vec2d.py 15.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
# Name:         vec2d.py 
# Package:      wx.lib.pdfviewer
#
# Purpose:      2D vector class. Used for computing Bezier curves
#
# Author:       
# Copyright:    
# Licence:      LGPL - from http://www.pygame.org/wiki/2DVectorClass

# History:      Created 17 Jun 2009
#
#----------------------------------------------------------------------------

import operator
import math
 
class vec2d(object):
    """2d vector class, supports vector and scalar operators,
       and also provides a bunch of high level functions
       """
    __slots__ = ['x', 'y']
 
    def __init__(self, x_or_pair, y = None):
        if y == None:
            self.x = x_or_pair[0]
            self.y = x_or_pair[1]
        else:
            self.x = x_or_pair
            self.y = y
 
    def __len__(self):
        return 2
 
    def __getitem__(self, key):
        if key == 0:
            return self.x
        elif key == 1:
            return self.y
        else:
            raise IndexError("Invalid subscript "+str(key)+" to vec2d")
 
    def __setitem__(self, key, value):
        if key == 0:
            self.x = value
        elif key == 1:
            self.y = value
        else:
            raise IndexError("Invalid subscript "+str(key)+" to vec2d")
 
    # String representaion (for debugging)
    def __repr__(self):
        return 'vec2d(%s, %s)' % (self.x, self.y)
    
    # Comparison
    def __eq__(self, other):
        if hasattr(other, "__getitem__") and len(other) == 2:
            return self.x == other[0] and self.y == other[1]
        else:
            return False
    
    def __ne__(self, other):
        if hasattr(other, "__getitem__") and len(other) == 2:
            return self.x != other[0] or self.y != other[1]
        else:
            return True
 
    def __nonzero__(self):
        return bool(self.x or self.y)
 
    # Generic operator handlers
    def _o2(self, other, f):
        "Any two-operator operation where the left operand is a vec2d"
        if isinstance(other, vec2d):
            return vec2d(f(self.x, other.x),
                         f(self.y, other.y))
        elif (hasattr(other, "__getitem__")):
            return vec2d(f(self.x, other[0]),
                         f(self.y, other[1]))
        else:
            return vec2d(f(self.x, other),
                         f(self.y, other))
 
    def _r_o2(self, other, f):
        "Any two-operator operation where the right operand is a vec2d"
        if (hasattr(other, "__getitem__")):
            return vec2d(f(other[0], self.x),
                         f(other[1], self.y))
        else:
            return vec2d(f(other, self.x),
                         f(other, self.y))
 
    def _io(self, other, f):
        "inplace operator"
        if (hasattr(other, "__getitem__")):
            self.x = f(self.x, other[0])
            self.y = f(self.y, other[1])
        else:
            self.x = f(self.x, other)
            self.y = f(self.y, other)
        return self
 
    # Addition
    def __add__(self, other):
        if isinstance(other, vec2d):
            return vec2d(self.x + other.x, self.y + other.y)
        elif hasattr(other, "__getitem__"):
            return vec2d(self.x + other[0], self.y + other[1])
        else:
            return vec2d(self.x + other, self.y + other)
    __radd__ = __add__
    
    def __iadd__(self, other):
        if isinstance(other, vec2d):
            self.x += other.x
            self.y += other.y
        elif hasattr(other, "__getitem__"):
            self.x += other[0]
            self.y += other[1]
        else:
            self.x += other
            self.y += other
        return self
 
    # Subtraction
    def __sub__(self, other):
        if isinstance(other, vec2d):
            return vec2d(self.x - other.x, self.y - other.y)
        elif (hasattr(other, "__getitem__")):
            return vec2d(self.x - other[0], self.y - other[1])
        else:
            return vec2d(self.x - other, self.y - other)
    def __rsub__(self, other):
        if isinstance(other, vec2d):
            return vec2d(other.x - self.x, other.y - self.y)
        if (hasattr(other, "__getitem__")):
            return vec2d(other[0] - self.x, other[1] - self.y)
        else:
            return vec2d(other - self.x, other - self.y)
    def __isub__(self, other):
        if isinstance(other, vec2d):
            self.x -= other.x
            self.y -= other.y
        elif (hasattr(other, "__getitem__")):
            self.x -= other[0]
            self.y -= other[1]
        else:
            self.x -= other
            self.y -= other
        return self
 
    # Multiplication
    def __mul__(self, other):
        if isinstance(other, vec2d):
            return vec2d(self.x*other.x, self.y*other.y)
        if (hasattr(other, "__getitem__")):
            return vec2d(self.x*other[0], self.y*other[1])
        else:
            return vec2d(self.x*other, self.y*other)
    __rmul__ = __mul__
    
    def __imul__(self, other):
        if isinstance(other, vec2d):
            self.x *= other.x
            self.y *= other.y
        elif (hasattr(other, "__getitem__")):
            self.x *= other[0]
            self.y *= other[1]
        else:
            self.x *= other
            self.y *= other
        return self
 
