 255 | |
1275 | 1302 | |
1276 | 1303 | for o in self.buffer_slices: |
1277 | 1304 | self.buffer_slices[o].discard_mask() |
... | ... | @@ -1348,7 +1375,7 @@ class Slice(object): |
1348 | 1375 | |
1349 | 1376 | def _open_image_matrix(self, filename, shape, dtype): |
1350 | 1377 | self.matrix_filename = filename |
1351 | - self.matrix = numpy.memmap(filename, shape=shape, dtype=dtype, mode='r+') | |
1378 | + self.matrix = np.memmap(filename, shape=shape, dtype=dtype, mode='r+') | |
1352 | 1379 | |
1353 | 1380 | def OnFlipVolume(self, pubsub_evt): |
1354 | 1381 | axis = pubsub_evt.data | ... | ... |
... | ... | @@ -0,0 +1,1920 @@ |
1 | +# -*- coding: utf-8 -*- | |
2 | +# transformations.py | |
3 | + | |
4 | +# Copyright (c) 2006-2015, Christoph Gohlke | |
5 | +# Copyright (c) 2006-2015, The Regents of the University of California | |
6 | +# Produced at the Laboratory for Fluorescence Dynamics | |
7 | +# All rights reserved. | |
8 | +# | |
9 | +# Redistribution and use in source and binary forms, with or without | |
10 | +# modification, are permitted provided that the following conditions are met: | |
11 | +# | |
12 | +# * Redistributions of source code must retain the above copyright | |
13 | +# notice, this list of conditions and the following disclaimer. | |
14 | +# * Redistributions in binary form must reproduce the above copyright | |
15 | +# notice, this list of conditions and the following disclaimer in the | |
16 | +# documentation and/or other materials provided with the distribution. | |
17 | +# * Neither the name of the copyright holders nor the names of any | |
18 | +# contributors may be used to endorse or promote products derived | |
19 | +# from this software without specific prior written permission. | |
20 | +# | |
21 | +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
22 | +# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
23 | +# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
24 | +# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | |
25 | +# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |
26 | +# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | |
27 | +# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
28 | +# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | |
29 | +# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | |
30 | +# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | |
31 | +# POSSIBILITY OF SUCH DAMAGE. | |
32 | + | |
33 | +"""Homogeneous Transformation Matrices and Quaternions. | |
34 | + | |
35 | +A library for calculating 4x4 matrices for translating, rotating, reflecting, | |
36 | +scaling, shearing, projecting, orthogonalizing, and superimposing arrays of | |
37 | +3D homogeneous coordinates as well as for converting between rotation matrices, | |
38 | +Euler angles, and quaternions. Also includes an Arcball control object and | |
39 | +functions to decompose transformation matrices. | |
40 | + | |
41 | +:Author: | |
42 | + `Christoph Gohlke <http://www.lfd.uci.edu/~gohlke/>`_ | |
43 | + | |
44 | +:Organization: | |
45 | + Laboratory for Fluorescence Dynamics, University of California, Irvine | |
46 | + | |
47 | +:Version: 2015.07.18 | |
48 | + | |
49 | +Requirements | |
50 | +------------ | |
51 | +* `CPython 2.7 or 3.4 <http://www.python.org>`_ | |
52 | +* `Numpy 1.9 <http://www.numpy.org>`_ | |
53 | +* `Transformations.c 2015.07.18 <http://www.lfd.uci.edu/~gohlke/>`_ | |
54 | + (recommended for speedup of some functions) | |
55 | + | |
56 | +Notes | |
57 | +----- | |
58 | +The API is not stable yet and is expected to change between revisions. | |
59 | + | |
60 | +This Python code is not optimized for speed. Refer to the transformations.c | |
61 | +module for a faster implementation of some functions. | |
62 | + | |
63 | +Documentation in HTML format can be generated with epydoc. | |
64 | + | |
65 | +Matrices (M) can be inverted using numpy.linalg.inv(M), be concatenated using | |
66 | +numpy.dot(M0, M1), or transform homogeneous coordinate arrays (v) using | |
67 | +numpy.dot(M, v) for shape (4, \*) column vectors, respectively | |
68 | +numpy.dot(v, M.T) for shape (\*, 4) row vectors ("array of points"). | |
69 | + | |
70 | +This module follows the "column vectors on the right" and "row major storage" | |
71 | +(C contiguous) conventions. The translation components are in the right column | |
72 | +of the transformation matrix, i.e. M[:3, 3]. | |
73 | +The transpose of the transformation matrices may have to be used to interface | |
74 | +with other graphics systems, e.g. with OpenGL's glMultMatrixd(). See also [16]. | |
75 | + | |
76 | +Calculations are carried out with numpy.float64 precision. | |
77 | + | |
78 | +Vector, point, quaternion, and matrix function arguments are expected to be | |
79 | +"array like", i.e. tuple, list, or numpy arrays. | |
80 | + | |
81 | +Return types are numpy arrays unless specified otherwise. | |
82 | + | |
83 | +Angles are in radians unless specified otherwise. | |
84 | + | |
85 | +Quaternions w+ix+jy+kz are represented as [w, x, y, z]. | |
86 | + | |
87 | +A triple of Euler angles can be applied/interpreted in 24 ways, which can | |
88 | +be specified using a 4 character string or encoded 4-tuple: | |
89 | + | |
90 | + *Axes 4-string*: e.g. 'sxyz' or 'ryxy' | |
91 | + | |
92 | + - first character : rotations are applied to 's'tatic or 'r'otating frame | |
93 | + - remaining characters : successive rotation axis 'x', 'y', or 'z' | |
94 | + | |
95 | + *Axes 4-tuple*: e.g. (0, 0, 0, 0) or (1, 1, 1, 1) | |
96 | + | |
97 | + - inner axis: code of axis ('x':0, 'y':1, 'z':2) of rightmost matrix. | |
98 | + - parity : even (0) if inner axis 'x' is followed by 'y', 'y' is followed | |
99 | + by 'z', or 'z' is followed by 'x'. Otherwise odd (1). | |
100 | + - repetition : first and last axis are same (1) or different (0). | |
101 | + - frame : rotations are applied to static (0) or rotating (1) frame. | |
102 | + | |
103 | +Other Python packages and modules for 3D transformations and quaternions: | |
104 | + | |
105 | +* `Transforms3d <https://pypi.python.org/pypi/transforms3d>`_ | |
106 | + includes most code of this module. | |
107 | +* `Blender.mathutils <http://www.blender.org/api/blender_python_api>`_ | |
108 | +* `numpy-dtypes <https://github.com/numpy/numpy-dtypes>`_ | |
109 | + | |
110 | +References | |
111 | +---------- | |
112 | +(1) Matrices and transformations. Ronald Goldman. | |
113 | + In "Graphics Gems I", pp 472-475. Morgan Kaufmann, 1990. | |
114 | +(2) More matrices and transformations: shear and pseudo-perspective. | |
115 | + Ronald Goldman. In "Graphics Gems II", pp 320-323. Morgan Kaufmann, 1991. | |
116 | +(3) Decomposing a matrix into simple transformations. Spencer Thomas. | |
117 | + In "Graphics Gems II", pp 320-323. Morgan Kaufmann, 1991. | |
118 | +(4) Recovering the data from the transformation matrix. Ronald Goldman. | |
119 | + In "Graphics Gems II", pp 324-331. Morgan Kaufmann, 1991. | |
120 | +(5) Euler angle conversion. Ken Shoemake. | |
121 | + In "Graphics Gems IV", pp 222-229. Morgan Kaufmann, 1994. | |
122 | +(6) Arcball rotation control. Ken Shoemake. | |
123 | + In "Graphics Gems IV", pp 175-192. Morgan Kaufmann, 1994. | |
124 | +(7) Representing attitude: Euler angles, unit quaternions, and rotation | |
125 | + vectors. James Diebel. 2006. | |
126 | +(8) A discussion of the solution for the best rotation to relate two sets | |
127 | + of vectors. W Kabsch. Acta Cryst. 1978. A34, 827-828. | |
128 | +(9) Closed-form solution of absolute orientation using unit quaternions. | |
129 | + BKP Horn. J Opt Soc Am A. 1987. 4(4):629-642. | |
130 | +(10) Quaternions. Ken Shoemake. | |
131 | + http://www.sfu.ca/~jwa3/cmpt461/files/quatut.pdf | |
132 | +(11) From quaternion to matrix and back. JMP van Waveren. 2005. | |
133 | + http://www.intel.com/cd/ids/developer/asmo-na/eng/293748.htm | |
134 | +(12) Uniform random rotations. Ken Shoemake. | |
135 | + In "Graphics Gems III", pp 124-132. Morgan Kaufmann, 1992. | |
136 | +(13) Quaternion in molecular modeling. CFF Karney. | |
137 | + J Mol Graph Mod, 25(5):595-604 | |
138 | +(14) New method for extracting the quaternion from a rotation matrix. | |
139 | + Itzhack Y Bar-Itzhack, J Guid Contr Dynam. 2000. 23(6): 1085-1087. | |
140 | +(15) Multiple View Geometry in Computer Vision. Hartley and Zissermann. | |
141 | + Cambridge University Press; 2nd Ed. 2004. Chapter 4, Algorithm 4.7, p 130. | |
142 | +(16) Column Vectors vs. Row Vectors. | |
143 | + http://steve.hollasch.net/cgindex/math/matrix/column-vec.html | |
144 | + | |
145 | +Examples | |
146 | +-------- | |
147 | +>>> alpha, beta, gamma = 0.123, -1.234, 2.345 | |
148 | +>>> origin, xaxis, yaxis, zaxis = [0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1] | |
149 | +>>> I = identity_matrix() | |
150 | +>>> Rx = rotation_matrix(alpha, xaxis) | |
151 | +>>> Ry = rotation_matrix(beta, yaxis) | |
152 | +>>> Rz = rotation_matrix(gamma, zaxis) | |
153 | +>>> R = concatenate_matrices(Rx, Ry, Rz) | |
154 | +>>> euler = euler_from_matrix(R, 'rxyz') | |
155 | +>>> numpy.allclose([alpha, beta, gamma], euler) | |
156 | +True | |
157 | +>>> Re = euler_matrix(alpha, beta, gamma, 'rxyz') | |
158 | +>>> is_same_transform(R, Re) | |
159 | +True | |
160 | +>>> al, be, ga = euler_from_matrix(Re, 'rxyz') | |
161 | +>>> is_same_transform(Re, euler_matrix(al, be, ga, 'rxyz')) | |
162 | +True | |
163 | +>>> qx = quaternion_about_axis(alpha, xaxis) | |
164 | +>>> qy = quaternion_about_axis(beta, yaxis) | |
165 | +>>> qz = quaternion_about_axis(gamma, zaxis) | |
166 | +>>> q = quaternion_multiply(qx, qy) | |
167 | +>>> q = quaternion_multiply(q, qz) | |
168 | +>>> Rq = quaternion_matrix(q) | |
169 | +>>> is_same_transform(R, Rq) | |
170 | +True | |
171 | +>>> S = scale_matrix(1.23, origin) | |
172 | +>>> T = translation_matrix([1, 2, 3]) | |
173 | +>>> Z = shear_matrix(beta, xaxis, origin, zaxis) | |
174 | +>>> R = random_rotation_matrix(numpy.random.rand(3)) | |
175 | +>>> M = concatenate_matrices(T, R, Z, S) | |
176 | +>>> scale, shear, angles, trans, persp = decompose_matrix(M) | |
177 | +>>> numpy.allclose(scale, 1.23) | |
178 | +True | |
179 | +>>> numpy.allclose(trans, [1, 2, 3]) | |
180 | +True | |
181 | +>>> numpy.allclose(shear, [0, math.tan(beta), 0]) | |
182 | +True | |
183 | +>>> is_same_transform(R, euler_matrix(axes='sxyz', *angles)) | |
184 | +True | |
185 | +>>> M1 = compose_matrix(scale, shear, angles, trans, persp) | |
186 | +>>> is_same_transform(M, M1) | |
187 | +True | |
188 | +>>> v0, v1 = random_vector(3), random_vector(3) | |
189 | +>>> M = rotation_matrix(angle_between_vectors(v0, v1), vector_product(v0, v1)) | |
190 | +>>> v2 = numpy.dot(v0, M[:3,:3].T) | |
191 | +>>> numpy.allclose(unit_vector(v1), unit_vector(v2)) | |
192 | +True | |
193 | + | |
194 | +""" | |
195 | + | |
