klatt.c 31.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
/*
 * Copyright (C) 2008 by Jonathan Duddington
 * email: jonsd@users.sourceforge.net
 * Copyright (C) 2013-2016 Reece H. Dunn
 *
 * Based on a re-implementation by:
 * (c) 1993,94 Jon Iles and Nick Ing-Simmons
 * of the Klatt cascade-parallel formant synthesizer
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, see: <http://www.gnu.org/licenses/>.
 */

// See URL: ftp://svr-ftp.eng.cam.ac.uk/pub/comp.speech/synthesis/klatt.3.04.tar.gz

#include "config.h"

#include <math.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <espeak-ng/espeak_ng.h>
#include <espeak/speak_lib.h>

#include "speech.h"
#include "klatt.h"
#include "phoneme.h"
#include "synthesize.h"
#include "voice.h"

extern unsigned char *out_ptr;
extern unsigned char *out_start;
extern unsigned char *out_end;
extern WGEN_DATA wdata;
static int nsamples;
static int sample_count;

#ifdef _MSC_VER
#define getrandom(min, max) ((rand()%(int)(((max)+1)-(min)))+(min))
#else
#define getrandom(min, max) ((rand()%(long)(((max)+1)-(min)))+(min))
#endif

// function prototypes for functions private to this file

static void flutter(klatt_frame_ptr);
static double sampled_source(int);
static double impulsive_source(void);
static double natural_source(void);
static void pitch_synch_par_reset(klatt_frame_ptr);
static double gen_noise(double);
static double DBtoLIN(long);
static void frame_init(klatt_frame_ptr);
static void setabc(long, long, resonator_ptr);
static void setzeroabc(long, long, resonator_ptr);

static klatt_frame_t kt_frame;
static klatt_global_t kt_globals;

#define NUMBER_OF_SAMPLES 100

static int scale_wav_tab[] = { 45, 38, 45, 45, 55 }; // scale output from different voicing sources

// For testing, this can be overwritten in KlattInit()
static short natural_samples2[256] = {
	 2583,  2516,  2450,  2384,  2319,  2254,  2191,  2127,
	 2067,  2005,  1946,  1890,  1832,  1779,  1726,  1675,
	 1626,  1579,  1533,  1491,  1449,  1409,  1372,  1336,
	 1302,  1271,  1239,  1211,  1184,  1158,  1134,  1111,
	 1089,  1069,  1049,  1031,  1013,   996,   980,   965,
	  950,   936,   921,   909,   895,   881,   869,   855,
	  843,   830,   818,   804,   792,   779,   766,   754,
	  740,   728,   715,   702,   689,   676,   663,   651,
	  637,   626,   612,   601,   588,   576,   564,   552,
	  540,   530,   517,   507,   496,   485,   475,   464,
	  454,   443,   434,   424,   414,   404,   394,   385,
	  375,   366,   355,   347,   336,   328,   317,   308,
	  299,   288,   280,   269,   260,   250,   240,   231,
	  220,   212,   200,   192,   181,   172,   161,   152,
	  142,   133,   123,   113,   105,    94,    86,    76,
	   67,    57,    49,    39,    30,    22,    11,     4,
	   -5,   -14,   -23,   -32,   -41,   -50,   -60,   -69,
	  -78,   -87,   -96,  -107,  -115,  -126,  -134,  -144,
	 -154,  -164,  -174,  -183,  -193,  -203,  -213,  -222,
	 -233,  -242,  -252,  -262,  -271,  -281,  -291,  -301,
	 -310,  -320,  -330,  -339,  -349,  -357,  -368,  -377,
	 -387,  -397,  -406,  -417,  -426,  -436,  -446,  -456,
	 -467,  -477,  -487,  -499,  -509,  -521,  -532,  -543,
	 -555,  -567,  -579,  -591,  -603,  -616,  -628,  -641,
	 -653,  -666,  -679,  -692,  -705,  -717,  -732,  -743,
	 -758,  -769,  -783,  -795,  -808,  -820,  -834,  -845,
	 -860,  -872,  -885,  -898,  -911,  -926,  -939,  -955,
	 -968,  -986,  -999, -1018, -1034, -1054, -1072, -1094,
	-1115, -1138, -1162, -1188, -1215, -1244, -1274, -1307,
	-1340, -1377, -1415, -1453, -1496, -1538, -1584, -1631,
	-1680, -1732, -1783, -1839, -1894, -1952, -2010, -2072,
	-2133, -2196, -2260, -2325, -2390, -2456, -2522, -2589,
};
static short natural_samples[100] = {
	 -310,  -400,   530,   356,   224,    89,   23,  -10, -58, -16, 461,  599,  536,   701,   770,
	  605,   497,   461,   560,   404,   110,  224,  131, 104, -97, 155,  278, -154, -1165,
	 -598,   737,   125,  -592,    41,    11, -247,  -10,  65,  92,  80, -304,   71,   167,    -1, 122,
	  233,   161,   -43,   278,   479,   485,  407,  266, 650, 134,  80,  236,   68,   260,   269, 179,
	   53,   140,   275,   293,   296,   104,  257,  152, 311, 182, 263,  245,  125,   314,   140, 44,
	  203,   230,  -235,  -286,    23,   107,   92,  -91,  38, 464, 443,  176,   98,  -784, -2449,
	-1891, -1045, -1600, -1462, -1384, -1261, -949, -730
};

