Sonic.java 31.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
/* Sonic library
   Copyright 2010, 2011
   Bill Cox
   This file is part of the Sonic Library.

   This file is licensed under the Apache 2.0 license.
*/

package sonic;

public class Sonic {

	private static final int SONIC_MIN_PITCH = 65;
	private static final int SONIC_MAX_PITCH = 400;
	/* This is used to down-sample some inputs to improve speed */
	private static final int SONIC_AMDF_FREQ = 4000;

    private short inputBuffer[];
    private short outputBuffer[];
    private short pitchBuffer[];
    private short downSampleBuffer[];
    private float speed;
    private float volume;
    private float pitch;
    private float rate;
    private int oldRatePosition;
    private int newRatePosition;
    private boolean useChordPitch;
    private int quality;
    private int numChannels;
    private int inputBufferSize;
    private int pitchBufferSize;
    private int outputBufferSize;
    private int numInputSamples;
    private int numOutputSamples;
    private int numPitchSamples;
    private int minPeriod;
    private int maxPeriod;
    private int maxRequired;
    private int remainingInputToCopy;
    private int sampleRate;
    private int prevPeriod;
    private int prevMinDiff;
    private int minDiff;
    private int maxDiff;

    // Resize the array.
    private short[] resize(
    	short[] oldArray,
    	int newLength)
    {
    	newLength *= numChannels;
        short[]	newArray = new short[newLength];
        int length = oldArray.length <= newLength? oldArray.length : newLength;

        System.arraycopy(oldArray, 0, newArray, 0, length);
        return newArray;
    }

    // Move samples from one array to another.  May move samples down within an array, but not up.
    private void move(
    	short dest[],
    	int destPos,
    	short source[],
    	int sourcePos,
    	int numSamples)
    {
        System.arraycopy(source, sourcePos*numChannels, dest, destPos*numChannels, numSamples*numChannels);
    }

    // Scale the samples by the factor.
    private void scaleSamples(
        short samples[],
        int position,
        int numSamples,
        float volume)
    {
        int fixedPointVolume = (int)(volume*4096.0f);
        int start = position*numChannels;
        int stop = start + numSamples*numChannels;

        for(int xSample = start; xSample < stop; xSample++) {
            int value = (samples[xSample]*fixedPointVolume) >> 12;
            if(value > 32767) {
                value = 32767;
            } else if(value < -32767) {
                value = -32767;
            }
            samples[xSample] = (short)value;
        }
    }

    // Get the speed of the stream.
    public float getSpeed()
    {
        return speed;
    }

    // Set the speed of the stream.
    public void setSpeed(
        float speed)
    {
        this.speed = speed;
    }

    // Get the pitch of the stream.
    public float getPitch()
    {
        return pitch;
    }

    // Set the pitch of the stream.
    public void setPitch(
        float pitch)
    {
        this.pitch = pitch;
    }

    // Get the rate of the stream.
    public float getRate()
    {
        return rate;
    }

    // Set the playback rate of the stream. This scales pitch and speed at the same time.
    public void setRate(
        float rate)
    {
        this.rate = rate;
        this.oldRatePosition = 0;
        this.newRatePosition = 0;
    }

    // Get the vocal chord pitch setting.
    public boolean getChordPitch()
    {
        return useChordPitch;
    }

    // Set the vocal chord mode for pitch computation.  Default is off.
    public void setChordPitch(
        boolean useChordPitch)
    {
        this.useChordPitch = useChordPitch;
    }

    // Get the quality setting.
    public int getQuality()
    {
        return quality;
    }

    // Set the "quality".  Default 0 is virtually as good as 1, but very much faster.
    public void setQuality(
        int quality)
    {
        this.quality = quality;
    }

    // Get the scaling factor of the stream.
    public float getVolume()
    {
        return volume;
    }

    // Set the scaling factor of the stream.
    public void setVolume(
        float volume)
    {
        this.volume = volume;
    }

    // Allocate stream buffers.
    private void allocateStreamBuffers(
        int sampleRate,
        int numChannels)
    {
        minPeriod = sampleRate/SONIC_MAX_PITCH;
        maxPeriod = sampleRate/SONIC_MIN_PITCH;
        maxRequired = 2*maxPeriod;
        inputBufferSize = maxRequired;
        inputBuffer = new short[maxRequired*numChannels];
        outputBufferSize = maxRequired;
        outputBuffer = new short[maxRequired*numChannels];
        pitchBufferSize = maxRequired;
        pitchBuffer = new short[maxRequired*numChannels];
        downSampleBuffer = new short[maxRequired];
        this.sampleRate = sampleRate;
        this.numChannels = numChannels;
        oldRatePosition = 0;
        newRatePosition = 0;
        prevPeriod = 0;
    }