196 | +from __future__ import division, print_function | |
197 | + | |
198 | +import math | |
199 | + | |
200 | +import numpy | |
201 | + | |
202 | +__version__ = '2015.07.18' | |
203 | +__docformat__ = 'restructuredtext en' | |
204 | +__all__ = () | |
205 | + | |
206 | + | |
207 | +def identity_matrix(): | |
208 | + """Return 4x4 identity/unit matrix. | |
209 | + | |
210 | + >>> I = identity_matrix() | |
211 | + >>> numpy.allclose(I, numpy.dot(I, I)) | |
212 | + True | |
213 | + >>> numpy.sum(I), numpy.trace(I) | |
214 | + (4.0, 4.0) | |
215 | + >>> numpy.allclose(I, numpy.identity(4)) | |
216 | + True | |
217 | + | |
218 | + """ | |
219 | + return numpy.identity(4) | |
220 | + | |
221 | + | |
222 | +def translation_matrix(direction): | |
223 | + """Return matrix to translate by direction vector. | |
224 | + | |
225 | + >>> v = numpy.random.random(3) - 0.5 | |
226 | + >>> numpy.allclose(v, translation_matrix(v)[:3, 3]) | |
227 | + True | |
228 | + | |
229 | + """ | |
230 | + M = numpy.identity(4) | |
231 | + M[:3, 3] = direction[:3] | |
232 | + return M | |
233 | + | |
234 | + | |
235 | +def translation_from_matrix(matrix): | |
236 | + """Return translation vector from translation matrix. | |
237 | + | |
238 | + >>> v0 = numpy.random.random(3) - 0.5 | |
239 | + >>> v1 = translation_from_matrix(translation_matrix(v0)) | |
240 | + >>> numpy.allclose(v0, v1) | |
241 | + True | |
242 | + | |
243 | + """ | |
244 | + return numpy.array(matrix, copy=False)[:3, 3].copy() | |
245 | + | |
246 | + | |
247 | +def reflection_matrix(point, normal): | |
248 | + """Return matrix to mirror at plane defined by point and normal vector. | |
249 | + | |
250 | + >>> v0 = numpy.random.random(4) - 0.5 | |
251 | + >>> v0[3] = 1. | |
252 | + >>> v1 = numpy.random.random(3) - 0.5 | |
253 | + >>> R = reflection_matrix(v0, v1) | |
254 | + >>> numpy.allclose(2, numpy.trace(R)) | |
255 | + True | |
256 | + >>> numpy.allclose(v0, numpy.dot(R, v0)) | |
257 | + True | |
258 | + >>> v2 = v0.copy() | |
259 | + >>> v2[:3] += v1 | |
260 | + >>> v3 = v0.copy() | |
261 | + >>> v2[:3] -= v1 | |
262 | + >>> numpy.allclose(v2, numpy.dot(R, v3)) | |
263 | + True | |
264 | + | |
265 | + """ | |
266 | + normal = unit_vector(normal[:3]) | |
267 | + M = numpy.identity(4) | |
268 | + M[:3, :3] -= 2.0 * numpy.outer(normal, normal) | |
269 | + M[:3, 3] = (2.0 * numpy.dot(point[:3], normal)) * normal | |
270 | + return M | |
271 | + | |
272 | + | |
273 | +def reflection_from_matrix(matrix): | |
274 | + """Return mirror plane point and normal vector from reflection matrix. | |
275 | + | |
276 | + >>> v0 = numpy.random.random(3) - 0.5 | |
277 | + >>> v1 = numpy.random.random(3) - 0.5 | |
278 | + >>> M0 = reflection_matrix(v0, v1) | |
279 | + >>> point, normal = reflection_from_matrix(M0) | |
280 | + >>> M1 = reflection_matrix(point, normal) | |
281 | + >>> is_same_transform(M0, M1) | |
282 | + True | |
283 | + | |
284 | + """ | |
285 | + M = numpy.array(matrix, dtype=numpy.float64, copy=False) | |
286 | + # normal: unit eigenvector corresponding to eigenvalue -1 | |
287 | + w, V = numpy.linalg.eig(M[:3, :3]) | |
288 | + i = numpy.where(abs(numpy.real(w) + 1.0) < 1e-8)[0] | |
289 | + if not len(i): | |
290 | + raise ValueError("no unit eigenvector corresponding to eigenvalue -1") | |
291 | + normal = numpy.real(V[:, i[0]]).squeeze() | |
292 | + # point: any unit eigenvector corresponding to eigenvalue 1 | |
293 | + w, V = numpy.linalg.eig(M) | |
294 | + i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0] | |
295 | + if not len(i): | |
296 | + raise ValueError("no unit eigenvector corresponding to eigenvalue 1") | |
297 | + point = numpy.real(V[:, i[-1]]).squeeze() | |
298 | + point /= point[3] | |
299 | + return point, normal | |
300 | + | |
301 | + | |
302 | +def rotation_matrix(angle, direction, point=None): | |
303 | + """Return matrix to rotate about axis defined by point and direction. | |
304 | + | |
305 | + >>> R = rotation_matrix(math.pi/2, [0, 0, 1], [1, 0, 0]) | |
306 | + >>> numpy.allclose(numpy.dot(R, [0, 0, 0, 1]), [1, -1, 0, 1]) | |
307 | + True | |
308 | + >>> angle = (random.random() - 0.5) * (2*math.pi) | |
309 | + >>> direc = numpy.random.random(3) - 0.5 | |
310 | + >>> point = numpy.random.random(3) - 0.5 | |
311 | + >>> R0 = rotation_matrix(angle, direc, point) | |
312 | + >>> R1 = rotation_matrix(angle-2*math.pi, direc, point) | |
313 | + >>> is_same_transform(R0, R1) | |
314 | + True | |
315 | + >>> R0 = rotation_matrix(angle, direc, point) | |
316 | + >>> R1 = rotation_matrix(-angle, -direc, point) | |
317 | + >>> is_same_transform(R0, R1) | |
318 | + True | |
319 | + >>> I = numpy.identity(4, numpy.float64) | |
320 | + >>> numpy.allclose(I, rotation_matrix(math.pi*2, direc)) | |
321 | + True | |
322 | + >>> numpy.allclose(2, numpy.trace(rotation_matrix(math.pi/2, | |
323 | + ... direc, point))) | |
324 | + True | |
325 | + | |
326 | + """ | |
327 | + sina = math.sin(angle) | |
328 | + cosa = math.cos(angle) | |
329 | + direction = unit_vector(direction[:3]) | |
330 | + # rotation matrix around unit vector | |
331 | + R = numpy.diag([cosa, cosa, cosa]) | |
332 | + R += numpy.outer(direction, direction) * (1.0 - cosa) | |
333 | + direction *= sina | |
334 | + R += numpy.array([[ 0.0, -direction[2], direction[1]], | |
335 | + [ direction[2], 0.0, -direction[0]], | |
336 | + [-direction[1], direction[0], 0.0]]) | |
337 | + M = numpy.identity(4) | |
338 | + M[:3, :3] = R | |
339 | + if point is not None: | |
340 | + # rotation not around origin | |
341 | + point = numpy.array(point[:3], dtype=numpy.float64, copy=False) | |
342 | + M[:3, 3] = point - numpy.dot(R, point) | |
343 | + return M | |
344 | + | |
345 | + | |
346 | +def rotation_from_matrix(matrix): | |
347 | + """Return rotation angle and axis from rotation matrix. | |
348 | + | |
349 | + >>> angle = (random.random() - 0.5) * (2*math.pi) | |
350 | + >>> direc = numpy.random.random(3) - 0.5 | |
351 | + >>> point = numpy.random.random(3) - 0.5 | |
352 | + >>> R0 = rotation_matrix(angle, direc, point) | |
353 | + >>> angle, direc, point = rotation_from_matrix(R0) | |
354 | + >>> R1 = rotation_matrix(angle, direc, point) | |
355 | + >>> is_same_transform(R0, R1) | |
356 | + True | |
357 | + | |
358 | + """ | |
359 | + R = numpy.array(matrix, dtype=numpy.float64, copy=False) | |
360 | + R33 = R[:3, :3] | |
361 | + # direction: unit eigenvector of R33 corresponding to eigenvalue of 1 | |
362 | + w, W = numpy.linalg.eig(R33.T) | |
363 | + i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0] | |
364 | + if not len(i): | |
365 | + raise ValueError("no unit eigenvector corresponding to eigenvalue 1") | |
366 | + direction = numpy.real(W[:, i[-1]]).squeeze() | |
367 | + # point: unit eigenvector of R33 corresponding to eigenvalue of 1 | |
368 | + w, Q = numpy.linalg.eig(R) | |
369 | + i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0] | |
370 | + if not len(i): | |
371 | + raise ValueError("no unit eigenvector corresponding to eigenvalue 1") | |
372 | + point = numpy.real(Q[:, i[-1]]).squeeze() | |
373 | + point /= point[3] | |
374 | + # rotation angle depending on direction | |
375 | + cosa = (numpy.trace(R33) - 1.0) / 2.0 | |
376 | + if abs(direction[2]) > 1e-8: | |
377 | + sina = (R[1, 0] + (cosa-1.0)*direction[0]*direction[1]) / direction[2] | |
378 | + elif abs(direction[1]) > 1e-8: | |
379 | + sina = (R[0, 2] + (cosa-1.0)*direction[0]*direction[2]) / direction[1] | |
380 | + else: | |
381 | + sina = (R[2, 1] + (cosa-1.0)*direction[1]*direction[2]) / direction[0] | |
382 | + angle = math.atan2(sina, cosa) | |
383 | + return angle, direction, point | |
384 | + | |
385 | + | |
386 | +def scale_matrix(factor, origin=None, direction=None): | |
387 | + """Return matrix to scale by factor around origin in direction. | |
388 | + | |
389 | + Use factor -1 for point symmetry. | |
390 | + | |
391 | + >>> v = (numpy.random.rand(4, 5) - 0.5) * 20 | |
392 | + >>> v[3] = 1 | |
393 | + >>> S = scale_matrix(-1.234) | |
394 | + >>> numpy.allclose(numpy.dot(S, v)[:3], -1.234*v[:3]) | |
395 | + True | |
396 | + >>> factor = random.random() * 10 - 5 | |
397 | + >>> origin = numpy.random.random(3) - 0.5 | |
398 | + >>> direct = numpy.random.random(3) - 0.5 | |
399 | + >>> S = scale_matrix(factor, origin) | |
400 | + >>> S = scale_matrix(factor, origin, direct) | |
401 | + | |
402 | + """ | |
403 | + if direction is None: | |
404 | + # uniform scaling | |
405 | + M = numpy.diag([factor, factor, factor, 1.0]) | |
406 | + if origin is not None: | |
407 | + M[:3, 3] = origin[:3] | |
408 | + M[:3, 3] *= 1.0 - factor | |
409 | + else: | |
410 | + # nonuniform scaling | |
411 | + direction = unit_vector(direction[:3]) | |
412 | + factor = 1.0 - factor | |
413 | + M = numpy.identity(4) | |
414 | + M[:3, :3] -= factor * numpy.outer(direction, direction) | |
415 | + if origin is not None: | |
416 | + M[:3, 3] = (factor * numpy.dot(origin[:3], direction)) * direction | |
417 | + return M | |
418 | + | |
419 | + | |
420 | +def scale_from_matrix(matrix): | |
421 | + """Return scaling factor, origin and direction from scaling matrix. | |
422 | + | |
423 | + >>> factor = random.random() * 10 - 5 | |
424 | + >>> origin = numpy.random.random(3) - 0.5 | |
425 | + >>> direct = numpy.random.random(3) - 0.5 | |
426 | + >>> S0 = scale_matrix(factor, origin) | |
427 | + >>> factor, origin, direction = scale_from_matrix(S0) | |
428 | + >>> S1 = scale_matrix(factor, origin, direction) | |
429 | + >>> is_same_transform(S0, S1) | |
430 | + True | |
431 | + >>> S0 = scale_matrix(factor, origin, direct) | |
432 | + >>> factor, origin, direction = scale_from_matrix(S0) | |
433 | + >>> S1 = scale_matrix(factor, origin, direction) | |
434 | + >>> is_same_transform(S0, S1) | |
435 | + True | |
436 | + | |
437 | + """ | |
438 | + M = numpy.array(matrix, dtype=numpy.float64, copy=False) | |
439 | + M33 = M[:3, :3] | |
440 | + factor = numpy.trace(M33) - 2.0 | |
441 | + try: | |
442 | + # direction: unit eigenvector corresponding to eigenvalue factor | |
443 | + w, V = numpy.linalg.eig(M33) | |
444 | + i = numpy.where(abs(numpy.real(w) - factor) < 1e-8)[0][0] | |
445 | + direction = numpy.real(V[:, i]).squeeze() | |
446 | + direction /= vector_norm(direction) | |
447 | + except IndexError: | |
448 | + # uniform scaling | |
449 | + factor = (factor + 2.0) / 3.0 | |
450 | + direction = None | |
451 | + # origin: any eigenvector corresponding to eigenvalue 1 | |
452 | + w, V = numpy.linalg.eig(M) | |
453 | + i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0] | |
454 | + if not len(i): | |
455 | + raise ValueError("no eigenvector corresponding to eigenvalue 1") | |
456 | + origin = numpy.real(V[:, i[-1]]).squeeze() | |
457 | + origin /= origin[3] | |
458 | + return factor, origin, direction | |
459 | + | |
460 | + | |
461 | +def projection_matrix(point, normal, direction=None, | |