/*
   function RESONATOR

   This is a generic resonator function. Internal memory for the resonator
   is stored in the globals structure.
 */

static double resonator(resonator_ptr r, double input)
{
	double x;

	x = (double)((double)r->a * (double)input + (double)r->b * (double)r->p1 + (double)r->c * (double)r->p2);
	r->p2 = (double)r->p1;
	r->p1 = (double)x;

	return (double)x;
}

static double resonator2(resonator_ptr r, double input)
{
	double x;

	x = (double)((double)r->a * (double)input + (double)r->b * (double)r->p1 + (double)r->c * (double)r->p2);
	r->p2 = (double)r->p1;
	r->p1 = (double)x;

	r->a += r->a_inc;
	r->b += r->b_inc;
	r->c += r->c_inc;
	return (double)x;
}

static double antiresonator2(resonator_ptr r, double input)
{
	register double x = (double)r->a * (double)input + (double)r->b * (double)r->p1 + (double)r->c * (double)r->p2;
	r->p2 = (double)r->p1;
	r->p1 = (double)input;

	r->a += r->a_inc;
	r->b += r->b_inc;
	r->c += r->c_inc;
	return (double)x;
}

/*
   function FLUTTER

   This function adds F0 flutter, as specified in:

   "Analysis, synthesis and perception of voice quality variations among
   female and male talkers" D.H. Klatt and L.C. Klatt JASA 87(2) February 1990.

   Flutter is added by applying a quasi-random element constructed from three
   slowly varying sine waves.
 */

static void flutter(klatt_frame_ptr frame)
{
	static int time_count;
	double delta_f0;
	double fla, flb, flc, fld, fle;

	fla = (double)kt_globals.f0_flutter / 50;
	flb = (double)kt_globals.original_f0 / 100;
	flc = sin(M_PI*12.7*time_count); // because we are calling flutter() more frequently, every 2.9mS
	fld = sin(M_PI*7.1*time_count);
	fle = sin(M_PI*4.7*time_count);
	delta_f0 =  fla * flb * (flc + fld + fle) * 10;
	frame->F0hz10 = frame->F0hz10 + (long)delta_f0;
	time_count++;
}

/*
   function SAMPLED_SOURCE

   Allows the use of a glottal excitation waveform sampled from a real
   voice.
 */

static double sampled_source(int source_num)
{
	int itemp;
	double ftemp;
	double result;
	double diff_value;
	int current_value;
	int next_value;
	double temp_diff;
	short *samples;

	if (source_num == 0) {
		samples = natural_samples;
		kt_globals.num_samples = 100;
	} else {
		samples = natural_samples2;
		kt_globals.num_samples = 256;
	}

	if (kt_globals.T0 != 0) {
		ftemp = (double)kt_globals.nper;
		ftemp = ftemp / kt_globals.T0;
		ftemp = ftemp * kt_globals.num_samples;
		itemp = (int)ftemp;

		temp_diff = ftemp - (double)itemp;

		current_value = samples[itemp];
		next_value = samples[itemp+1];

		diff_value = (double)next_value - (double)current_value;
		diff_value = diff_value * temp_diff;

		result = samples[itemp] + diff_value;
		result = result * kt_globals.sample_factor;
	} else
		result = 0;
	return result;
}

/*
   function PARWAVE

   Converts synthesis parameters to a waveform.
 */

static int parwave(klatt_frame_ptr frame)
{
	double temp;
	int value;
	double outbypas;
	double out;
	long n4;
	double frics;
	double glotout;
	double aspiration;
	double casc_next_in;
	double par_glotout;
	static double noise;
	static double voice;
	static double vlast;
	static double glotlast;
	static double sourc;
	int ix;

	flutter(frame); // add f0 flutter

	// MAIN LOOP, for each output sample of current frame:

	for (kt_globals.ns = 0; kt_globals.ns < kt_globals.nspfr; kt_globals.ns++) {
		// Get low-passed random number for aspiration and frication noise
		noise = gen_noise(noise);

		// Amplitude modulate noise (reduce noise amplitude during
		// second half of glottal period) if voicing simultaneously present.

		if (kt_globals.nper > kt_globals.nmod)
			noise *= (double)0.5;

		// Compute frication noise
		frics = kt_globals.amp_frica * noise;

		// Compute voicing waveform. Run glottal source simulation at 4
		// times normal sample rate to minimize quantization noise in
		// period of female voice.

		for (n4 = 0; n4 < 4; n4++) {
			switch (kt_globals.glsource)
			{
			case IMPULSIVE:
				voice = impulsive_source();
				break;
			case NATURAL:
				voice = natural_source();
				break;
			case SAMPLED:
				voice = sampled_source(0);
				break;
			case SAMPLED2:
				voice = sampled_source(1);
				break;
			}

			// Reset period when counter 'nper' reaches T0
			if (kt_globals.nper >= kt_globals.T0) {
				kt_globals.nper = 0;
				pitch_synch_par_reset(frame);
			}

			// Low-pass filter voicing waveform before downsampling from 4*samrate
			// to samrate samples/sec.  Resonator f=.09*samrate, bw=.06*samrate

			voice = resonator(&(kt_globals.rsn[RLP]), voice);