    # Division
    def __div__(self, other):
        return self._o2(other, operator.div)
    def __rdiv__(self, other):
        return self._r_o2(other, operator.div)
    def __idiv__(self, other):
        return self._io(other, operator.div)
 
    def __floordiv__(self, other):
        return self._o2(other, operator.floordiv)
    def __rfloordiv__(self, other):
        return self._r_o2(other, operator.floordiv)
    def __ifloordiv__(self, other):
        return self._io(other, operator.floordiv)
 
    def __truediv__(self, other):
        return self._o2(other, operator.truediv)
    def __rtruediv__(self, other):
        return self._r_o2(other, operator.truediv)
    def __itruediv__(self, other):
        return self._io(other, operator.floordiv)
 
    # Modulo
    def __mod__(self, other):
        return self._o2(other, operator.mod)
    def __rmod__(self, other):
        return self._r_o2(other, operator.mod)
 
    def __divmod__(self, other):
        return self._o2(other, operator.divmod)
    def __rdivmod__(self, other):
        return self._r_o2(other, operator.divmod)
 
    # Exponentation
    def __pow__(self, other):
        return self._o2(other, operator.pow)
    def __rpow__(self, other):
        return self._r_o2(other, operator.pow)
 
    # Bitwise operators
    def __lshift__(self, other):
        return self._o2(other, operator.lshift)
    def __rlshift__(self, other):
        return self._r_o2(other, operator.lshift)
 
    def __rshift__(self, other):
        return self._o2(other, operator.rshift)
    def __rrshift__(self, other):
        return self._r_o2(other, operator.rshift)
 
    def __and__(self, other):
        return self._o2(other, operator.and_)
    __rand__ = __and__
 
    def __or__(self, other):
        return self._o2(other, operator.or_)
    __ror__ = __or__
 
    def __xor__(self, other):
        return self._o2(other, operator.xor)
    __rxor__ = __xor__
 
    # Unary operations
    def __neg__(self):
        return vec2d(operator.neg(self.x), operator.neg(self.y))
 
    def __pos__(self):
        return vec2d(operator.pos(self.x), operator.pos(self.y))
 
    def __abs__(self):
        return vec2d(abs(self.x), abs(self.y))
 
    def __invert__(self):
        return vec2d(-self.x, -self.y)
 
    # vectory functions
    def get_length_sqrd(self): 
        return self.x**2 + self.y**2
 
    def get_length(self):
        return math.sqrt(self.x**2 + self.y**2)    
    def __setlength(self, value):
        length = self.get_length()
        self.x *= value/length
        self.y *= value/length
    length = property(get_length, __setlength, None, "gets or sets the magnitude of the vector")
       
    def rotate(self, angle_degrees):
        radians = math.radians(angle_degrees)
        cos = math.cos(radians)
        sin = math.sin(radians)
        x = self.x*cos - self.y*sin
        y = self.x*sin + self.y*cos
        self.x = x
        self.y = y
 
    def rotated(self, angle_degrees):
        radians = math.radians(angle_degrees)
        cos = math.cos(radians)
        sin = math.sin(radians)
        x = self.x*cos - self.y*sin
        y = self.x*sin + self.y*cos
        return vec2d(x, y)
    
    def get_angle(self):
        if (self.get_length_sqrd() == 0):
            return 0
        return math.degrees(math.atan2(self.y, self.x))
    def __setangle(self, angle_degrees):
        self.x = self.length
        self.y = 0
        self.rotate(angle_degrees)
    angle = property(get_angle, __setangle, None, "gets or sets the angle of a vector")
 
    def get_angle_between(self, other):
        cross = self.x*other[1] - self.y*other[0]
        dot = self.x*other[0] + self.y*other[1]
        return math.degrees(math.atan2(cross, dot))
            
    def normalized(self):
        length = self.length
        if length != 0:
            return self/length
        return vec2d(self)
 
    def normalize_return_length(self):
        length = self.length
        if length != 0:
            self.x /= length
            self.y /= length
        return length
 
    def perpendicular(self):
        return vec2d(-self.y, self.x)
    
    def perpendicular_normal(self):
        length = self.length
        if length != 0:
            return vec2d(-self.y/length, self.x/length)
        return vec2d(self)
        
    def dot(self, other):
        return float(self.x*other[0] + self.y*other[1])
        
    def get_distance(self, other):
        return math.sqrt((self.x - other[0])**2 + (self.y - other[1])**2)
        
    def get_dist_sqrd(self, other):
        return (self.x - other[0])**2 + (self.y - other[1])**2
        
    def projection(self, other):
        other_length_sqrd = other[0]*other[0] + other[1]*other[1]
        projected_length_times_other_length = self.dot(other)
        return other*(projected_length_times_other_length/other_length_sqrd)
    
    def cross(self, other):
        return self.x*other[1] - self.y*other[0]
    
    def interpolate_to(self, other, range):
        return vec2d(self.x + (other[0] - self.x)*range, self.y + (other[1] - self.y)*range)
    