462 | + perspective=None, pseudo=False): | |
463 | + """Return matrix to project onto plane defined by point and normal. | |
464 | + | |
465 | + Using either perspective point, projection direction, or none of both. | |
466 | + | |
467 | + If pseudo is True, perspective projections will preserve relative depth | |
468 | + such that Perspective = dot(Orthogonal, PseudoPerspective). | |
469 | + | |
470 | + >>> P = projection_matrix([0, 0, 0], [1, 0, 0]) | |
471 | + >>> numpy.allclose(P[1:, 1:], numpy.identity(4)[1:, 1:]) | |
472 | + True | |
473 | + >>> point = numpy.random.random(3) - 0.5 | |
474 | + >>> normal = numpy.random.random(3) - 0.5 | |
475 | + >>> direct = numpy.random.random(3) - 0.5 | |
476 | + >>> persp = numpy.random.random(3) - 0.5 | |
477 | + >>> P0 = projection_matrix(point, normal) | |
478 | + >>> P1 = projection_matrix(point, normal, direction=direct) | |
479 | + >>> P2 = projection_matrix(point, normal, perspective=persp) | |
480 | + >>> P3 = projection_matrix(point, normal, perspective=persp, pseudo=True) | |
481 | + >>> is_same_transform(P2, numpy.dot(P0, P3)) | |
482 | + True | |
483 | + >>> P = projection_matrix([3, 0, 0], [1, 1, 0], [1, 0, 0]) | |
484 | + >>> v0 = (numpy.random.rand(4, 5) - 0.5) * 20 | |
485 | + >>> v0[3] = 1 | |
486 | + >>> v1 = numpy.dot(P, v0) | |
487 | + >>> numpy.allclose(v1[1], v0[1]) | |
488 | + True | |
489 | + >>> numpy.allclose(v1[0], 3-v1[1]) | |
490 | + True | |
491 | + | |
492 | + """ | |
493 | + M = numpy.identity(4) | |
494 | + point = numpy.array(point[:3], dtype=numpy.float64, copy=False) | |
495 | + normal = unit_vector(normal[:3]) | |
496 | + if perspective is not None: | |
497 | + # perspective projection | |
498 | + perspective = numpy.array(perspective[:3], dtype=numpy.float64, | |
499 | + copy=False) | |
500 | + M[0, 0] = M[1, 1] = M[2, 2] = numpy.dot(perspective-point, normal) | |
501 | + M[:3, :3] -= numpy.outer(perspective, normal) | |
502 | + if pseudo: | |
503 | + # preserve relative depth | |
504 | + M[:3, :3] -= numpy.outer(normal, normal) | |
505 | + M[:3, 3] = numpy.dot(point, normal) * (perspective+normal) | |
506 | + else: | |
507 | + M[:3, 3] = numpy.dot(point, normal) * perspective | |
508 | + M[3, :3] = -normal | |
509 | + M[3, 3] = numpy.dot(perspective, normal) | |
510 | + elif direction is not None: | |
511 | + # parallel projection | |
512 | + direction = numpy.array(direction[:3], dtype=numpy.float64, copy=False) | |
513 | + scale = numpy.dot(direction, normal) | |
514 | + M[:3, :3] -= numpy.outer(direction, normal) / scale | |
515 | + M[:3, 3] = direction * (numpy.dot(point, normal) / scale) | |
516 | + else: | |
517 | + # orthogonal projection | |
518 | + M[:3, :3] -= numpy.outer(normal, normal) | |
519 | + M[:3, 3] = numpy.dot(point, normal) * normal | |
520 | + return M | |
521 | + | |
522 | + | |
523 | +def projection_from_matrix(matrix, pseudo=False): | |
524 | + """Return projection plane and perspective point from projection matrix. | |
525 | + | |
526 | + Return values are same as arguments for projection_matrix function: | |
527 | + point, normal, direction, perspective, and pseudo. | |
528 | + | |
529 | + >>> point = numpy.random.random(3) - 0.5 | |
530 | + >>> normal = numpy.random.random(3) - 0.5 | |
531 | + >>> direct = numpy.random.random(3) - 0.5 | |
532 | + >>> persp = numpy.random.random(3) - 0.5 | |
533 | + >>> P0 = projection_matrix(point, normal) | |
534 | + >>> result = projection_from_matrix(P0) | |
535 | + >>> P1 = projection_matrix(*result) | |
536 | + >>> is_same_transform(P0, P1) | |
537 | + True | |
538 | + >>> P0 = projection_matrix(point, normal, direct) | |
539 | + >>> result = projection_from_matrix(P0) | |
540 | + >>> P1 = projection_matrix(*result) | |
541 | + >>> is_same_transform(P0, P1) | |
542 | + True | |
543 | + >>> P0 = projection_matrix(point, normal, perspective=persp, pseudo=False) | |
544 | + >>> result = projection_from_matrix(P0, pseudo=False) | |
545 | + >>> P1 = projection_matrix(*result) | |
546 | + >>> is_same_transform(P0, P1) | |
547 | + True | |
548 | + >>> P0 = projection_matrix(point, normal, perspective=persp, pseudo=True) | |
549 | + >>> result = projection_from_matrix(P0, pseudo=True) | |
550 | + >>> P1 = projection_matrix(*result) | |
551 | + >>> is_same_transform(P0, P1) | |
552 | + True | |
553 | + | |
554 | + """ | |
555 | + M = numpy.array(matrix, dtype=numpy.float64, copy=False) | |
556 | + M33 = M[:3, :3] | |
557 | + w, V = numpy.linalg.eig(M) | |
558 | + i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0] | |
559 | + if not pseudo and len(i): | |
560 | + # point: any eigenvector corresponding to eigenvalue 1 | |
561 | + point = numpy.real(V[:, i[-1]]).squeeze() | |
562 | + point /= point[3] | |
563 | + # direction: unit eigenvector corresponding to eigenvalue 0 | |
564 | + w, V = numpy.linalg.eig(M33) | |
565 | + i = numpy.where(abs(numpy.real(w)) < 1e-8)[0] | |
566 | + if not len(i): | |
567 | + raise ValueError("no eigenvector corresponding to eigenvalue 0") | |
568 | + direction = numpy.real(V[:, i[0]]).squeeze() | |
569 | + direction /= vector_norm(direction) | |
570 | + # normal: unit eigenvector of M33.T corresponding to eigenvalue 0 | |
571 | + w, V = numpy.linalg.eig(M33.T) | |
572 | + i = numpy.where(abs(numpy.real(w)) < 1e-8)[0] | |
573 | + if len(i): | |
574 | + # parallel projection | |
575 | + normal = numpy.real(V[:, i[0]]).squeeze() | |
576 | + normal /= vector_norm(normal) | |
577 | + return point, normal, direction, None, False | |
578 | + else: | |
579 | + # orthogonal projection, where normal equals direction vector | |
580 | + return point, direction, None, None, False | |
581 | + else: | |
582 | + # perspective projection | |
583 | + i = numpy.where(abs(numpy.real(w)) > 1e-8)[0] | |
584 | + if not len(i): | |
585 | + raise ValueError( | |
586 | + "no eigenvector not corresponding to eigenvalue 0") | |
587 | + point = numpy.real(V[:, i[-1]]).squeeze() | |
588 | + point /= point[3] | |
589 | + normal = - M[3, :3] | |
590 | + perspective = M[:3, 3] / numpy.dot(point[:3], normal) | |
591 | + if pseudo: | |
592 | + perspective -= normal | |
593 | + return point, normal, None, perspective, pseudo | |
594 | + | |
595 | + | |
596 | +def clip_matrix(left, right, bottom, top, near, far, perspective=False): | |
597 | + """Return matrix to obtain normalized device coordinates from frustum. | |
598 | + | |
599 | + The frustum bounds are axis-aligned along x (left, right), | |
600 | + y (bottom, top) and z (near, far). | |
601 | + | |
602 | + Normalized device coordinates are in range [-1, 1] if coordinates are | |
603 | + inside the frustum. | |
604 | + | |
605 | + If perspective is True the frustum is a truncated pyramid with the | |
606 | + perspective point at origin and direction along z axis, otherwise an | |
607 | + orthographic canonical view volume (a box). | |
608 | + | |
609 | + Homogeneous coordinates transformed by the perspective clip matrix | |
610 | + need to be dehomogenized (divided by w coordinate). | |
611 | + | |
612 | + >>> frustum = numpy.random.rand(6) | |
613 | + >>> frustum[1] += frustum[0] | |
614 | + >>> frustum[3] += frustum[2] | |
615 | + >>> frustum[5] += frustum[4] | |
616 | + >>> M = clip_matrix(perspective=False, *frustum) | |
617 | + >>> numpy.dot(M, [frustum[0], frustum[2], frustum[4], 1]) | |
618 | + array([-1., -1., -1., 1.]) | |
619 | + >>> numpy.dot(M, [frustum[1], frustum[3], frustum[5], 1]) | |
620 | + array([ 1., 1., 1., 1.]) | |
621 | + >>> M = clip_matrix(perspective=True, *frustum) | |
622 | + >>> v = numpy.dot(M, [frustum[0], frustum[2], frustum[4], 1]) | |
623 | + >>> v / v[3] | |
624 | + array([-1., -1., -1., 1.]) | |
625 | + >>> v = numpy.dot(M, [frustum[1], frustum[3], frustum[4], 1]) | |
626 | + >>> v / v[3] | |
627 | + array([ 1., 1., -1., 1.]) | |
628 | + | |
629 | + """ | |
630 | + if left >= right or bottom >= top or near >= far: | |
631 | + raise ValueError("invalid frustum") | |
632 | + if perspective: | |
633 | + if near <= _EPS: | |
634 | + raise ValueError("invalid frustum: near <= 0") | |
635 | + t = 2.0 * near | |
636 | + M = [[t/(left-right), 0.0, (right+left)/(right-left), 0.0], | |
637 | + [0.0, t/(bottom-top), (top+bottom)/(top-bottom), 0.0], | |
638 | + [0.0, 0.0, (far+near)/(near-far), t*far/(far-near)], | |
639 | + [0.0, 0.0, -1.0, 0.0]] | |
640 | + else: | |
641 | + M = [[2.0/(right-left), 0.0, 0.0, (right+left)/(left-right)], | |
642 | + [0.0, 2.0/(top-bottom), 0.0, (top+bottom)/(bottom-top)], | |
643 | + [0.0, 0.0, 2.0/(far-near), (far+near)/(near-far)], | |
644 | + [0.0, 0.0, 0.0, 1.0]] | |
645 | + return numpy.array(M) | |
646 | + | |
647 | + | |
648 | +def shear_matrix(angle, direction, point, normal): | |
649 | + """Return matrix to shear by angle along direction vector on shear plane. | |
650 | + | |
651 | + The shear plane is defined by a point and normal vector. The direction | |
652 | + vector must be orthogonal to the plane's normal vector. | |
653 | + | |
654 | + A point P is transformed by the shear matrix into P" such that | |
655 | + the vector P-P" is parallel to the direction vector and its extent is | |
656 | + given by the angle of P-P'-P", where P' is the orthogonal projection | |
657 | + of P onto the shear plane. | |
658 | + | |
659 | + >>> angle = (random.random() - 0.5) * 4*math.pi | |
660 | + >>> direct = numpy.random.random(3) - 0.5 | |
661 | + >>> point = numpy.random.random(3) - 0.5 | |
662 | + >>> normal = numpy.cross(direct, numpy.random.random(3)) | |
663 | + >>> S = shear_matrix(angle, direct, point, normal) | |
664 | + >>> numpy.allclose(1, numpy.linalg.det(S)) | |
665 | + True | |
666 | + | |
667 | + """ | |
668 | + normal = unit_vector(normal[:3]) | |
669 | + direction = unit_vector(direction[:3]) | |
670 | + if abs(numpy.dot(normal, direction)) > 1e-6: | |
671 | + raise ValueError("direction and normal vectors are not orthogonal") | |
672 | + angle = math.tan(angle) | |
673 | + M = numpy.identity(4) | |
674 | + M[:3, :3] += angle * numpy.outer(direction, normal) | |
675 | + M[:3, 3] = -angle * numpy.dot(point[:3], normal) * direction | |
676 | + return M | |
677 | + | |
678 | + | |
679 | +def shear_from_matrix(matrix): | |
680 | + """Return shear angle, direction and plane from shear matrix. | |
681 | + | |
682 | + >>> angle = (random.random() - 0.5) * 4*math.pi | |
683 | + >>> direct = numpy.random.random(3) - 0.5 | |
684 | + >>> point = numpy.random.random(3) - 0.5 | |
685 | + >>> normal = numpy.cross(direct, numpy.random.random(3)) | |
686 | + >>> S0 = shear_matrix(angle, direct, point, normal) | |
687 | + >>> angle, direct, point, normal = shear_from_matrix(S0) | |
688 | + >>> S1 = shear_matrix(angle, direct, point, normal) | |
689 | + >>> is_same_transform(S0, S1) | |
690 | + True | |
691 | + | |
692 | + """ | |