			// Increment counter that keeps track of 4*samrate samples per sec
			kt_globals.nper++;
		}

		// Tilt spectrum of voicing source down by soft low-pass filtering, amount
		// of tilt determined by TLTdb

		voice = (voice * kt_globals.onemd) + (vlast * kt_globals.decay);
		vlast = voice;

		// Add breathiness during glottal open phase. Amount of breathiness
		// determined by parameter Aturb Use nrand rather than noise because
		// noise is low-passed.

		if (kt_globals.nper < kt_globals.nopen)
			voice += kt_globals.amp_breth * kt_globals.nrand;

		// Set amplitude of voicing
		glotout = kt_globals.amp_voice * voice;
		par_glotout = kt_globals.par_amp_voice * voice;

		// Compute aspiration amplitude and add to voicing source
		aspiration = kt_globals.amp_aspir * noise;
		glotout += aspiration;

		par_glotout += aspiration;

		// Cascade vocal tract, excited by laryngeal sources.
		// Nasal antiresonator, then formants FNP, F5, F4, F3, F2, F1

		out = 0;
		if (kt_globals.synthesis_model != ALL_PARALLEL) {
			casc_next_in = antiresonator2(&(kt_globals.rsn[Rnz]), glotout);
			casc_next_in = resonator(&(kt_globals.rsn[Rnpc]), casc_next_in);
			casc_next_in = resonator(&(kt_globals.rsn[R8c]), casc_next_in);
			casc_next_in = resonator(&(kt_globals.rsn[R7c]), casc_next_in);
			casc_next_in = resonator(&(kt_globals.rsn[R6c]), casc_next_in);
			casc_next_in = resonator2(&(kt_globals.rsn[R5c]), casc_next_in);
			casc_next_in = resonator2(&(kt_globals.rsn[R4c]), casc_next_in);
			casc_next_in = resonator2(&(kt_globals.rsn[R3c]), casc_next_in);
			casc_next_in = resonator2(&(kt_globals.rsn[R2c]), casc_next_in);
			out = resonator2(&(kt_globals.rsn[R1c]), casc_next_in);
		}

		// Excite parallel F1 and FNP by voicing waveform
		sourc = par_glotout; // Source is voicing plus aspiration

		// Standard parallel vocal tract Formants F6,F5,F4,F3,F2,
		// outputs added with alternating sign. Sound source for other
		// parallel resonators is frication plus first difference of
		// voicing waveform.

		out += resonator(&(kt_globals.rsn[R1p]), sourc);
		out += resonator(&(kt_globals.rsn[Rnpp]), sourc);

		sourc = frics + par_glotout - glotlast;
		glotlast = par_glotout;

		for (ix = R2p; ix <= R6p; ix++)
			out = resonator(&(kt_globals.rsn[ix]), sourc) - out;

		outbypas = kt_globals.amp_bypas * sourc;

		out = outbypas - out;

		out = resonator(&(kt_globals.rsn[Rout]), out);
		temp = (int)(out * wdata.amplitude * kt_globals.amp_gain0); // Convert back to integer

		// mix with a recorded WAV if required for this phoneme
		signed char c;
		int sample;

		if (wdata.mix_wavefile_ix < wdata.n_mix_wavefile) {
			if (wdata.mix_wave_scale == 0) {
				// a 16 bit sample
				c = wdata.mix_wavefile[wdata.mix_wavefile_ix+1];
				sample = wdata.mix_wavefile[wdata.mix_wavefile_ix] + (c * 256);
				wdata.mix_wavefile_ix += 2;
			} else {
				// a 8 bit sample, scaled
				sample = (signed char)wdata.mix_wavefile[wdata.mix_wavefile_ix++] * wdata.mix_wave_scale;
			}
			int z2 = sample * wdata.amplitude_v / 1024;
			z2 = (z2 * wdata.mix_wave_amp)/40;
			temp += z2;
		}

		// if fadeout is set, fade to zero over 64 samples, to avoid clicks at end of synthesis
		if (kt_globals.fadeout > 0) {
			kt_globals.fadeout--;
			temp = (temp * kt_globals.fadeout) / 64;
		}

		value = (int)temp + ((echo_buf[echo_tail++]*echo_amp) >> 8);
		if (echo_tail >= N_ECHO_BUF)
			echo_tail = 0;

		if (value < -32768)
			value = -32768;

		if (value > 32767)
			value =  32767;

		*out_ptr++ = value;
		*out_ptr++ = value >> 8;

		echo_buf[echo_head++] = value;
		if (echo_head >= N_ECHO_BUF)
			echo_head = 0;

		sample_count++;
		if (out_ptr >= out_end)
			return 1;
	}
	return 0;
}

void KlattReset(int control)
{
	int r_ix;

	if (control == 2) {
		// Full reset
		kt_globals.FLPhz = (950 * kt_globals.samrate) / 10000;
		kt_globals.BLPhz = (630 * kt_globals.samrate) / 10000;
		kt_globals.minus_pi_t = -M_PI / kt_globals.samrate;
		kt_globals.two_pi_t = -2.0 * kt_globals.minus_pi_t;
		setabc(kt_globals.FLPhz, kt_globals.BLPhz, &(kt_globals.rsn[RLP]));
	}

	if (control > 0) {
		kt_globals.nper = 0;
		kt_globals.T0 = 0;
		kt_globals.nopen = 0;
		kt_globals.nmod = 0;

		for (r_ix = RGL; r_ix < N_RSN; r_ix++) {
			kt_globals.rsn[r_ix].p1 = 0;
			kt_globals.rsn[r_ix].p2 = 0;
		}
	}

	for (r_ix = 0; r_ix <= R6p; r_ix++) {
		kt_globals.rsn[r_ix].p1 = 0;
		kt_globals.rsn[r_ix].p2 = 0;
	}
}