    def convert_to_basis(self, x_vector, y_vector):
        return vec2d(self.dot(x_vector)/x_vector.get_length_sqrd(), self.dot(y_vector)/y_vector.get_length_sqrd())
 
    def __getstate__(self):
        return [self.x, self.y]
        
    def __setstate__(self, dict):
        self.x, self.y = dict
        
########################################################################
## Unit Testing                                                       ##
########################################################################
if __name__ == "__main__":
 
    import unittest
    import pickle
 
    ####################################################################
    class UnitTestVec2D(unittest.TestCase):
    
        def setUp(self):
            pass
        
        def testCreationAndAccess(self):
            v = vec2d(111,222)
            self.assert_(v.x == 111 and v.y == 222)
            v.x = 333
            v[1] = 444
            self.assert_(v[0] == 333 and v[1] == 444)
 
        def testMath(self):
            v = vec2d(111,222)
            self.assertEqual(v + 1, vec2d(112,223))
            self.assert_(v - 2 == [109,220])
            self.assert_(v * 3 == (333,666))
            self.assert_(v / 2.0 == vec2d(55.5, 111))
            self.assert_(v / 2 == (55, 111))
            self.assert_(v ** vec2d(2,3) == [12321, 10941048])
            self.assert_(v + [-11, 78] == vec2d(100, 300))
            self.assert_(v / [11,2] == [10,111])
 
        def testReverseMath(self):
            v = vec2d(111,222)
            self.assert_(1 + v == vec2d(112,223))
            self.assert_(2 - v == [-109,-220])
            self.assert_(3 * v == (333,666))
            self.assert_([222,999] / v == [2,4])
            self.assert_([111,222] ** vec2d(2,3) == [12321, 10941048])
            self.assert_([-11, 78] + v == vec2d(100, 300))
 
        def testUnary(self):
            v = vec2d(111,222)
            v = -v
            self.assert_(v == [-111,-222])
            v = abs(v)
            self.assert_(v == [111,222])
 
        def testLength(self):
            v = vec2d(3,4)
            self.assert_(v.length == 5)
            self.assert_(v.get_length_sqrd() == 25)
            self.assert_(v.normalize_return_length() == 5)
            self.assert_(v.length == 1)
            v.length = 5
            self.assert_(v == vec2d(3,4))
            v2 = vec2d(10, -2)
            self.assert_(v.get_distance(v2) == (v - v2).get_length())
            
        def testAngles(self):            
            v = vec2d(0, 3)
            self.assertEquals(v.angle, 90)
            v2 = vec2d(v)
            v.rotate(-90)
            self.assertEqual(v.get_angle_between(v2), 90)
            v2.angle -= 90
            self.assertEqual(v.length, v2.length)
            self.assertEquals(v2.angle, 0)
            self.assertEqual(v2, [3, 0])
            self.assert_((v - v2).length < .00001)
            self.assertEqual(v.length, v2.length)
            v2.rotate(300)
            self.assertAlmostEquals(v.get_angle_between(v2), -60)
            v2.rotate(v2.get_angle_between(v))
            angle = v.get_angle_between(v2)
            self.assertAlmostEquals(v.get_angle_between(v2), 0)  
 
        def testHighLevel(self):
            basis0 = vec2d(5.0, 0)
            basis1 = vec2d(0, .5)
            v = vec2d(10, 1)
            self.assert_(v.convert_to_basis(basis0, basis1) == [2, 2])
            self.assert_(v.projection(basis0) == (10, 0))
            self.assert_(basis0.dot(basis1) == 0)
            
        def testCross(self):
            lhs = vec2d(1, .5)
            rhs = vec2d(4,6)
            self.assert_(lhs.cross(rhs) == 4)
            
        def testComparison(self):
            int_vec = vec2d(3, -2)
            flt_vec = vec2d(3.0, -2.0)
            zero_vec = vec2d(0, 0)
            self.assert_(int_vec == flt_vec)
            self.assert_(int_vec != zero_vec)
            self.assert_((flt_vec == zero_vec) == False)
            self.assert_((flt_vec != int_vec) == False)
            self.assert_(int_vec == (3, -2))
            self.assert_(int_vec != [0, 0])
            self.assert_(int_vec != 5)
            self.assert_(int_vec != [3, -2, -5])
        
        def testInplace(self):
            inplace_vec = vec2d(5, 13)
            inplace_ref = inplace_vec
            inplace_src = vec2d(inplace_vec)    
            inplace_vec *= .5
            inplace_vec += .5
            inplace_vec /= (3, 6)
            inplace_vec += vec2d(-1, -1)
            alternate = (inplace_src*.5 + .5)/vec2d(3,6) + [-1, -1]
            self.assertEquals(inplace_vec, inplace_ref)
            self.assertEquals(inplace_vec, alternate)
        
        def testPickle(self):
            testvec = vec2d(5, .3)
            testvec_str = pickle.dumps(testvec)
            loaded_vec = pickle.loads(testvec_str)
            self.assertEquals(testvec, loaded_vec)
    
    ####################################################################
    unittest.main()
 
    ########################################################################