693 | + M = numpy.array(matrix, dtype=numpy.float64, copy=False) | |
694 | + M33 = M[:3, :3] | |
695 | + # normal: cross independent eigenvectors corresponding to the eigenvalue 1 | |
696 | + w, V = numpy.linalg.eig(M33) | |
697 | + i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-4)[0] | |
698 | + if len(i) < 2: | |
699 | + raise ValueError("no two linear independent eigenvectors found %s" % w) | |
700 | + V = numpy.real(V[:, i]).squeeze().T | |
701 | + lenorm = -1.0 | |
702 | + for i0, i1 in ((0, 1), (0, 2), (1, 2)): | |
703 | + n = numpy.cross(V[i0], V[i1]) | |
704 | + w = vector_norm(n) | |
705 | + if w > lenorm: | |
706 | + lenorm = w | |
707 | + normal = n | |
708 | + normal /= lenorm | |
709 | + # direction and angle | |
710 | + direction = numpy.dot(M33 - numpy.identity(3), normal) | |
711 | + angle = vector_norm(direction) | |
712 | + direction /= angle | |
713 | + angle = math.atan(angle) | |
714 | + # point: eigenvector corresponding to eigenvalue 1 | |
715 | + w, V = numpy.linalg.eig(M) | |
716 | + i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0] | |
717 | + if not len(i): | |
718 | + raise ValueError("no eigenvector corresponding to eigenvalue 1") | |
719 | + point = numpy.real(V[:, i[-1]]).squeeze() | |
720 | + point /= point[3] | |
721 | + return angle, direction, point, normal | |
722 | + | |
723 | + | |
724 | +def decompose_matrix(matrix): | |
725 | + """Return sequence of transformations from transformation matrix. | |
726 | + | |
727 | + matrix : array_like | |
728 | + Non-degenerative homogeneous transformation matrix | |
729 | + | |
730 | + Return tuple of: | |
731 | + scale : vector of 3 scaling factors | |
732 | + shear : list of shear factors for x-y, x-z, y-z axes | |
733 | + angles : list of Euler angles about static x, y, z axes | |
734 | + translate : translation vector along x, y, z axes | |
735 | + perspective : perspective partition of matrix | |
736 | + | |
737 | + Raise ValueError if matrix is of wrong type or degenerative. | |
738 | + | |
739 | + >>> T0 = translation_matrix([1, 2, 3]) | |
740 | + >>> scale, shear, angles, trans, persp = decompose_matrix(T0) | |
741 | + >>> T1 = translation_matrix(trans) | |
742 | + >>> numpy.allclose(T0, T1) | |
743 | + True | |
744 | + >>> S = scale_matrix(0.123) | |
745 | + >>> scale, shear, angles, trans, persp = decompose_matrix(S) | |
746 | + >>> scale[0] | |
747 | + 0.123 | |
748 | + >>> R0 = euler_matrix(1, 2, 3) | |
749 | + >>> scale, shear, angles, trans, persp = decompose_matrix(R0) | |
750 | + >>> R1 = euler_matrix(*angles) | |
751 | + >>> numpy.allclose(R0, R1) | |
752 | + True | |
753 | + | |
754 | + """ | |
755 | + M = numpy.array(matrix, dtype=numpy.float64, copy=True).T | |
756 | + if abs(M[3, 3]) < _EPS: | |
757 | + raise ValueError("M[3, 3] is zero") | |
758 | + M /= M[3, 3] | |
759 | + P = M.copy() | |
760 | + P[:, 3] = 0.0, 0.0, 0.0, 1.0 | |
761 | + if not numpy.linalg.det(P): | |
762 | + raise ValueError("matrix is singular") | |
763 | + | |
764 | + scale = numpy.zeros((3, )) | |
765 | + shear = [0.0, 0.0, 0.0] | |
766 | + angles = [0.0, 0.0, 0.0] | |
767 | + | |
768 | + if any(abs(M[:3, 3]) > _EPS): | |
769 | + perspective = numpy.dot(M[:, 3], numpy.linalg.inv(P.T)) | |
770 | + M[:, 3] = 0.0, 0.0, 0.0, 1.0 | |
771 | + else: | |
772 | + perspective = numpy.array([0.0, 0.0, 0.0, 1.0]) | |
773 | + | |
774 | + translate = M[3, :3].copy() | |
775 | + M[3, :3] = 0.0 | |
776 | + | |
777 | + row = M[:3, :3].copy() | |
778 | + scale[0] = vector_norm(row[0]) | |
779 | + row[0] /= scale[0] | |
780 | + shear[0] = numpy.dot(row[0], row[1]) | |
781 | + row[1] -= row[0] * shear[0] | |
782 | + scale[1] = vector_norm(row[1]) | |
783 | + row[1] /= scale[1] | |
784 | + shear[0] /= scale[1] | |
785 | + shear[1] = numpy.dot(row[0], row[2]) | |
786 | + row[2] -= row[0] * shear[1] | |
787 | + shear[2] = numpy.dot(row[1], row[2]) | |
788 | + row[2] -= row[1] * shear[2] | |
789 | + scale[2] = vector_norm(row[2]) | |
790 | + row[2] /= scale[2] | |
791 | + shear[1:] /= scale[2] | |
792 | + | |
793 | + if numpy.dot(row[0], numpy.cross(row[1], row[2])) < 0: | |
794 | + numpy.negative(scale, scale) | |
795 | + numpy.negative(row, row) | |
796 | + | |
797 | + angles[1] = math.asin(-row[0, 2]) | |
798 | + if math.cos(angles[1]): | |
799 | + angles[0] = math.atan2(row[1, 2], row[2, 2]) | |
800 | + angles[2] = math.atan2(row[0, 1], row[0, 0]) | |
801 | + else: | |
802 | + #angles[0] = math.atan2(row[1, 0], row[1, 1]) | |
803 | + angles[0] = math.atan2(-row[2, 1], row[1, 1]) | |
804 | + angles[2] = 0.0 | |
805 | + | |
806 | + return scale, shear, angles, translate, perspective | |
807 | + | |
808 | + | |
809 | +def compose_matrix(scale=None, shear=None, angles=None, translate=None, | |
810 | + perspective=None): | |
811 | + """Return transformation matrix from sequence of transformations. | |
812 | + | |
813 | + This is the inverse of the decompose_matrix function. | |
814 | + | |
815 | + Sequence of transformations: | |
816 | + scale : vector of 3 scaling factors | |
817 | + shear : list of shear factors for x-y, x-z, y-z axes | |
818 | + angles : list of Euler angles about static x, y, z axes | |
819 | + translate : translation vector along x, y, z axes | |
820 | + perspective : perspective partition of matrix | |
821 | + | |
822 | + >>> scale = numpy.random.random(3) - 0.5 | |
823 | + >>> shear = numpy.random.random(3) - 0.5 | |
824 | + >>> angles = (numpy.random.random(3) - 0.5) * (2*math.pi) | |
825 | + >>> trans = numpy.random.random(3) - 0.5 | |
826 | + >>> persp = numpy.random.random(4) - 0.5 | |
827 | + >>> M0 = compose_matrix(scale, shear, angles, trans, persp) | |
828 | + >>> result = decompose_matrix(M0) | |
829 | + >>> M1 = compose_matrix(*result) | |
830 | + >>> is_same_transform(M0, M1) | |
831 | + True | |
832 | + | |
833 | + """ | |
834 | + M = numpy.identity(4) | |
835 | + if perspective is not None: | |
836 | + P = numpy.identity(4) | |
837 | + P[3, :] = perspective[:4] | |
838 | + M = numpy.dot(M, P) | |
839 | + if translate is not None: | |
840 | + T = numpy.identity(4) | |
841 | + T[:3, 3] = translate[:3] | |
842 | + M = numpy.dot(M, T) | |
843 | + if angles is not None: | |
844 | + R = euler_matrix(angles[0], angles[1], angles[2], 'sxyz') | |
845 | + M = numpy.dot(M, R) | |
846 | + if shear is not None: | |
847 | + Z = numpy.identity(4) | |
848 | + Z[1, 2] = shear[2] | |
849 | + Z[0, 2] = shear[1] | |
850 | + Z[0, 1] = shear[0] | |
851 | + M = numpy.dot(M, Z) | |
852 | + if scale is not None: | |
853 | + S = numpy.identity(4) | |
854 | + S[0, 0] = scale[0] | |
855 | + S[1, 1] = scale[1] | |
856 | + S[2, 2] = scale[2] | |
857 | + M = numpy.dot(M, S) | |
858 | + M /= M[3, 3] | |
859 | + return M | |
860 | + | |
861 | + | |
862 | +def orthogonalization_matrix(lengths, angles): | |
863 | + """Return orthogonalization matrix for crystallographic cell coordinates. | |
864 | + | |
865 | + Angles are expected in degrees. | |
866 | + | |
867 | + The de-orthogonalization matrix is the inverse. | |
868 | + | |
869 | + >>> O = orthogonalization_matrix([10, 10, 10], [90, 90, 90]) | |
870 | + >>> numpy.allclose(O[:3, :3], numpy.identity(3, float) * 10) | |
871 | + True | |
872 | + >>> O = orthogonalization_matrix([9.8, 12.0, 15.5], [87.2, 80.7, 69.7]) | |
873 | + >>> numpy.allclose(numpy.sum(O), 43.063229) | |
874 | + True | |
875 | + | |
876 | + """ | |
877 | + a, b, c = lengths | |
878 | + angles = numpy.radians(angles) | |
879 | + sina, sinb, _ = numpy.sin(angles) | |
880 | + cosa, cosb, cosg = numpy.cos(angles) | |
881 | + co = (cosa * cosb - cosg) / (sina * sinb) | |
882 | + return numpy.array([ | |
883 | + [ a*sinb*math.sqrt(1.0-co*co), 0.0, 0.0, 0.0], | |
884 | + [-a*sinb*co, b*sina, 0.0, 0.0], | |
885 | + [ a*cosb, b*cosa, c, 0.0], | |
886 | + [ 0.0, 0.0, 0.0, 1.0]]) | |
887 | + | |
888 | + | |
889 | +def affine_matrix_from_points(v0, v1, shear=True, scale=True, usesvd=True): | |
890 | + """Return affine transform matrix to register two point sets. | |
891 | + | |
892 | + v0 and v1 are shape (ndims, \*) arrays of at least ndims non-homogeneous | |
893 | + coordinates, where ndims is the dimensionality of the coordinate space. | |
894 | + | |
895 | + If shear is False, a similarity transformation matrix is returned. | |
896 | + If also scale is False, a rigid/Euclidean transformation matrix | |
897 | + is returned. | |
898 | + | |
899 | + By default the algorithm by Hartley and Zissermann [15] is used. | |
900 | + If usesvd is True, similarity and Euclidean transformation matrices | |
901 | + are calculated by minimizing the weighted sum of squared deviations | |
902 | + (RMSD) according to the algorithm by Kabsch [8]. | |
903 | + Otherwise, and if ndims is 3, the quaternion based algorithm by Horn [9] | |
904 | + is used, which is slower when using this Python implementation. | |
905 | + | |
906 | + The returned matrix performs rotation, translation and uniform scaling | |
907 | + (if specified). | |
908 | + | |
909 | + >>> v0 = [[0, 1031, 1031, 0], [0, 0, 1600, 1600]] | |
910 | + >>> v1 = [[675, 826, 826, 677], [55, 52, 281, 277]] | |
911 | + >>> affine_matrix_from_points(v0, v1) | |
912 | + array([[ 0.14549, 0.00062, 675.50008], | |
913 | + [ 0.00048, 0.14094, 53.24971], | |
914 | + [ 0. , 0. , 1. ]]) | |
915 | + >>> T = translation_matrix(numpy.random.random(3)-0.5) | |
916 | + >>> R = random_rotation_matrix(numpy.random.random(3)) | |
917 | + >>> S = scale_matrix(random.random()) | |
918 | + >>> M = concatenate_matrices(T, R, S) | |
919 | + >>> v0 = (numpy.random.rand(4, 100) - 0.5) * 20 | |
920 | + >>> v0[3] = 1 | |
921 | + >>> v1 = numpy.dot(M, v0) | |
922 | + >>> v0[:3] += numpy.random.normal(0, 1e-8, 300).reshape(3, -1) | |
923 | + >>> M = affine_matrix_from_points(v0[:3], v1[:3]) | |
924 | + >>> numpy.allclose(v1, numpy.dot(M, v0)) | |
925 | + True | |
926 | + | |
927 | + More examples in superimposition_matrix() | |
928 | + | |
929 | + """ | |
930 | + v0 = numpy.array(v0, dtype=numpy.float64, copy=True) | |
931 | + v1 = numpy.array(v1, dtype=numpy.float64, copy=True) | |
932 | + | |
933 | + ndims = v0.shape[0] | |
934 | + if ndims < 2 or v0.shape[1] < ndims or v0.shape != v1.shape: | |
935 | + raise ValueError("input arrays are of wrong shape or type") | |
936 | + | |
937 | + # move centroids to origin | |
938 | + t0 = -numpy.mean(v0, axis=1) | |
939 | + M0 = numpy.identity(ndims+1) | |
940 | + M0[:ndims, ndims] = t0 | |
941 | + v0 += t0.reshape(ndims, 1) | |
942 | + t1 = -numpy.mean(v1, axis=1) | |
943 | + M1 = numpy.identity(ndims+1) | |
944 | + M1[:ndims, ndims] = t1 | |
945 | + v1 += t1.reshape(ndims, 1) | |
946 | + | |
947 | + if shear: | |
948 | + # Affine transformation | |
949 | + A = numpy.concatenate((v0, v1), axis=0) | |
950 | + u, s, vh = numpy.linalg.svd(A.T) | |
951 | + vh = vh[:ndims].T | |
952 | + B = vh[:ndims] | |