/*
   function FRAME_INIT

   Use parameters from the input frame to set up resonator coefficients.
 */

static void frame_init(klatt_frame_ptr frame)
{
	double amp_par[7];
	static double amp_par_factor[7] = { 0.6, 0.4, 0.15, 0.06, 0.04, 0.022, 0.03 };
	long Gain0_tmp;
	int ix;

	kt_globals.original_f0 = frame->F0hz10 / 10;

	frame->AVdb_tmp  = frame->AVdb - 7;
	if (frame->AVdb_tmp < 0)
		frame->AVdb_tmp = 0;

	kt_globals.amp_aspir = DBtoLIN(frame->ASP) * 0.05;
	kt_globals.amp_frica = DBtoLIN(frame->AF) * 0.25;
	kt_globals.par_amp_voice = DBtoLIN(frame->AVpdb);
	kt_globals.amp_bypas = DBtoLIN(frame->AB) * 0.05;

	for (ix = 0; ix <= 6; ix++) {
		// parallel amplitudes F1 to F6, and parallel nasal pole
		amp_par[ix] = DBtoLIN(frame->Ap[ix]) * amp_par_factor[ix];
	}

	Gain0_tmp = frame->Gain0 - 3;
	if (Gain0_tmp <= 0)
		Gain0_tmp = 57;
	kt_globals.amp_gain0 = DBtoLIN(Gain0_tmp) / kt_globals.scale_wav;

	// Set coefficients of variable cascade resonators
	for (ix = 1; ix <= 9; ix++) {
		// formants 1 to 8, plus nasal pole
		setabc(frame->Fhz[ix], frame->Bhz[ix], &(kt_globals.rsn[ix]));

		if (ix <= 5) {
			setabc(frame->Fhz_next[ix], frame->Bhz_next[ix], &(kt_globals.rsn_next[ix]));

			kt_globals.rsn[ix].a_inc = (kt_globals.rsn_next[ix].a - kt_globals.rsn[ix].a) / 64.0;
			kt_globals.rsn[ix].b_inc = (kt_globals.rsn_next[ix].b - kt_globals.rsn[ix].b) / 64.0;
			kt_globals.rsn[ix].c_inc = (kt_globals.rsn_next[ix].c - kt_globals.rsn[ix].c) / 64.0;
		}
	}

	// nasal zero anti-resonator
	setzeroabc(frame->Fhz[F_NZ], frame->Bhz[F_NZ], &(kt_globals.rsn[Rnz]));
	setzeroabc(frame->Fhz_next[F_NZ], frame->Bhz_next[F_NZ], &(kt_globals.rsn_next[Rnz]));
	kt_globals.rsn[F_NZ].a_inc = (kt_globals.rsn_next[F_NZ].a - kt_globals.rsn[F_NZ].a) / 64.0;
	kt_globals.rsn[F_NZ].b_inc = (kt_globals.rsn_next[F_NZ].b - kt_globals.rsn[F_NZ].b) / 64.0;
	kt_globals.rsn[F_NZ].c_inc = (kt_globals.rsn_next[F_NZ].c - kt_globals.rsn[F_NZ].c) / 64.0;

	// Set coefficients of parallel resonators, and amplitude of outputs

	for (ix = 0; ix <= 6; ix++) {
		setabc(frame->Fhz[ix], frame->Bphz[ix], &(kt_globals.rsn[Rparallel+ix]));
		kt_globals.rsn[Rparallel+ix].a *= amp_par[ix];
	}

	// output low-pass filter

	setabc((long)0.0, (long)(kt_globals.samrate/2), &(kt_globals.rsn[Rout]));
}

/*
   function IMPULSIVE_SOURCE

   Generate a low pass filtered train of impulses as an approximation of
   a natural excitation waveform. Low-pass filter the differentiated impulse
   with a critically-damped second-order filter, time constant proportional
   to Kopen.
 */

static double impulsive_source()
{
	static double doublet[] = { 0.0, 13000000.0, -13000000.0 };
	static double vwave;

	if (kt_globals.nper < 3)
		vwave = doublet[kt_globals.nper];
	else
		vwave = 0.0;

	return resonator(&(kt_globals.rsn[RGL]), vwave);
}

/*
   function NATURAL_SOURCE

   Vwave is the differentiated glottal flow waveform, there is a weak
   spectral zero around 800 Hz, magic constants a,b reset pitch synchronously.
 */

static double natural_source()
{
	double lgtemp;
	static double vwave;

	if (kt_globals.nper < kt_globals.nopen) {
		kt_globals.pulse_shape_a -= kt_globals.pulse_shape_b;
		vwave += kt_globals.pulse_shape_a;
		lgtemp = vwave * 0.028;

		return lgtemp;
	}
	vwave = 0.0;
	return 0.0;
}

/*
   function PITCH_SYNC_PAR_RESET

   Reset selected parameters pitch-synchronously.