    // Create a sonic stream.
    public Sonic(
        int sampleRate,
        int numChannels)
    {
        allocateStreamBuffers(sampleRate, numChannels);
        speed = 1.0f;
        pitch = 1.0f;
        volume = 1.0f;
        rate = 1.0f;
        oldRatePosition = 0;
        newRatePosition = 0;
        useChordPitch = false;
        quality = 0;
    }

    // Get the sample rate of the stream.
    public int getSampleRate()
    {
        return sampleRate;
    }

    // Set the sample rate of the stream.  This will cause samples buffered in the stream to be lost.
    public void setSampleRate(
        int sampleRate)
    {
        allocateStreamBuffers(sampleRate, numChannels);
    }

    // Get the number of channels.
    public int getNumChannels()
    {
        return numChannels;
    }

    // Set the num channels of the stream.  This will cause samples buffered in the stream to be lost.
    public void setNumChannels(
        int numChannels)
    {
        allocateStreamBuffers(sampleRate, numChannels);
    }

    // Enlarge the output buffer if needed.
    private void enlargeOutputBufferIfNeeded(
        int numSamples)
    {
        if(numOutputSamples + numSamples > outputBufferSize) {
            outputBufferSize += (outputBufferSize >> 1) + numSamples;
            outputBuffer = resize(outputBuffer, outputBufferSize);
        }
    }

    // Enlarge the input buffer if needed.
    private void enlargeInputBufferIfNeeded(
        int numSamples)
    {
        if(numInputSamples + numSamples > inputBufferSize) {
            inputBufferSize += (inputBufferSize >> 1) + numSamples;
            inputBuffer = resize(inputBuffer, inputBufferSize);
        }
    }

    // Add the input samples to the input buffer.
    private void addFloatSamplesToInputBuffer(
        float samples[],
        int numSamples)
    {
        if(numSamples == 0) {
            return;
        }
        enlargeInputBufferIfNeeded(numSamples);
        int xBuffer = numInputSamples*numChannels;
        for(int xSample = 0; xSample < numSamples*numChannels; xSample++) {
            inputBuffer[xBuffer++] = (short)(samples[xSample]*32767.0f);
        }
        numInputSamples += numSamples;
    }

    // Add the input samples to the input buffer.
    private void addShortSamplesToInputBuffer(
        short samples[],
        int numSamples)
    {
        if(numSamples == 0) {
            return;
        }
        enlargeInputBufferIfNeeded(numSamples);
        move(inputBuffer, numInputSamples, samples, 0, numSamples);
        numInputSamples += numSamples;
    }

    // Add the input samples to the input buffer.
    private void addUnsignedByteSamplesToInputBuffer(
        byte samples[],
        int numSamples)
    {
        short sample;

        enlargeInputBufferIfNeeded(numSamples);
        int xBuffer = numInputSamples*numChannels;
        for(int xSample = 0; xSample < numSamples*numChannels; xSample++) {
        	sample = (short)((samples[xSample] & 0xff) - 128); // Convert from unsigned to signed
            inputBuffer[xBuffer++] = (short) (sample << 8);
        }
        numInputSamples += numSamples;
    }

    // Add the input samples to the input buffer.  They must be 16-bit little-endian encoded in a byte array.
    private void addBytesToInputBuffer(
        byte inBuffer[],
        int numBytes)
    {
    	int numSamples = numBytes/(2*numChannels);
        short sample;

        enlargeInputBufferIfNeeded(numSamples);
        int xBuffer = numInputSamples*numChannels;
        for(int xByte = 0; xByte + 1 < numBytes; xByte += 2) {
        	sample = (short)((inBuffer[xByte] & 0xff) | (inBuffer[xByte + 1] << 8));
            inputBuffer[xBuffer++] = sample;
        }
        numInputSamples += numSamples;
    }

    // Remove input samples that we have already processed.
    private void removeInputSamples(
        int position)
    {
        int remainingSamples = numInputSamples - position;

        move(inputBuffer, 0, inputBuffer, position, remainingSamples);
        numInputSamples = remainingSamples;
    }

    // Just copy from the array to the output buffer
    private void copyToOutput(
        short samples[],
        int position,
        int numSamples)
    {
        enlargeOutputBufferIfNeeded(numSamples);
        move(outputBuffer, numOutputSamples, samples, position, numSamples);
        numOutputSamples += numSamples;
    }