953 | + C = vh[ndims:2*ndims] | |
954 | + t = numpy.dot(C, numpy.linalg.pinv(B)) | |
955 | + t = numpy.concatenate((t, numpy.zeros((ndims, 1))), axis=1) | |
956 | + M = numpy.vstack((t, ((0.0,)*ndims) + (1.0,))) | |
957 | + elif usesvd or ndims != 3: | |
958 | + # Rigid transformation via SVD of covariance matrix | |
959 | + u, s, vh = numpy.linalg.svd(numpy.dot(v1, v0.T)) | |
960 | + # rotation matrix from SVD orthonormal bases | |
961 | + R = numpy.dot(u, vh) | |
962 | + if numpy.linalg.det(R) < 0.0: | |
963 | + # R does not constitute right handed system | |
964 | + R -= numpy.outer(u[:, ndims-1], vh[ndims-1, :]*2.0) | |
965 | + s[-1] *= -1.0 | |
966 | + # homogeneous transformation matrix | |
967 | + M = numpy.identity(ndims+1) | |
968 | + M[:ndims, :ndims] = R | |
969 | + else: | |
970 | + # Rigid transformation matrix via quaternion | |
971 | + # compute symmetric matrix N | |
972 | + xx, yy, zz = numpy.sum(v0 * v1, axis=1) | |
973 | + xy, yz, zx = numpy.sum(v0 * numpy.roll(v1, -1, axis=0), axis=1) | |
974 | + xz, yx, zy = numpy.sum(v0 * numpy.roll(v1, -2, axis=0), axis=1) | |
975 | + N = [[xx+yy+zz, 0.0, 0.0, 0.0], | |
976 | + [yz-zy, xx-yy-zz, 0.0, 0.0], | |
977 | + [zx-xz, xy+yx, yy-xx-zz, 0.0], | |
978 | + [xy-yx, zx+xz, yz+zy, zz-xx-yy]] | |
979 | + # quaternion: eigenvector corresponding to most positive eigenvalue | |
980 | + w, V = numpy.linalg.eigh(N) | |
981 | + q = V[:, numpy.argmax(w)] | |
982 | + q /= vector_norm(q) # unit quaternion | |
983 | + # homogeneous transformation matrix | |
984 | + M = quaternion_matrix(q) | |
985 | + | |
986 | + if scale and not shear: | |
987 | + # Affine transformation; scale is ratio of RMS deviations from centroid | |
988 | + v0 *= v0 | |
989 | + v1 *= v1 | |
990 | + M[:ndims, :ndims] *= math.sqrt(numpy.sum(v1) / numpy.sum(v0)) | |
991 | + | |
992 | + # move centroids back | |
993 | + M = numpy.dot(numpy.linalg.inv(M1), numpy.dot(M, M0)) | |
994 | + M /= M[ndims, ndims] | |
995 | + return M | |
996 | + | |
997 | + | |
998 | +def superimposition_matrix(v0, v1, scale=False, usesvd=True): | |
999 | + """Return matrix to transform given 3D point set into second point set. | |
1000 | + | |
1001 | + v0 and v1 are shape (3, \*) or (4, \*) arrays of at least 3 points. | |
1002 | + | |
1003 | + The parameters scale and usesvd are explained in the more general | |
1004 | + affine_matrix_from_points function. | |
1005 | + | |
1006 | + The returned matrix is a similarity or Euclidean transformation matrix. | |
1007 | + This function has a fast C implementation in transformations.c. | |
1008 | + | |
1009 | + >>> v0 = numpy.random.rand(3, 10) | |
1010 | + >>> M = superimposition_matrix(v0, v0) | |
1011 | + >>> numpy.allclose(M, numpy.identity(4)) | |
1012 | + True | |
1013 | + >>> R = random_rotation_matrix(numpy.random.random(3)) | |
1014 | + >>> v0 = [[1,0,0], [0,1,0], [0,0,1], [1,1,1]] | |
1015 | + >>> v1 = numpy.dot(R, v0) | |
1016 | + >>> M = superimposition_matrix(v0, v1) | |
1017 | + >>> numpy.allclose(v1, numpy.dot(M, v0)) | |
1018 | + True | |
1019 | + >>> v0 = (numpy.random.rand(4, 100) - 0.5) * 20 | |
1020 | + >>> v0[3] = 1 | |
1021 | + >>> v1 = numpy.dot(R, v0) | |
1022 | + >>> M = superimposition_matrix(v0, v1) | |
1023 | + >>> numpy.allclose(v1, numpy.dot(M, v0)) | |
1024 | + True | |
1025 | + >>> S = scale_matrix(random.random()) | |
1026 | + >>> T = translation_matrix(numpy.random.random(3)-0.5) | |
1027 | + >>> M = concatenate_matrices(T, R, S) | |
1028 | + >>> v1 = numpy.dot(M, v0) | |
1029 | + >>> v0[:3] += numpy.random.normal(0, 1e-9, 300).reshape(3, -1) | |
1030 | + >>> M = superimposition_matrix(v0, v1, scale=True) | |
1031 | + >>> numpy.allclose(v1, numpy.dot(M, v0)) | |
1032 | + True | |
1033 | + >>> M = superimposition_matrix(v0, v1, scale=True, usesvd=False) | |
1034 | + >>> numpy.allclose(v1, numpy.dot(M, v0)) | |
1035 | + True | |
1036 | + >>> v = numpy.empty((4, 100, 3)) | |
1037 | + >>> v[:, :, 0] = v0 | |
1038 | + >>> M = superimposition_matrix(v0, v1, scale=True, usesvd=False) | |
1039 | + >>> numpy.allclose(v1, numpy.dot(M, v[:, :, 0])) | |
1040 | + True | |
1041 | + | |
1042 | + """ | |
1043 | + v0 = numpy.array(v0, dtype=numpy.float64, copy=False)[:3] | |
1044 | + v1 = numpy.array(v1, dtype=numpy.float64, copy=False)[:3] | |
1045 | + return affine_matrix_from_points(v0, v1, shear=False, | |
1046 | + scale=scale, usesvd=usesvd) | |
1047 | + | |
1048 | + | |
1049 | +def euler_matrix(ai, aj, ak, axes='sxyz'): | |
1050 | + """Return homogeneous rotation matrix from Euler angles and axis sequence. | |
1051 | + | |
1052 | + ai, aj, ak : Euler's roll, pitch and yaw angles | |
1053 | + axes : One of 24 axis sequences as string or encoded tuple | |
1054 | + | |
1055 | + >>> R = euler_matrix(1, 2, 3, 'syxz') | |
1056 | + >>> numpy.allclose(numpy.sum(R[0]), -1.34786452) | |
1057 | + True | |
1058 | + >>> R = euler_matrix(1, 2, 3, (0, 1, 0, 1)) | |
1059 | + >>> numpy.allclose(numpy.sum(R[0]), -0.383436184) | |
1060 | + True | |
1061 | + >>> ai, aj, ak = (4*math.pi) * (numpy.random.random(3) - 0.5) | |
1062 | + >>> for axes in _AXES2TUPLE.keys(): | |
1063 | + ... R = euler_matrix(ai, aj, ak, axes) | |
1064 | + >>> for axes in _TUPLE2AXES.keys(): | |
1065 | + ... R = euler_matrix(ai, aj, ak, axes) | |
1066 | + | |
1067 | + """ | |
1068 | + try: | |
1069 | + firstaxis, parity, repetition, frame = _AXES2TUPLE[axes] | |
1070 | + except (AttributeError, KeyError): | |
1071 | + _TUPLE2AXES[axes] # validation | |
1072 | + firstaxis, parity, repetition, frame = axes | |
1073 | + | |
1074 | + i = firstaxis | |
1075 | + j = _NEXT_AXIS[i+parity] | |
1076 | + k = _NEXT_AXIS[i-parity+1] | |
1077 | + | |
1078 | + if frame: | |
1079 | + ai, ak = ak, ai | |
1080 | + if parity: | |
1081 | + ai, aj, ak = -ai, -aj, -ak | |
1082 | + | |
1083 | + si, sj, sk = math.sin(ai), math.sin(aj), math.sin(ak) | |
1084 | + ci, cj, ck = math.cos(ai), math.cos(aj), math.cos(ak) | |
1085 | + cc, cs = ci*ck, ci*sk | |
1086 | + sc, ss = si*ck, si*sk | |
1087 | + | |
1088 | + M = numpy.identity(4) | |
1089 | + if repetition: | |
1090 | + M[i, i] = cj | |
1091 | + M[i, j] = sj*si | |
1092 | + M[i, k] = sj*ci | |
1093 | + M[j, i] = sj*sk | |
1094 | + M[j, j] = -cj*ss+cc | |
1095 | + M[j, k] = -cj*cs-sc | |
1096 | + M[k, i] = -sj*ck | |
1097 | + M[k, j] = cj*sc+cs | |
1098 | + M[k, k] = cj*cc-ss | |
1099 | + else: | |
1100 | + M[i, i] = cj*ck | |
1101 | + M[i, j] = sj*sc-cs | |
1102 | + M[i, k] = sj*cc+ss | |
1103 | + M[j, i] = cj*sk | |
1104 | + M[j, j] = sj*ss+cc | |
1105 | + M[j, k] = sj*cs-sc | |
1106 | + M[k, i] = -sj | |
1107 | + M[k, j] = cj*si | |
1108 | + M[k, k] = cj*ci | |
1109 | + return M | |
1110 | + | |
1111 | + | |
1112 | +def euler_from_matrix(matrix, axes='sxyz'): | |
1113 | + """Return Euler angles from rotation matrix for specified axis sequence. | |
1114 | + | |
1115 | + axes : One of 24 axis sequences as string or encoded tuple | |
1116 | + | |
1117 | + Note that many Euler angle triplets can describe one matrix. | |
1118 | + | |
1119 | + >>> R0 = euler_matrix(1, 2, 3, 'syxz') | |
1120 | + >>> al, be, ga = euler_from_matrix(R0, 'syxz') | |
1121 | + >>> R1 = euler_matrix(al, be, ga, 'syxz') | |
1122 | + >>> numpy.allclose(R0, R1) | |
1123 | + True | |
1124 | + >>> angles = (4*math.pi) * (numpy.random.random(3) - 0.5) | |
1125 | + >>> for axes in _AXES2TUPLE.keys(): | |
1126 | + ... R0 = euler_matrix(axes=axes, *angles) | |
1127 | + ... R1 = euler_matrix(axes=axes, *euler_from_matrix(R0, axes)) | |
1128 | + ... if not numpy.allclose(R0, R1): print(axes, "failed") | |
1129 | + | |
1130 | + """ | |
1131 | + try: | |
1132 | + firstaxis, parity, repetition, frame = _AXES2TUPLE[axes.lower()] | |
1133 | + except (AttributeError, KeyError): | |
1134 | + _TUPLE2AXES[axes] # validation | |
1135 | + firstaxis, parity, repetition, frame = axes | |
1136 | + | |
1137 | + i = firstaxis | |
1138 | + j = _NEXT_AXIS[i+parity] | |
1139 | + k = _NEXT_AXIS[i-parity+1] | |
1140 | + | |
1141 | + M = numpy.array(matrix, dtype=numpy.float64, copy=False)[:3, :3] | |
1142 | + if repetition: | |
1143 | + sy = math.sqrt(M[i, j]*M[i, j] + M[i, k]*M[i, k]) | |
1144 | + if sy > _EPS: | |
1145 | + ax = math.atan2( M[i, j], M[i, k]) | |
1146 | + ay = math.atan2( sy, M[i, i]) | |
1147 | + az = math.atan2( M[j, i], -M[k, i]) | |
1148 | + else: | |
1149 | + ax = math.atan2(-M[j, k], M[j, j]) | |
1150 | + ay = math.atan2( sy, M[i, i]) | |
1151 | + az = 0.0 | |
1152 | + else: | |
1153 | + cy = math.sqrt(M[i, i]*M[i, i] + M[j, i]*M[j, i]) | |
1154 | + if cy > _EPS: | |
1155 | + ax = math.atan2( M[k, j], M[k, k]) | |
1156 | + ay = math.atan2(-M[k, i], cy) | |
1157 | + az = math.atan2( M[j, i], M[i, i]) | |
1158 | + else: | |
1159 | + ax = math.atan2(-M[j, k], M[j, j]) | |
1160 | + ay = math.atan2(-M[k, i], cy) | |
1161 | + az = 0.0 | |
1162 | + | |
1163 | + if parity: | |
1164 | + ax, ay, az = -ax, -ay, -az | |
1165 | + if frame: | |
1166 | + ax, az = az, ax | |
1167 | + return ax, ay, az | |
1168 | + | |
1169 | + | |
1170 | +def euler_from_quaternion(quaternion, axes='sxyz'): | |
1171 | + """Return Euler angles from quaternion for specified axis sequence. | |
1172 | + | |
1173 | + >>> angles = euler_from_quaternion([0.99810947, 0.06146124, 0, 0]) | |
1174 | + >>> numpy.allclose(angles, [0.123, 0, 0]) | |
1175 | + True | |
1176 | + | |
1177 | + """ | |
1178 | + return euler_from_matrix(quaternion_matrix(quaternion), axes) | |
1179 | + | |
1180 | + | |
1181 | +def quaternion_from_euler(ai, aj, ak, axes='sxyz'): | |
1182 | + """Return quaternion from Euler angles and axis sequence. | |
1183 | + | |
1184 | + ai, aj, ak : Euler's roll, pitch and yaw angles | |
1185 | + axes : One of 24 axis sequences as string or encoded tuple | |
1186 | + | |
1187 | + >>> q = quaternion_from_euler(1, 2, 3, 'ryxz') | |
1188 | + >>> numpy.allclose(q, [0.435953, 0.310622, -0.718287, 0.444435]) | |
1189 | + True | |
1190 | + | |
1191 | + """ | |
1192 | + try: | |
1193 | + firstaxis, parity, repetition, frame = _AXES2TUPLE[axes.lower()] | |
1194 | + except (AttributeError, KeyError): | |
1195 | + _TUPLE2AXES[axes] # validation | |
1196 | + firstaxis, parity, repetition, frame = axes | |
1197 | + | |
1198 | + i = firstaxis + 1 | |
1199 | + j = _NEXT_AXIS[i+parity-1] + 1 | |
1200 | + k = _NEXT_AXIS[i-parity] + 1 | |
1201 | + | |
1202 | + if frame: | |
1203 | + ai, ak = ak, ai | |
1204 | + if parity: | |
1205 | + aj = -aj | |
1206 | + | |
1207 | + ai /= 2.0 | |
1208 | + aj /= 2.0 | |
1209 | + ak /= 2.0 | |
1210 | + ci = math.cos(ai) | |
1211 | + si = math.sin(ai) | |
1212 | + cj = math.cos(aj) | |
1213 | + sj = math.sin(aj) | |
1214 | + ck = math.cos(ak) | |
1215 | + sk = math.sin(ak) | |
1216 | + cc = ci*ck | |
1217 | + cs = ci*sk | |
1218 | + sc = si*ck | |
1219 | + ss = si*sk | |
1220 | + | |
1221 | + q = numpy.empty((4, )) | |
1222 | + if repetition: | |