   Constant B0 controls shape of glottal pulse as a function
   of desired duration of open phase N0
   (Note that N0 is specified in terms of 40,000 samples/sec of speech)

   Assume voicing waveform V(t) has form: k1 t**2 - k2 t**3

   If the radiation characterivative, a temporal derivative
   is folded in, and we go from continuous time to discrete
   integers n:  dV/dt = vwave[n]
                        = sum over i=1,2,...,n of { a - (i * b) }
                        = a n  -  b/2 n**2

   where the  constants a and b control the detailed shape
   and amplitude of the voicing waveform over the open
   potion of the voicing cycle "nopen".

   Let integral of dV/dt have no net dc flow --> a = (b * nopen) / 3

   Let maximum of dUg(n)/dn be constant --> b = gain / (nopen * nopen)
   meaning as nopen gets bigger, V has bigger peak proportional to n

   Thus, to generate the table below for 40 <= nopen <= 263:

   B0[nopen - 40] = 1920000 / (nopen * nopen)
 */

static void pitch_synch_par_reset(klatt_frame_ptr frame)
{
	long temp;
	double temp1;
	static long skew;
	static short B0[224] = {
		1200, 1142, 1088, 1038, 991, 948, 907, 869, 833, 799, 768, 738, 710, 683, 658,
		 634,  612,  590,  570, 551, 533, 515, 499, 483, 468, 454, 440, 427, 415, 403,
		 391,  380,  370,  360, 350, 341, 332, 323, 315, 307, 300, 292, 285, 278, 272,
		 265,  259,  253,  247, 242, 237, 231, 226, 221, 217, 212, 208, 204, 199, 195,
		 192,  188,  184,  180, 177, 174, 170, 167, 164, 161, 158, 155, 153, 150, 147,
		 145,  142,  140,  137, 135, 133, 131, 128, 126, 124, 122, 120, 119, 117, 115,
		 113,  111,  110,  108, 106, 105, 103, 102, 100,  99,  97,  96,  95,  93,  92, 91, 90,
		  88,   87,   86,   85,  84,  83,  82,  80,  79,  78,  77,  76,  75,  75,  74, 73, 72, 71,
		  70,   69,   68,   68,  67,  66,  65,  64,  64,  63,  62,  61,  61,  60,  59, 59, 58, 57,
		  57,   56,   56,   55,  55,  54,  54,  53,  53,  52,  52,  51,  51,  50,  50, 49, 49, 48, 48,
		  47,   47,   46,   46,  45,  45,  44,  44,  43,  43,  42,  42,  41,  41,  41, 41, 40, 40,
		  39,   39,   38,   38,  38,  38,  37,  37,  36,  36,  36,  36,  35,  35,  35, 35, 34, 34, 33,
		  33,   33,   33,   32,  32,  32,  32,  31,  31,  31,  31,  30,  30,  30,  30, 29, 29, 29, 29,
		  28,   28,   28,   28,  27,  27
	};

	if (frame->F0hz10 > 0) {
		// T0 is 4* the number of samples in one pitch period

		kt_globals.T0 = (40 * kt_globals.samrate) / frame->F0hz10;

		kt_globals.amp_voice = DBtoLIN(frame->AVdb_tmp);

		// Duration of period before amplitude modulation

		kt_globals.nmod = kt_globals.T0;
		if (frame->AVdb_tmp > 0)
			kt_globals.nmod >>= 1;

		// Breathiness of voicing waveform

		kt_globals.amp_breth = DBtoLIN(frame->Aturb) * 0.1;

		// Set open phase of glottal period where  40 <= open phase <= 263

		kt_globals.nopen = 4 * frame->Kopen;

		if ((kt_globals.glsource == IMPULSIVE) && (kt_globals.nopen > 263))
			kt_globals.nopen = 263;

		if (kt_globals.nopen >= (kt_globals.T0-1))
			kt_globals.nopen = kt_globals.T0 - 2;

		if (kt_globals.nopen < 40) {
			// F0 max = 1000 Hz
			kt_globals.nopen = 40;
		}

		// Reset a & b, which determine shape of "natural" glottal waveform

		kt_globals.pulse_shape_b = B0[kt_globals.nopen-40];
		kt_globals.pulse_shape_a = (kt_globals.pulse_shape_b * kt_globals.nopen) * 0.333;

		// Reset width of "impulsive" glottal pulse

		temp = kt_globals.samrate / kt_globals.nopen;

		setabc((long)0, temp, &(kt_globals.rsn[RGL]));

		// Make gain at F1 about constant

		temp1 = kt_globals.nopen *.00833;
		kt_globals.rsn[RGL].a *= temp1 * temp1;

		// Truncate skewness so as not to exceed duration of closed phase
		// of glottal period.

		temp = kt_globals.T0 - kt_globals.nopen;
		if (frame->Kskew > temp)
			frame->Kskew = temp;
		if (skew >= 0)
			skew = frame->Kskew;
		else
			skew = -frame->Kskew;

