matlab.matlab
1.25 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
% Syntax Highlight Test File for MatLab
% Some comments about this file
% HelloWorld in MatLab
disp('Hello World');
% And now some other randomness to test different color regions
for j=1:4,
j
end
A = 1; B = [];
if(A|B) disp 'The statement is true', end;
% Plotting Polynomials
x=[27.7 28 29 30];
a=[4.1 4.3 4.1];
b=[0.749 0.503 -0.781];
c=[0.0 -0.819 -0.470];
d=[-0.910 0.116 0.157];
for i=1:3
['p_' num2str(i) '(x) = ' num2str(a(i)) ' + ' ...
num2str(b(i)) ' (x - ' num2str(x(i)) ') + ' ...
num2str(c(i)) ' (x - ' num2str(x(i)) ')^2 + ' ...
num2str(d(i)) ' (x - ' num2str(x(i)) ')^3']
end;
%---------------------------------------------------------------------
function y = nev(xx,n,x,Q)
% NEV Neville's algorithm as a function
% y= nev(xx,n,x,Q)
%
% inputs:
% n = order of interpolation (n+1 = # of points)
% x(1),...,x(n+1) x coords
% Q(1),...,Q(n+1) y coords
% xx=evaluation point for interpolating polynomial p
%
% output: p(xx)
for i = n:-1:1
for j = 1:i
Q(j) = (xx-x(j))*Q(j+1) - (xx-x(j+n+1-i))*Q(j);
Q(j) = Q(j)/(x(j+n+1-i)-x(j));
end
end
y = Q(1);
%---------------------------------------------------------------------
function ssum = geom(a,N)
n=0:N;
ssum = sum(a.^n);
end