1223 | + q[0] = cj*(cc - ss) | |
1224 | + q[i] = cj*(cs + sc) | |
1225 | + q[j] = sj*(cc + ss) | |
1226 | + q[k] = sj*(cs - sc) | |
1227 | + else: | |
1228 | + q[0] = cj*cc + sj*ss | |
1229 | + q[i] = cj*sc - sj*cs | |
1230 | + q[j] = cj*ss + sj*cc | |
1231 | + q[k] = cj*cs - sj*sc | |
1232 | + if parity: | |
1233 | + q[j] *= -1.0 | |
1234 | + | |
1235 | + return q | |
1236 | + | |
1237 | + | |
1238 | +def quaternion_about_axis(angle, axis): | |
1239 | + """Return quaternion for rotation about axis. | |
1240 | + | |
1241 | + >>> q = quaternion_about_axis(0.123, [1, 0, 0]) | |
1242 | + >>> numpy.allclose(q, [0.99810947, 0.06146124, 0, 0]) | |
1243 | + True | |
1244 | + | |
1245 | + """ | |
1246 | + q = numpy.array([0.0, axis[0], axis[1], axis[2]]) | |
1247 | + qlen = vector_norm(q) | |
1248 | + if qlen > _EPS: | |
1249 | + q *= math.sin(angle/2.0) / qlen | |
1250 | + q[0] = math.cos(angle/2.0) | |
1251 | + return q | |
1252 | + | |
1253 | + | |
1254 | +def quaternion_matrix(quaternion): | |
1255 | + """Return homogeneous rotation matrix from quaternion. | |
1256 | + | |
1257 | + >>> M = quaternion_matrix([0.99810947, 0.06146124, 0, 0]) | |
1258 | + >>> numpy.allclose(M, rotation_matrix(0.123, [1, 0, 0])) | |
1259 | + True | |
1260 | + >>> M = quaternion_matrix([1, 0, 0, 0]) | |
1261 | + >>> numpy.allclose(M, numpy.identity(4)) | |
1262 | + True | |
1263 | + >>> M = quaternion_matrix([0, 1, 0, 0]) | |
1264 | + >>> numpy.allclose(M, numpy.diag([1, -1, -1, 1])) | |
1265 | + True | |
1266 | + | |
1267 | + """ | |
1268 | + q = numpy.array(quaternion, dtype=numpy.float64, copy=True) | |
1269 | + n = numpy.dot(q, q) | |
1270 | + if n < _EPS: | |
1271 | + return numpy.identity(4) | |
1272 | + q *= math.sqrt(2.0 / n) | |
1273 | + q = numpy.outer(q, q) | |
1274 | + return numpy.array([ | |
1275 | + [1.0-q[2, 2]-q[3, 3], q[1, 2]-q[3, 0], q[1, 3]+q[2, 0], 0.0], | |
1276 | + [ q[1, 2]+q[3, 0], 1.0-q[1, 1]-q[3, 3], q[2, 3]-q[1, 0], 0.0], | |
1277 | + [ q[1, 3]-q[2, 0], q[2, 3]+q[1, 0], 1.0-q[1, 1]-q[2, 2], 0.0], | |
1278 | + [ 0.0, 0.0, 0.0, 1.0]]) | |
1279 | + | |
1280 | + | |
1281 | +def quaternion_from_matrix(matrix, isprecise=False): | |
1282 | + """Return quaternion from rotation matrix. | |
1283 | + | |
1284 | + If isprecise is True, the input matrix is assumed to be a precise rotation | |
1285 | + matrix and a faster algorithm is used. | |
1286 | + | |
1287 | + >>> q = quaternion_from_matrix(numpy.identity(4), True) | |
1288 | + >>> numpy.allclose(q, [1, 0, 0, 0]) | |
1289 | + True | |
1290 | + >>> q = quaternion_from_matrix(numpy.diag([1, -1, -1, 1])) | |
1291 | + >>> numpy.allclose(q, [0, 1, 0, 0]) or numpy.allclose(q, [0, -1, 0, 0]) | |
1292 | + True | |
1293 | + >>> R = rotation_matrix(0.123, (1, 2, 3)) | |
1294 | + >>> q = quaternion_from_matrix(R, True) | |
1295 | + >>> numpy.allclose(q, [0.9981095, 0.0164262, 0.0328524, 0.0492786]) | |
1296 | + True | |
1297 | + >>> R = [[-0.545, 0.797, 0.260, 0], [0.733, 0.603, -0.313, 0], | |
1298 | + ... [-0.407, 0.021, -0.913, 0], [0, 0, 0, 1]] | |
1299 | + >>> q = quaternion_from_matrix(R) | |
1300 | + >>> numpy.allclose(q, [0.19069, 0.43736, 0.87485, -0.083611]) | |
1301 | + True | |
1302 | + >>> R = [[0.395, 0.362, 0.843, 0], [-0.626, 0.796, -0.056, 0], | |
1303 | + ... [-0.677, -0.498, 0.529, 0], [0, 0, 0, 1]] | |
1304 | + >>> q = quaternion_from_matrix(R) | |
1305 | + >>> numpy.allclose(q, [0.82336615, -0.13610694, 0.46344705, -0.29792603]) | |
1306 | + True | |
1307 | + >>> R = random_rotation_matrix() | |
1308 | + >>> q = quaternion_from_matrix(R) | |
1309 | + >>> is_same_transform(R, quaternion_matrix(q)) | |
1310 | + True | |
1311 | + >>> R = euler_matrix(0.0, 0.0, numpy.pi/2.0) | |
1312 | + >>> numpy.allclose(quaternion_from_matrix(R, isprecise=False), | |
1313 | + ... quaternion_from_matrix(R, isprecise=True)) | |
1314 | + True | |
1315 | + | |
1316 | + """ | |
1317 | + M = numpy.array(matrix, dtype=numpy.float64, copy=False)[:4, :4] | |
1318 | + if isprecise: | |
1319 | + q = numpy.empty((4, )) | |
1320 | + t = numpy.trace(M) | |
1321 | + if t > M[3, 3]: | |
1322 | + q[0] = t | |
1323 | + q[3] = M[1, 0] - M[0, 1] | |
1324 | + q[2] = M[0, 2] - M[2, 0] | |
1325 | + q[1] = M[2, 1] - M[1, 2] | |
1326 | + else: | |
1327 | + i, j, k = 1, 2, 3 | |
1328 | + if M[1, 1] > M[0, 0]: | |
1329 | + i, j, k = 2, 3, 1 | |
1330 | + if M[2, 2] > M[i, i]: | |
1331 | + i, j, k = 3, 1, 2 | |
1332 | + t = M[i, i] - (M[j, j] + M[k, k]) + M[3, 3] | |
1333 | + q[i] = t | |
1334 | + q[j] = M[i, j] + M[j, i] | |
1335 | + q[k] = M[k, i] + M[i, k] | |
1336 | + q[3] = M[k, j] - M[j, k] | |
1337 | + q *= 0.5 / math.sqrt(t * M[3, 3]) | |
1338 | + else: | |
1339 | + m00 = M[0, 0] | |
1340 | + m01 = M[0, 1] | |
1341 | + m02 = M[0, 2] | |
1342 | + m10 = M[1, 0] | |
1343 | + m11 = M[1, 1] | |
1344 | + m12 = M[1, 2] | |
1345 | + m20 = M[2, 0] | |
1346 | + m21 = M[2, 1] | |
1347 | + m22 = M[2, 2] | |
1348 | + # symmetric matrix K | |
1349 | + K = numpy.array([[m00-m11-m22, 0.0, 0.0, 0.0], | |
1350 | + [m01+m10, m11-m00-m22, 0.0, 0.0], | |
1351 | + [m02+m20, m12+m21, m22-m00-m11, 0.0], | |
1352 | + [m21-m12, m02-m20, m10-m01, m00+m11+m22]]) | |
1353 | + K /= 3.0 | |
1354 | + # quaternion is eigenvector of K that corresponds to largest eigenvalue | |
1355 | + w, V = numpy.linalg.eigh(K) | |
1356 | + q = V[[3, 0, 1, 2], numpy.argmax(w)] | |
1357 | + if q[0] < 0.0: | |
1358 | + numpy.negative(q, q) | |
1359 | + return q | |
1360 | + | |
1361 | + | |
1362 | +def quaternion_multiply(quaternion1, quaternion0): | |
1363 | + """Return multiplication of two quaternions. | |
1364 | + | |
1365 | + >>> q = quaternion_multiply([4, 1, -2, 3], [8, -5, 6, 7]) | |
1366 | + >>> numpy.allclose(q, [28, -44, -14, 48]) | |
1367 | + True | |
1368 | + | |
1369 | + """ | |
1370 | + w0, x0, y0, z0 = quaternion0 | |
1371 | + w1, x1, y1, z1 = quaternion1 | |
1372 | + return numpy.array([-x1*x0 - y1*y0 - z1*z0 + w1*w0, | |
1373 | + x1*w0 + y1*z0 - z1*y0 + w1*x0, | |
1374 | + -x1*z0 + y1*w0 + z1*x0 + w1*y0, | |
1375 | + x1*y0 - y1*x0 + z1*w0 + w1*z0], dtype=numpy.float64) | |
1376 | + | |
1377 | + | |
1378 | +def quaternion_conjugate(quaternion): | |
1379 | + """Return conjugate of quaternion. | |
1380 | + | |
1381 | + >>> q0 = random_quaternion() | |
1382 | + >>> q1 = quaternion_conjugate(q0) | |
1383 | + >>> q1[0] == q0[0] and all(q1[1:] == -q0[1:]) | |
1384 | + True | |
1385 | + | |
1386 | + """ | |
1387 | + q = numpy.array(quaternion, dtype=numpy.float64, copy=True) | |
1388 | + numpy.negative(q[1:], q[1:]) | |
1389 | + return q | |
1390 | + | |
1391 | + | |
1392 | +def quaternion_inverse(quaternion): | |
1393 | + """Return inverse of quaternion. | |
1394 | + | |
1395 | + >>> q0 = random_quaternion() | |
1396 | + >>> q1 = quaternion_inverse(q0) | |
1397 | + >>> numpy.allclose(quaternion_multiply(q0, q1), [1, 0, 0, 0]) | |
1398 | + True | |
1399 | + | |
1400 | + """ | |
1401 | + q = numpy.array(quaternion, dtype=numpy.float64, copy=True) | |
1402 | + numpy.negative(q[1:], q[1:]) | |
1403 | + return q / numpy.dot(q, q) | |
1404 | + | |
1405 | + | |
1406 | +def quaternion_real(quaternion): | |
1407 | + """Return real part of quaternion. | |
1408 | + | |
1409 | + >>> quaternion_real([3, 0, 1, 2]) | |
1410 | + 3.0 | |
1411 | + | |
1412 | + """ | |
1413 | + return float(quaternion[0]) | |
1414 | + | |
1415 | + | |
1416 | +def quaternion_imag(quaternion): | |
1417 | + """Return imaginary part of quaternion. | |
1418 | + | |
1419 | + >>> quaternion_imag([3, 0, 1, 2]) | |
1420 | + array([ 0., 1., 2.]) | |
1421 | + | |
1422 | + """ | |
1423 | + return numpy.array(quaternion[1:4], dtype=numpy.float64, copy=True) | |
1424 | + | |
1425 | + | |
1426 | +def quaternion_slerp(quat0, quat1, fraction, spin=0, shortestpath=True): | |
1427 | + """Return spherical linear interpolation between two quaternions. | |
1428 | + | |
1429 | + >>> q0 = random_quaternion() | |
1430 | + >>> q1 = random_quaternion() | |
1431 | + >>> q = quaternion_slerp(q0, q1, 0) | |
1432 | + >>> numpy.allclose(q, q0) | |
1433 | + True | |
1434 | + >>> q = quaternion_slerp(q0, q1, 1, 1) | |
1435 | + >>> numpy.allclose(q, q1) | |
1436 | + True | |
1437 | + >>> q = quaternion_slerp(q0, q1, 0.5) | |
1438 | + >>> angle = math.acos(numpy.dot(q0, q)) | |
1439 | + >>> numpy.allclose(2, math.acos(numpy.dot(q0, q1)) / angle) or \ | |
1440 | + numpy.allclose(2, math.acos(-numpy.dot(q0, q1)) / angle) | |
1441 | + True | |
1442 | + | |
1443 | + """ | |
1444 | + q0 = unit_vector(quat0[:4]) | |
1445 | + q1 = unit_vector(quat1[:4]) | |
1446 | + if fraction == 0.0: | |
1447 | + return q0 | |
1448 | + elif fraction == 1.0: | |
1449 | + return q1 | |
1450 | + d = numpy.dot(q0, q1) | |
1451 | + if abs(abs(d) - 1.0) < _EPS: | |
1452 | + return q0 | |
1453 | + if shortestpath and d < 0.0: | |
1454 | + # invert rotation | |
1455 | + d = -d | |
1456 | + numpy.negative(q1, q1) | |
1457 | + angle = math.acos(d) + spin * math.pi | |
1458 | + if abs(angle) < _EPS: | |
1459 | + return q0 | |
1460 | + isin = 1.0 / math.sin(angle) | |
1461 | + q0 *= math.sin((1.0 - fraction) * angle) * isin | |
1462 | + q1 *= math.sin(fraction * angle) * isin | |
1463 | + q0 += q1 | |
1464 | + return q0 | |
1465 | + | |
1466 | + | |
1467 | +def random_quaternion(rand=None): | |
1468 | + """Return uniform random unit quaternion. | |
1469 | + | |
1470 | + rand: array like or None | |
1471 | + Three independent random variables that are uniformly distributed | |
1472 | + between 0 and 1. | |
1473 | + | |
1474 | + >>> q = random_quaternion() | |
1475 | + >>> numpy.allclose(1, vector_norm(q)) | |
1476 | + True | |
1477 | + >>> q = random_quaternion(numpy.random.random(3)) | |
1478 | + >>> len(q.shape), q.shape[0]==4 | |
1479 | + (1, True) | |
1480 | + | |
1481 | + """ | |
1482 | + if rand is None: | |
1483 | + rand = numpy.random.rand(3) | |
1484 | + else: | |
1485 | + assert len(rand) == 3 | |
1486 | + r1 = numpy.sqrt(1.0 - rand[0]) | |
1487 | + r2 = numpy.sqrt(rand[0]) | |
1488 | + pi2 = math.pi * 2.0 | |
1489 | + t1 = pi2 * rand[1] | |
1490 | + t2 = pi2 * rand[2] | |
1491 | + return numpy.array([numpy.cos(t2)*r2, numpy.sin(t1)*r1, | |
1492 | + numpy.cos(t1)*r1, numpy.sin(t2)*r2]) | |
1493 | + | |
1494 | + | |
1495 | +def random_rotation_matrix(rand=None): | |
1496 | + """Return uniform random rotation matrix. | |
1497 | + | |
1498 | + rand: array like | |
1499 | + Three independent random variables that are uniformly distributed | |
1500 | + between 0 and 1 for each returned quaternion. | |
1501 | + | |
1502 | + >>> R = random_rotation_matrix() | |
1503 | + >>> numpy.allclose(numpy.dot(R.T, R), numpy.identity(4)) | |
1504 | + True | |
1505 | + | |
1506 | + """ | |
1507 | + return quaternion_matrix(random_quaternion(rand)) | |
1508 | + | |
1509 | + | |
1510 | +class Arcball(object): | |
1511 | + """Virtual Trackball Control. | |
1512 | + | |