		// Add skewness to closed portion of voicing period
		kt_globals.T0 = kt_globals.T0 + skew;
		skew = -skew;
	} else {
		kt_globals.T0 = 4; // Default for f0 undefined
		kt_globals.amp_voice = 0.0;
		kt_globals.nmod = kt_globals.T0;
		kt_globals.amp_breth = 0.0;
		kt_globals.pulse_shape_a = 0.0;
		kt_globals.pulse_shape_b = 0.0;
	}

	// Reset these pars pitch synchronously or at update rate if f0=0

	if ((kt_globals.T0 != 4) || (kt_globals.ns == 0)) {
		// Set one-pole low-pass filter that tilts glottal source

		kt_globals.decay = (0.033 * frame->TLTdb);

		if (kt_globals.decay > 0.0)
			kt_globals.onemd = 1.0 - kt_globals.decay;
		else
			kt_globals.onemd = 1.0;
	}
}

/*
   function SETABC

   Convert formant freqencies and bandwidth into resonator difference
   equation constants.
 */

static void setabc(long int f, long int bw, resonator_ptr rp)
{
	double r;
	double arg;

	// Let r  =  exp(-pi bw t)
	arg = kt_globals.minus_pi_t * bw;
	r = exp(arg);

	// Let c  =  -r**2
	rp->c = -(r * r);

	// Let b = r * 2*cos(2 pi f t)
	arg = kt_globals.two_pi_t * f;
	rp->b = r * cos(arg) * 2.0;

	// Let a = 1.0 - b - c
	rp->a = 1.0 - rp->b - rp->c;
}

/*
   function SETZEROABC

   Convert formant freqencies and bandwidth into anti-resonator difference
   equation constants.
 */

static void setzeroabc(long int f, long int bw, resonator_ptr rp)
{
	double r;
	double arg;

	f = -f;

	// First compute ordinary resonator coefficients
	// Let r  =  exp(-pi bw t)
	arg = kt_globals.minus_pi_t * bw;
	r = exp(arg);

	// Let c  =  -r**2
	rp->c = -(r * r);

	// Let b = r * 2*cos(2 pi f t)
	arg = kt_globals.two_pi_t * f;
	rp->b = r * cos(arg) * 2.;

	// Let a = 1.0 - b - c
	rp->a = 1.0 - rp->b - rp->c;

	// Now convert to antiresonator coefficients (a'=1/a, b'=b/a, c'=c/a)

	// If f == 0 then rp->a gets set to 0 which makes a'=1/a set a', b' and c' to
	// INF, causing an audible sound spike when triggered (e.g. apiration with the
	// nasal register set to f=0, bw=0).
	if (rp->a != 0) {
		// Now convert to antiresonator coefficients (a'=1/a, b'=b/a, c'=c/a)
		rp->a = 1.0 / rp->a;
		rp->c *= -rp->a;
		rp->b *= -rp->a;
	}
}

/*
   function GEN_NOISE

   Random number generator (return a number between -8191 and +8191)
   Noise spectrum is tilted down by soft low-pass filter having a pole near
   the origin in the z-plane, i.e. output = input + (0.75 * lastoutput)
 */

static double gen_noise(double noise)
{
	long temp;
	static double nlast;

	temp = (long)getrandom(-8191, 8191);
	kt_globals.nrand = (long)temp;

	noise = kt_globals.nrand + (0.75 * nlast);
	nlast = noise;

	return noise;
}

/*
   function DBTOLIN

   Convert from decibels to a linear scale factor


   Conversion table, db to linear, 87 dB --> 32767
                                86 dB --> 29491 (1 dB down = 0.5**1/6)
                                 ...
                                81 dB --> 16384 (6 dB down = 0.5)
                                 ...
                                 0 dB -->     0

   The just noticeable difference for a change in intensity of a vowel
   is approximately 1 dB.  Thus all amplitudes are quantized to 1 dB
   steps.
 */

static double DBtoLIN(long dB)
{
	static short amptable[88] = {
		   0,      0,     0,     0,     0,     0,     0,    0,     0,    0,   0,   0,  0, 6, 7,
		   8,      9,    10,    11,    13,    14,    16,   18,    20,   22,  25,  28, 32,
		   35,    40,    45,    51,    57,    64,    71,   80,    90,  101, 114, 128,
		  142,   159,   179,   202,   227,   256,   284,  318,   359,  405,
		  455,   512,   568,   638,   719,   881,   911, 1024,  1137, 1276,
		 1438,  1622,  1823,  2048,  2273,  2552,  2875, 3244,  3645,
		 4096,  4547,  5104,  5751,  6488,  7291,  8192, 9093, 10207,
		11502, 12976, 14582, 16384, 18350, 20644, 23429,
		26214, 29491, 32767
	};

	if ((dB < 0) || (dB > 87))
		return 0;

	return (double)(amptable[dB]) * 0.001;
}

extern voice_t *wvoice;
static klatt_peaks_t peaks[N_PEAKS];
static int end_wave;
static int klattp[N_KLATTP];
static double klattp1[N_KLATTP];
static double klattp_inc[N_KLATTP];

int Wavegen_Klatt(int resume)
{
	int pk;
	int x;
	int ix;
	int fade;

	if (resume == 0)
		sample_count = 0;

	while (sample_count < nsamples) {
		kt_frame.F0hz10 = (wdata.pitch * 10) / 4096;