1513 | + >>> ball = Arcball() | |
1514 | + >>> ball = Arcball(initial=numpy.identity(4)) | |
1515 | + >>> ball.place([320, 320], 320) | |
1516 | + >>> ball.down([500, 250]) | |
1517 | + >>> ball.drag([475, 275]) | |
1518 | + >>> R = ball.matrix() | |
1519 | + >>> numpy.allclose(numpy.sum(R), 3.90583455) | |
1520 | + True | |
1521 | + >>> ball = Arcball(initial=[1, 0, 0, 0]) | |
1522 | + >>> ball.place([320, 320], 320) | |
1523 | + >>> ball.setaxes([1, 1, 0], [-1, 1, 0]) | |
1524 | + >>> ball.constrain = True | |
1525 | + >>> ball.down([400, 200]) | |
1526 | + >>> ball.drag([200, 400]) | |
1527 | + >>> R = ball.matrix() | |
1528 | + >>> numpy.allclose(numpy.sum(R), 0.2055924) | |
1529 | + True | |
1530 | + >>> ball.next() | |
1531 | + | |
1532 | + """ | |
1533 | + def __init__(self, initial=None): | |
1534 | + """Initialize virtual trackball control. | |
1535 | + | |
1536 | + initial : quaternion or rotation matrix | |
1537 | + | |
1538 | + """ | |
1539 | + self._axis = None | |
1540 | + self._axes = None | |
1541 | + self._radius = 1.0 | |
1542 | + self._center = [0.0, 0.0] | |
1543 | + self._vdown = numpy.array([0.0, 0.0, 1.0]) | |
1544 | + self._constrain = False | |
1545 | + if initial is None: | |
1546 | + self._qdown = numpy.array([1.0, 0.0, 0.0, 0.0]) | |
1547 | + else: | |
1548 | + initial = numpy.array(initial, dtype=numpy.float64) | |
1549 | + if initial.shape == (4, 4): | |
1550 | + self._qdown = quaternion_from_matrix(initial) | |
1551 | + elif initial.shape == (4, ): | |
1552 | + initial /= vector_norm(initial) | |
1553 | + self._qdown = initial | |
1554 | + else: | |
1555 | + raise ValueError("initial not a quaternion or matrix") | |
1556 | + self._qnow = self._qpre = self._qdown | |
1557 | + | |
1558 | + def place(self, center, radius): | |
1559 | + """Place Arcball, e.g. when window size changes. | |
1560 | + | |
1561 | + center : sequence[2] | |
1562 | + Window coordinates of trackball center. | |
1563 | + radius : float | |
1564 | + Radius of trackball in window coordinates. | |
1565 | + | |
1566 | + """ | |
1567 | + self._radius = float(radius) | |
1568 | + self._center[0] = center[0] | |
1569 | + self._center[1] = center[1] | |
1570 | + | |
1571 | + def setaxes(self, *axes): | |
1572 | + """Set axes to constrain rotations.""" | |
1573 | + if axes is None: | |
1574 | + self._axes = None | |
1575 | + else: | |
1576 | + self._axes = [unit_vector(axis) for axis in axes] | |
1577 | + | |
1578 | + @property | |
1579 | + def constrain(self): | |
1580 | + """Return state of constrain to axis mode.""" | |
1581 | + return self._constrain | |
1582 | + | |
1583 | + @constrain.setter | |
1584 | + def constrain(self, value): | |
1585 | + """Set state of constrain to axis mode.""" | |
1586 | + self._constrain = bool(value) | |
1587 | + | |
1588 | + def down(self, point): | |
1589 | + """Set initial cursor window coordinates and pick constrain-axis.""" | |
1590 | + self._vdown = arcball_map_to_sphere(point, self._center, self._radius) | |
1591 | + self._qdown = self._qpre = self._qnow | |
1592 | + if self._constrain and self._axes is not None: | |
1593 | + self._axis = arcball_nearest_axis(self._vdown, self._axes) | |
1594 | + self._vdown = arcball_constrain_to_axis(self._vdown, self._axis) | |
1595 | + else: | |
1596 | + self._axis = None | |
1597 | + | |
1598 | + def drag(self, point): | |
1599 | + """Update current cursor window coordinates.""" | |
1600 | + vnow = arcball_map_to_sphere(point, self._center, self._radius) | |
1601 | + if self._axis is not None: | |
1602 | + vnow = arcball_constrain_to_axis(vnow, self._axis) | |
1603 | + self._qpre = self._qnow | |
1604 | + t = numpy.cross(self._vdown, vnow) | |
1605 | + if numpy.dot(t, t) < _EPS: | |
1606 | + self._qnow = self._qdown | |
1607 | + else: | |
1608 | + q = [numpy.dot(self._vdown, vnow), t[0], t[1], t[2]] | |
1609 | + self._qnow = quaternion_multiply(q, self._qdown) | |
1610 | + | |
1611 | + def next(self, acceleration=0.0): | |
1612 | + """Continue rotation in direction of last drag.""" | |
1613 | + q = quaternion_slerp(self._qpre, self._qnow, 2.0+acceleration, False) | |
1614 | + self._qpre, self._qnow = self._qnow, q | |
1615 | + | |
1616 | + def matrix(self): | |
1617 | + """Return homogeneous rotation matrix.""" | |
1618 | + return quaternion_matrix(self._qnow) | |
1619 | + | |
1620 | + | |
1621 | +def arcball_map_to_sphere(point, center, radius): | |
1622 | + """Return unit sphere coordinates from window coordinates.""" | |
1623 | + v0 = (point[0] - center[0]) / radius | |
1624 | + v1 = (center[1] - point[1]) / radius | |
1625 | + n = v0*v0 + v1*v1 | |
1626 | + if n > 1.0: | |
1627 | + # position outside of sphere | |
1628 | + n = math.sqrt(n) | |
1629 | + return numpy.array([v0/n, v1/n, 0.0]) | |
1630 | + else: | |
1631 | + return numpy.array([v0, v1, math.sqrt(1.0 - n)]) | |
1632 | + | |
1633 | + | |
1634 | +def arcball_constrain_to_axis(point, axis): | |
1635 | + """Return sphere point perpendicular to axis.""" | |
1636 | + v = numpy.array(point, dtype=numpy.float64, copy=True) | |
1637 | + a = numpy.array(axis, dtype=numpy.float64, copy=True) | |
1638 | + v -= a * numpy.dot(a, v) # on plane | |
1639 | + n = vector_norm(v) | |
1640 | + if n > _EPS: | |
1641 | + if v[2] < 0.0: | |
1642 | + numpy.negative(v, v) | |
1643 | + v /= n | |
1644 | + return v | |
1645 | + if a[2] == 1.0: | |
1646 | + return numpy.array([1.0, 0.0, 0.0]) | |
1647 | + return unit_vector([-a[1], a[0], 0.0]) | |
1648 | + | |
1649 | + | |
1650 | +def arcball_nearest_axis(point, axes): | |
1651 | + """Return axis, which arc is nearest to point.""" | |
1652 | + point = numpy.array(point, dtype=numpy.float64, copy=False) | |
1653 | + nearest = None | |
1654 | + mx = -1.0 | |
1655 | + for axis in axes: | |
1656 | + t = numpy.dot(arcball_constrain_to_axis(point, axis), point) | |
1657 | + if t > mx: | |
1658 | + nearest = axis | |
1659 | + mx = t | |
1660 | + return nearest | |
1661 | + | |
1662 | + | |
1663 | +# epsilon for testing whether a number is close to zero | |
1664 | +_EPS = numpy.finfo(float).eps * 4.0 | |
1665 | + | |
1666 | +# axis sequences for Euler angles | |
1667 | +_NEXT_AXIS = [1, 2, 0, 1] | |
1668 | + | |
1669 | +# map axes strings to/from tuples of inner axis, parity, repetition, frame | |
1670 | +_AXES2TUPLE = { | |
1671 | + 'sxyz': (0, 0, 0, 0), 'sxyx': (0, 0, 1, 0), 'sxzy': (0, 1, 0, 0), | |
1672 | + 'sxzx': (0, 1, 1, 0), 'syzx': (1, 0, 0, 0), 'syzy': (1, 0, 1, 0), | |
1673 | + 'syxz': (1, 1, 0, 0), 'syxy': (1, 1, 1, 0), 'szxy': (2, 0, 0, 0), | |
1674 | + 'szxz': (2, 0, 1, 0), 'szyx': (2, 1, 0, 0), 'szyz': (2, 1, 1, 0), | |
1675 | + 'rzyx': (0, 0, 0, 1), 'rxyx': (0, 0, 1, 1), 'ryzx': (0, 1, 0, 1), | |
1676 | + 'rxzx': (0, 1, 1, 1), 'rxzy': (1, 0, 0, 1), 'ryzy': (1, 0, 1, 1), | |
1677 | + 'rzxy': (1, 1, 0, 1), 'ryxy': (1, 1, 1, 1), 'ryxz': (2, 0, 0, 1), | |
1678 | + 'rzxz': (2, 0, 1, 1), 'rxyz': (2, 1, 0, 1), 'rzyz': (2, 1, 1, 1)} | |
1679 | + | |
1680 | +_TUPLE2AXES = dict((v, k) for k, v in _AXES2TUPLE.items()) | |
1681 | + | |
1682 | + | |
1683 | +def vector_norm(data, axis=None, out=None): | |
1684 | + """Return length, i.e. Euclidean norm, of ndarray along axis. | |
1685 | + | |
1686 | + >>> v = numpy.random.random(3) | |
1687 | + >>> n = vector_norm(v) | |
1688 | + >>> numpy.allclose(n, numpy.linalg.norm(v)) | |
1689 | + True | |
1690 | + >>> v = numpy.random.rand(6, 5, 3) | |
1691 | + >>> n = vector_norm(v, axis=-1) | |
1692 | + >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=2))) | |
1693 | + True | |
1694 | + >>> n = vector_norm(v, axis=1) | |
1695 | + >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=1))) | |
1696 | + True | |
1697 | + >>> v = numpy.random.rand(5, 4, 3) | |
1698 | + >>> n = numpy.empty((5, 3)) | |
1699 | + >>> vector_norm(v, axis=1, out=n) | |
1700 | + >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=1))) | |
1701 | + True | |
1702 | + >>> vector_norm([]) | |
1703 | + 0.0 | |
1704 | + >>> vector_norm([1]) | |
1705 | + 1.0 | |
1706 | + | |
1707 | + """ | |
1708 | + data = numpy.array(data, dtype=numpy.float64, copy=True) | |
1709 | + if out is None: | |
1710 | + if data.ndim == 1: | |
1711 | + return math.sqrt(numpy.dot(data, data)) | |
1712 | + data *= data | |
1713 | + out = numpy.atleast_1d(numpy.sum(data, axis=axis)) | |
1714 | + numpy.sqrt(out, out) | |
1715 | + return out | |
1716 | + else: | |
1717 | + data *= data | |
1718 | + numpy.sum(data, axis=axis, out=out) | |
1719 | + numpy.sqrt(out, out) | |
1720 | + | |
1721 | + | |
1722 | +def unit_vector(data, axis=None, out=None): | |
1723 | + """Return ndarray normalized by length, i.e. Euclidean norm, along axis. | |
1724 | + | |
1725 | + >>> v0 = numpy.random.random(3) | |
1726 | + >>> v1 = unit_vector(v0) | |
1727 | + >>> numpy.allclose(v1, v0 / numpy.linalg.norm(v0)) | |
1728 | + True | |
1729 | + >>> v0 = numpy.random.rand(5, 4, 3) | |
1730 | + >>> v1 = unit_vector(v0, axis=-1) | |
1731 | + >>> v2 = v0 / numpy.expand_dims(numpy.sqrt(numpy.sum(v0*v0, axis=2)), 2) | |
1732 | + >>> numpy.allclose(v1, v2) | |
1733 | + True | |
1734 | + >>> v1 = unit_vector(v0, axis=1) | |
1735 | + >>> v2 = v0 / numpy.expand_dims(numpy.sqrt(numpy.sum(v0*v0, axis=1)), 1) | |
1736 | + >>> numpy.allclose(v1, v2) | |
1737 | + True | |
1738 | + >>> v1 = numpy.empty((5, 4, 3)) | |
1739 | + >>> unit_vector(v0, axis=1, out=v1) | |
1740 | + >>> numpy.allclose(v1, v2) | |
1741 | + True | |
1742 | + >>> list(unit_vector([])) | |
1743 | + [] | |
1744 | + >>> list(unit_vector([1])) | |
1745 | + [1.0] | |
1746 | + | |
1747 | + """ | |
1748 | + if out is None: | |
1749 | + data = numpy.array(data, dtype=numpy.float64, copy=True) | |
1750 | + if data.ndim == 1: | |
1751 | + data /= math.sqrt(numpy.dot(data, data)) | |
1752 | + return data | |
1753 | + else: | |
1754 | + if out is not data: | |
1755 | + out[:] = numpy.array(data, copy=False) | |
1756 | + data = out | |
1757 | + length = numpy.atleast_1d(numpy.sum(data*data, axis)) | |
1758 | + numpy.sqrt(length, length) | |
1759 | + if axis is not None: | |
1760 | + length = numpy.expand_dims(length, axis) | |
1761 | + data /= length | |
1762 | + if out is None: | |
1763 | + return data | |
1764 | + | |
1765 | + | |
1766 | +def random_vector(size): | |
1767 | + """Return array of random doubles in the half-open interval [0.0, 1.0). | |
1768 | + | |
1769 | + >>> v = random_vector(10000) | |
1770 | + >>> numpy.all(v >= 0) and numpy.all(v < 1) | |
1771 | + True | |
1772 | + >>> v0 = random_vector(10) | |
1773 | + >>> v1 = random_vector(10) | |
1774 | + >>> numpy.any(v0 == v1) | |
1775 | + False | |
1776 | + | |
1777 | + """ | |
1778 | + return numpy.random.random(size) | |
1779 | + | |
1780 | + | |
1781 | +def vector_product(v0, v1, axis=0): | |
1782 | + """Return vector perpendicular to vectors. | |
1783 | + | |
1784 | + >>> v = vector_product([2, 0, 0], [0, 3, 0]) | |
1785 | + >>> numpy.allclose(v, [0, 0, 6]) | |
1786 | + True | |
1787 | + >>> v0 = [[2, 0, 0, 2], [0, 2, 0, 2], [0, 0, 2, 2]] | |
1788 | + >>> v1 = [[3], [0], [0]] | |
1789 | + >>> v = vector_product(v0, v1) | |
1790 | + >>> numpy.allclose(v, [[0, 0, 0, 0], [0, 0, 6, 6], [0, -6, 0, -6]]) | |
1791 | + True | |
1792 | + >>> v0 = [[2, 0, 0], [2, 0, 0], [0, 2, 0], [2, 0, 0]] | |
1793 | + >>> v1 = [[0, 3, 0], [0, 0, 3], [0, 0, 3], [3, 3, 3]] | |
1794 | + >>> v = vector_product(v0, v1, axis=1) | |
1795 | + >>> numpy.allclose(v, [[0, 0, 6], [0, -6, 0], [6, 0, 0], [0, -6, 6]]) | |
1796 | + True | |
1797 | + | |
1798 | + """ | |
1799 | + return numpy.cross(v0, v1, axis=axis) | |
1800 | + | |
1801 | + | |
1802 | +def angle_between_vectors(v0, v1, directed=True, axis=0): | |
1803 | + """Return angle between vectors. | |
1804 | + | |
1805 | + If directed is False, the input vectors are interpreted as undirected axes, | |
1806 | + i.e. the maximum angle is pi/2. | |
1807 | + | |
1808 | + >>> a = angle_between_vectors([1, -2, 3], [-1, 2, -3]) | |
1809 | + >>> numpy.allclose(a, math.pi) | |
1810 | + True | |
1811 | + >>> a = angle_between_vectors([1, -2, 3], [-1, 2, -3], directed=False) | |
1812 | + >>> numpy.allclose(a, 0) | |
1813 | + True | |
1814 | + >>> v0 = [[2, 0, 0, 2], [0, 2, 0, 2], [0, 0, 2, 2]] | |
1815 | + >>> v1 = [[3], [0], [0]] | |
1816 | + >>> a = angle_between_vectors(v0, v1) | |
1817 | + >>> numpy.allclose(a, [0, 1.5708, 1.5708, 0.95532]) | |
1818 | + True | |
1819 | + >>> v0 = [[2, 0, 0], [2, 0, 0], [0, 2, 0], [2, 0, 0]] | |
1820 | + >>> v1 = [[0, 3, 0], [0, 0, 3], [0, 0, 3], [3, 3, 3]] | |
1821 | + >>> a = angle_between_vectors(v0, v1, axis=1) | |
1822 | + >>> numpy.allclose(a, [1.5708, 1.5708, 1.5708, 0.95532]) | |
1823 | + True | |
1824 | + | |
1825 | + """ | |
1826 | + v0 = numpy.array(v0, dtype=numpy.float64, copy=False) | |
1827 | + v1 = numpy.array(v1, dtype=numpy.float64, copy=False) | |
1828 | + dot = numpy.sum(v0 * v1, axis=axis) | |
1829 | + dot /= vector_norm(v0, axis=axis) * vector_norm(v1, axis=axis) | |
1830 | + return numpy.arccos(dot if directed else numpy.fabs(dot)) | |
1831 | + | |
1832 | + | |
1833 | +def inverse_matrix(matrix): | |
1834 | + """Return inverse of square transformation matrix. | |
1835 | + | |
1836 | + >>> M0 = random_rotation_matrix() | |
1837 | + >>> M1 = inverse_matrix(M0.T) | |
1838 | + >>> numpy.allclose(M1, numpy.linalg.inv(M0.T)) | |
1839 | + True | |
1840 | + >>> for size in range(1, 7): | |
1841 | + ... M0 = numpy.random.rand(size, size) | |
1842 | + ... M1 = inverse_matrix(M0) | |
1843 | + ... if not numpy.allclose(M1, numpy.linalg.inv(M0)): print(size) | |
1844 | + | |
1845 | + """ | |
1846 | + return numpy.linalg.inv(matrix) | |
1847 | + | |
1848 | + | |
1849 | +def concatenate_matrices(*matrices): | |
1850 | + """Return concatenation of series of transformation matrices. | |
1851 | + | |
1852 | + >>> M = numpy.random.rand(16).reshape((4, 4)) - 0.5 | |
1853 | + >>> numpy.allclose(M, concatenate_matrices(M)) | |
1854 | + True | |
1855 | + >>> numpy.allclose(numpy.dot(M, M.T), concatenate_matrices(M, M.T)) | |
1856 | + True | |
1857 | + | |
1858 | + """ | |
1859 | + M = numpy.identity(4) | |
1860 | + for i in matrices: | |
1861 | + M = numpy.dot(M, i) | |
1862 | + return M | |
1863 | + | |
1864 | + | |
1865 | +def is_same_transform(matrix0, matrix1): | |
1866 | + """Return True if two matrices perform same transformation. | |
1867 | + | |
1868 | + >>> is_same_transform(numpy.identity(4), numpy.identity(4)) | |
1869 | + True | |
1870 | + >>> is_same_transform(numpy.identity(4), random_rotation_matrix()) | |
1871 | + False | |
1872 | + | |
1873 | + """ | |
1874 | + matrix0 = numpy.array(matrix0, dtype=numpy.float64, copy=True) | |
1875 | + matrix0 /= matrix0[3, 3] | |
1876 | + matrix1 = numpy.array(matrix1, dtype=numpy.float64, copy=True) | |
1877 | + matrix1 /= matrix1[3, 3] | |
1878 | + return numpy.allclose(matrix0, matrix1) | |
1879 | + | |
1880 | + | |
1881 | +def _import_module(name, package=None, warn=True, prefix='_py_', ignore='_'): | |
1882 | + """Try import all public attributes from module into global namespace. | |
1883 | + | |
1884 | + Existing attributes with name clashes are renamed with prefix. | |
1885 | + Attributes starting with underscore are ignored by default. | |
1886 | + | |
1887 | + Return True on successful import. | |
1888 | + | |
1889 | + """ | |
1890 | + import warnings | |
1891 | + from importlib import import_module | |
1892 | + try: | |
1893 | + if not package: | |
1894 | + module = import_module(name) | |
1895 | + else: | |
1896 | + module = import_module('.' + name, package=package) | |
1897 | + except ImportError: | |
1898 | + if warn: | |
1899 | + warnings.warn("failed to import module %s" % name) | |
1900 | + else: | |
1901 | + for attr in dir(module): | |
1902 | + if ignore and attr.startswith(ignore): | |
1903 | + continue | |
1904 | + if prefix: | |
1905 | + if attr in globals(): | |
1906 | + globals()[prefix + attr] = globals()[attr] | |
1907 | + elif warn: | |
1908 | + warnings.warn("no Python implementation of " + attr) | |
1909 | + globals()[attr] = getattr(module, attr) | |
1910 | + return True | |
1911 | + | |
1912 | + | |
1913 | +_import_module('_transformations') | |
1914 | + | |
1915 | +if __name__ == "__main__": | |
1916 | + import doctest | |
1917 | + import random # used in doctests | |
1918 | + numpy.set_printoptions(suppress=True, precision=5) | |
1919 | + doctest.testmod() | |
1920 | + | ... | ... |
... | ... | @@ -0,0 +1,117 @@ |
1 | +import numpy as np | |
2 | +cimport numpy as np | |
3 | +cimport cython | |
4 | + | |
5 | +from .cy_my_types cimport image_t | |
6 | +from .interpolation cimport interpolate, tricub_interpolate, tricubicInterpolate | |
7 | + | |
8 | +from libc.math cimport floor, ceil, sqrt, fabs, round | |
9 | +from cython.parallel import prange | |
10 | + | |
11 | + | |
12 | +@cython.boundscheck(False) # turn of bounds-checking for entire function | |
13 | +@cython.cdivision(True) | |
14 | +@cython.wraparound(False) | |
15 | +cdef inline void mul_mat4_vec4(np.float64_t[:, :] M, | |
16 | + double* coord, | |
17 | + double* out) nogil: | |
18 | + | |
19 | + out[0] = coord[0] * M[0, 0] + coord[1] * M[0, 1] + coord[2] * M[0, 2] + coord[3] * M[0, 3] | |
20 | + out[1] = coord[0] * M[1, 0] + coord[1] * M[1, 1] + coord[2] * M[1, 2] + coord[3] * M[1, 3] | |
21 | + out[2] = coord[0] * M[2, 0] + coord[1] * M[2, 1] + coord[2] * M[2, 2] + coord[3] * M[2, 3] | |
22 | + out[3] = coord[0] * M[3, 0] + coord[1] * M[3, 1] + coord[2] * M[3, 2] + coord[3] * M[3, 3] | |
23 | + | |
24 | + | |
25 | +@cython.boundscheck(False) # turn of bounds-checking for entire function | |
26 | +@cython.cdivision(True) | |
27 | +@cython.wraparound(False) | |
28 | +cdef image_t coord_transform(image_t[:, :, :] volume, np.float64_t[:, :] M, int x, int y, int z, double sx, double sy, double sz, short minterpol, image_t cval) nogil: | |
29 | + | |
30 | + cdef double coord[4] | |
31 | + coord[0] = z*sz | |
32 | + coord[1] = y*sy | |
33 | + coord[2] = x*sx | |
34 | + coord[3] = 1.0 | |
35 | + | |
36 | + cdef double _ncoord[4] | |
37 | + _ncoord[3] = 1 | |
38 | + # _ncoord[:] = [0.0, 0.0, 0.0, 1.0] | |
39 | + | |
40 | + cdef unsigned int dz, dy, dx | |
41 | + dz = volume.shape[0] | |
42 | + dy = volume.shape[1] | |
43 | + dx = volume.shape[2] | |
44 | + | |
45 | + | |
46 | + mul_mat4_vec4(M, coord, _ncoord) | |
47 | + | |
48 | + cdef double nz, ny, nx | |
49 | + nz = (_ncoord[0]/_ncoord[3])/sz | |
50 | + ny = (_ncoord[1]/_ncoord[3])/sy | |
51 | + nx = (_ncoord[2]/_ncoord[3])/sx | |
52 | + | |
53 | + cdef double v | |
54 | + | |
55 | + if 0 <= nz <= (dz-1) and 0 <= ny <= (dy-1) and 0 <= nx <= (dx-1): | |
56 | + if minterpol == 0: | |
57 | + return volume[<int>round(nz), <int>round(ny), <int>round(nx)] | |
58 | + elif minterpol == 1: | |
59 | + return <image_t>interpolate(volume, nx, ny, nz) | |
60 | + else: | |
61 | + v = tricubicInterpolate(volume, nx, ny, nz) | |
62 | + if (v < cval): | |
63 | + v = cval | |
64 | + return <image_t>v | |
65 | + else: | |
66 | + return cval | |
67 | + | |
68 | + | |
69 | +@cython.boundscheck(False) # turn of bounds-checking for entire function | |
70 | +@cython.cdivision(True) | |
71 | +@cython.wraparound(False) | |
72 | +def apply_view_matrix_transform(image_t[:, :, :] volume, | |
73 | + spacing, | |
74 | + np.float64_t[:, :] M, | |
75 | + unsigned int n, str orientation, | |
76 | + int minterpol, | |
77 | + image_t cval, | |
78 | + image_t[:, :, :] out): | |
79 | + | |
80 | + cdef unsigned int dz, dy, dx | |
81 | + cdef int z, y, x | |
82 | + dz = volume.shape[0] | |
83 | + dy = volume.shape[1] | |
84 | + dx = volume.shape[2] | |
85 | + | |
86 | + cdef unsigned int odz, ody, odx | |
87 | + odz = out.shape[0] | |
88 | + ody = out.shape[1] | |
89 | + odx = out.shape[2] | |
90 | + | |
91 | + cdef unsigned int count = 0 | |
92 | + | |
93 | + cdef double sx, sy, sz | |
94 | + sx = spacing[0] | |
95 | + sy = spacing[1] | |
96 | + sz = spacing[2] | |
97 | + | |
98 | + if orientation == 'AXIAL': | |
99 | + for z in xrange(n, n+odz): | |
100 | + for y in prange(dy, nogil=True): | |
101 | + for x in xrange(dx): | |
102 | + out[count, y, x] = coord_transform(volume, M, x, y, z, sx, sy, sz, minterpol, cval) | |
103 | + count += 1 | |
104 | + | |
105 | + elif orientation == 'CORONAL': | |
106 | + for y in xrange(n, n+ody): | |
107 | + for z in prange(dz, nogil=True): | |
108 | + for x in xrange(dx): | |
109 | + out[z, count, x] = coord_transform(volume, M, x, y, z, sx, sy, sz, minterpol, cval) | |
110 | + count += 1 | |
111 | + | |
112 | + elif orientation == 'SAGITAL': | |
113 | + for x in xrange(n, n+odx): | |
114 | + for z in prange(dz, nogil=True): | |
115 | + for y in xrange(dy): | |
116 | + out[z, y, count] = coord_transform(volume, M, x, y, z, sx, sy, sz, minterpol,cval) | |
117 | + count += 1 | ... | ... |
invesalius/invesalius.py
setup.py
... | ... | @@ -12,7 +12,18 @@ if sys.platform == 'linux2': |
12 | 12 | ext_modules = [ Extension("invesalius.data.mips", ["invesalius/data/mips.pyx"], |
13 | 13 | include_dirs = [numpy.get_include()], |
14 | 14 | extra_compile_args=['-fopenmp'], |
15 | - extra_link_args=['-fopenmp'],)] | |
15 | + extra_link_args=['-fopenmp']), | |
16 | + | |
17 | + Extension("invesalius.data.interpolation", ["invesalius/data/interpolation.pyx"], | |
18 | + include_dirs=[numpy.get_include()], | |
19 | + extra_compile_args=['-fopenmp',], | |
20 | + extra_link_args=['-fopenmp',]), | |
21 | + | |
22 | + Extension("invesalius.data.transforms", ["invesalius/data/transforms.pyx"], | |
23 | + include_dirs=[numpy.get_include()], | |
24 | + extra_compile_args=['-fopenmp',], | |
25 | + extra_link_args=['-fopenmp',]), | |
26 | + ] | |
16 | 27 | ) |
17 | 28 | |
18 | 29 | elif sys.platform == 'win32': | ... | ... |