		// formants F6,F7,F8 are fixed values for cascade resonators, set in KlattInit()
		// but F6 is used for parallel resonator
		// F0 is used for the nasal zero
		for (ix = 0; ix < 6; ix++) {
			kt_frame.Fhz[ix] = peaks[ix].freq;
			if (ix < 4)
				kt_frame.Bhz[ix] = peaks[ix].bw;
		}
		for (ix = 1; ix < 7; ix++)
			kt_frame.Ap[ix] = peaks[ix].ap;

		kt_frame.AVdb = klattp[KLATT_AV];
		kt_frame.AVpdb = klattp[KLATT_AVp];
		kt_frame.AF = klattp[KLATT_Fric];
		kt_frame.AB = klattp[KLATT_FricBP];
		kt_frame.ASP = klattp[KLATT_Aspr];
		kt_frame.Aturb = klattp[KLATT_Turb];
		kt_frame.Kskew = klattp[KLATT_Skew];
		kt_frame.TLTdb = klattp[KLATT_Tilt];
		kt_frame.Kopen = klattp[KLATT_Kopen];

		// advance formants
		for (pk = 0; pk < N_PEAKS; pk++) {
			peaks[pk].freq1 += peaks[pk].freq_inc;
			peaks[pk].freq = (int)peaks[pk].freq1;
			peaks[pk].bw1 += peaks[pk].bw_inc;
			peaks[pk].bw = (int)peaks[pk].bw1;
			peaks[pk].bp1 += peaks[pk].bp_inc;
			peaks[pk].bp = (int)peaks[pk].bp1;
			peaks[pk].ap1 += peaks[pk].ap_inc;
			peaks[pk].ap = (int)peaks[pk].ap1;
		}

		// advance other parameters
		for (ix = 0; ix < N_KLATTP; ix++) {
			klattp1[ix] += klattp_inc[ix];
			klattp[ix] = (int)klattp1[ix];
		}

		for (ix = 0; ix <= 6; ix++) {
			kt_frame.Fhz_next[ix] = peaks[ix].freq;
			if (ix < 4)
				kt_frame.Bhz_next[ix] = peaks[ix].bw;
		}

		// advance the pitch
		wdata.pitch_ix += wdata.pitch_inc;
		if ((ix = wdata.pitch_ix>>8) > 127) ix = 127;
		x = wdata.pitch_env[ix] * wdata.pitch_range;
		wdata.pitch = (x>>8) + wdata.pitch_base;

		kt_globals.nspfr = (nsamples - sample_count);
		if (kt_globals.nspfr > STEPSIZE)
			kt_globals.nspfr = STEPSIZE;

		frame_init(&kt_frame); // get parameters for next frame of speech

		if (parwave(&kt_frame) == 1)
			return 1; // output buffer is full
	}

	if (end_wave > 0) {
		fade = 64; // not followed by formant synthesis

		// fade out to avoid a click
		kt_globals.fadeout = fade;
		end_wave = 0;
		sample_count -= fade;
		kt_globals.nspfr = fade;
		if (parwave(&kt_frame) == 1)
			return 1; // output buffer is full
	}

	return 0;
}

void SetSynth_Klatt(int length, frame_t *fr1, frame_t *fr2, voice_t *v, int control)
{
	int ix;
	DOUBLEX next;
	int qix;
	int cmd;
	frame_t *fr3;
	static frame_t prev_fr;

	if (wvoice != NULL) {
		if ((wvoice->klattv[0] > 0) && (wvoice->klattv[0] <= 4 )) {
			kt_globals.glsource = wvoice->klattv[0];
			kt_globals.scale_wav = scale_wav_tab[kt_globals.glsource];
		}
		kt_globals.f0_flutter = wvoice->flutter/32;
	}

	end_wave = 0;
	if (control & 2)
		end_wave = 1; // fadeout at the end
	if (control & 1) {
		end_wave = 1;
		for (qix = wcmdq_head+1;; qix++) {
			if (qix >= N_WCMDQ) qix = 0;
			if (qix == wcmdq_tail) break;

			cmd = wcmdq[qix][0];
			if (cmd == WCMD_KLATT) {
				end_wave = 0; // next wave generation is from another spectrum

				fr3 = (frame_t *)wcmdq[qix][2];
				for (ix = 1; ix < 6; ix++) {
					if (fr3->ffreq[ix] != fr2->ffreq[ix]) {
						// there is a discontinuity in formants
						end_wave = 2;
						break;
					}
				}
				break;
			}
			if ((cmd == WCMD_WAVE) || (cmd == WCMD_PAUSE))
				break; // next is not from spectrum, so continue until end of wave cycle
		}
	}

	if (control & 1) {
		for (ix = 1; ix < 6; ix++) {
			if (prev_fr.ffreq[ix] != fr1->ffreq[ix]) {
				// Discontinuity in formants.
				// end_wave was set in SetSynth_Klatt() to fade out the previous frame
				KlattReset(0);
				break;
			}
		}
		memcpy(&prev_fr, fr2, sizeof(prev_fr));
	}

	for (ix = 0; ix < N_KLATTP; ix++) {
		if ((ix >= 5) && ((fr1->frflags & FRFLAG_KLATT) == 0)) {
			klattp1[ix] = klattp[ix] = 0;
			klattp_inc[ix] = 0;
		} else {
			klattp1[ix] = klattp[ix] = fr1->klattp[ix];
			klattp_inc[ix] = (double)((fr2->klattp[ix] - klattp[ix]) * STEPSIZE)/length;
		}
	}

	nsamples = length;

	for (ix = 1; ix < 6; ix++) {
		peaks[ix].freq1 = (fr1->ffreq[ix] * v->freq[ix] / 256.0) + v->freqadd[ix];
		peaks[ix].freq = (int)peaks[ix].freq1;
		next = (fr2->ffreq[ix] * v->freq[ix] / 256.0) + v->freqadd[ix];
		peaks[ix].freq_inc =  ((next - peaks[ix].freq1) * STEPSIZE) / length;

		if (ix < 4) {
			// klatt bandwidth for f1, f2, f3 (others are fixed)
			peaks[ix].bw1 = fr1->bw[ix] * 2;
			peaks[ix].bw = (int)peaks[ix].bw1;
			next = fr2->bw[ix] * 2;
			peaks[ix].bw_inc =  ((next - peaks[ix].bw1) * STEPSIZE) / length;
		}
	}

	// nasal zero frequency
	peaks[0].freq1 = fr1->klattp[KLATT_FNZ] * 2;
	if (peaks[0].freq1 == 0)
		peaks[0].freq1 = kt_frame.Fhz[F_NP]; // if no nasal zero, set it to same freq as nasal pole

	peaks[0].freq = (int)peaks[0].freq1;
	next = fr2->klattp[KLATT_FNZ] * 2;
	if (next == 0)
		next = kt_frame.Fhz[F_NP];

	peaks[0].freq_inc = ((next - peaks[0].freq1) * STEPSIZE) / length;

	peaks[0].bw1 = 89;
	peaks[0].bw = 89;
	peaks[0].bw_inc = 0;

	if (fr1->frflags & FRFLAG_KLATT) {
		// the frame contains additional parameters for parallel resonators
		for (ix = 1; ix < 7; ix++) {
			peaks[ix].bp1 = fr1->klatt_bp[ix] * 4; // parallel bandwidth
			peaks[ix].bp = (int)peaks[ix].bp1;
			next = fr2->klatt_bp[ix] * 4;
			peaks[ix].bp_inc =  ((next - peaks[ix].bp1) * STEPSIZE) / length;

			peaks[ix].ap1 = fr1->klatt_ap[ix]; // parallal amplitude
			peaks[ix].ap = (int)peaks[ix].ap1;
			next = fr2->klatt_ap[ix];
			peaks[ix].ap_inc =  ((next - peaks[ix].ap1) * STEPSIZE) / length;
		}
	}
}

int Wavegen_Klatt2(int length, int resume, frame_t *fr1, frame_t *fr2)
{
	if (resume == 0)
		SetSynth_Klatt(length, fr1, fr2, wvoice, 1);

	return Wavegen_Klatt(resume);
}

void KlattInit()
{

	static short formant_hz[10] = { 280, 688, 1064, 2806, 3260, 3700, 6500, 7000, 8000, 280 };
	static short bandwidth[10] = { 89, 160, 70, 160, 200, 200, 500, 500, 500, 89 };
	static short parallel_amp[10] = { 0, 59, 59, 59, 59, 59, 59, 0, 0, 0 };
	static short parallel_bw[10] = { 59, 59, 89, 149, 200, 200, 500, 0, 0, 0 };

	int ix;

	sample_count = 0;

	kt_globals.synthesis_model = CASCADE_PARALLEL;
	kt_globals.samrate = 22050;

	kt_globals.glsource = IMPULSIVE;
	kt_globals.scale_wav = scale_wav_tab[kt_globals.glsource];
	kt_globals.natural_samples = natural_samples;
	kt_globals.num_samples = NUMBER_OF_SAMPLES;
	kt_globals.sample_factor = 3.0;
	kt_globals.nspfr = (kt_globals.samrate * 10) / 1000;
	kt_globals.outsl = 0;
	kt_globals.f0_flutter = 20;

	KlattReset(2);

	// set default values for frame parameters
	for (ix = 0; ix <= 9; ix++) {
		kt_frame.Fhz[ix] = formant_hz[ix];
		kt_frame.Bhz[ix] = bandwidth[ix];
		kt_frame.Ap[ix] = parallel_amp[ix];
		kt_frame.Bphz[ix] = parallel_bw[ix];
	}
	kt_frame.Bhz_next[F_NZ] = bandwidth[F_NZ];

	kt_frame.F0hz10 = 1000;
	kt_frame.AVdb = 59;
	kt_frame.ASP = 0;
	kt_frame.Kopen = 40;
	kt_frame.Aturb = 0;
	kt_frame.TLTdb = 0;
	kt_frame.AF = 50;
	kt_frame.Kskew = 0;
	kt_frame.AB = 0;
	kt_frame.AVpdb = 0;
	kt_frame.Gain0 = 62;
}