    // Just copy from the input buffer to the output buffer.  Return num samples copied.
    private int copyInputToOutput(
        int position)
    {
        int numSamples = remainingInputToCopy;

        if(numSamples > maxRequired) {
            numSamples = maxRequired;
        }
        copyToOutput(inputBuffer, position, numSamples);
        remainingInputToCopy -= numSamples;
        return numSamples;
    }

    // Read data out of the stream.  Sometimes no data will be available, and zero
    // is returned, which is not an error condition.
    public int readFloatFromStream(
        float samples[],
        int maxSamples)
    {
        int numSamples = numOutputSamples;
        int remainingSamples = 0;

        if(numSamples == 0) {
            return 0;
        }
        if(numSamples > maxSamples) {
            remainingSamples = numSamples - maxSamples;
            numSamples = maxSamples;
        }
        for(int xSample = 0; xSample < numSamples*numChannels; xSample++) {
            samples[xSample++] = (outputBuffer[xSample])/32767.0f;
        }
        move(outputBuffer, 0, outputBuffer, numSamples, remainingSamples);
        numOutputSamples = remainingSamples;
        return numSamples;
    }

    // Read short data out of the stream.  Sometimes no data will be available, and zero
    // is returned, which is not an error condition.
    public int readShortFromStream(
        short samples[],
        int maxSamples)
    {
        int numSamples = numOutputSamples;
        int remainingSamples = 0;

        if(numSamples == 0) {
            return 0;
        }
        if(numSamples > maxSamples) {
            remainingSamples = numSamples - maxSamples;
            numSamples = maxSamples;
        }
        move(samples, 0, outputBuffer, 0, numSamples);
        move(outputBuffer, 0, outputBuffer, numSamples, remainingSamples);
        numOutputSamples = remainingSamples;
        return numSamples;
    }

    // Read unsigned byte data out of the stream.  Sometimes no data will be available, and zero
    // is returned, which is not an error condition.
    public int readUnsignedByteFromStream(
        byte samples[],
        int maxSamples)
    {
        int numSamples = numOutputSamples;
        int remainingSamples = 0;

        if(numSamples == 0) {
            return 0;
        }
        if(numSamples > maxSamples) {
            remainingSamples = numSamples - maxSamples;
            numSamples = maxSamples;
        }
        for(int xSample = 0; xSample < numSamples*numChannels; xSample++) {
        	samples[xSample] = (byte)((outputBuffer[xSample] >> 8) + 128);
        }
        move(outputBuffer, 0, outputBuffer, numSamples, remainingSamples);
        numOutputSamples = remainingSamples;
        return numSamples;
    }

    // Read unsigned byte data out of the stream.  Sometimes no data will be available, and zero
    // is returned, which is not an error condition.
    public int readBytesFromStream(
        byte outBuffer[],
        int maxBytes)
    {
    	int maxSamples = maxBytes/(2*numChannels);
        int numSamples = numOutputSamples;
        int remainingSamples = 0;

        if(numSamples == 0 || maxSamples == 0) {
            return 0;
        }
        if(numSamples > maxSamples) {
            remainingSamples = numSamples - maxSamples;
            numSamples = maxSamples;
        }
        for(int xSample = 0; xSample < numSamples*numChannels; xSample++) {
        	short sample = outputBuffer[xSample];
        	outBuffer[xSample << 1] = (byte)(sample & 0xff);
        	outBuffer[(xSample << 1) + 1] = (byte)(sample >> 8);
        }
        move(outputBuffer, 0, outputBuffer, numSamples, remainingSamples);
        numOutputSamples = remainingSamples;
        return 2*numSamples*numChannels;
    }

    // Force the sonic stream to generate output using whatever data it currently
    // has.  No extra delay will be added to the output, but flushing in the middle of
    // words could introduce distortion.
    public void flushStream()
    {
        int remainingSamples = numInputSamples;
        float s = speed/pitch;
        float r = rate*pitch;
        int expectedOutputSamples = numOutputSamples + (int)((remainingSamples/s + numPitchSamples)/r + 0.5f);

        // Add enough silence to flush both input and pitch buffers.
        enlargeInputBufferIfNeeded(remainingSamples + 2*maxRequired);
        for(int xSample = 0; xSample < 2*maxRequired*numChannels; xSample++) {
            inputBuffer[remainingSamples*numChannels + xSample] = 0;
        }
        numInputSamples += 2*maxRequired;
        writeShortToStream(null, 0);
        // Throw away any extra samples we generated due to the silence we added.
        if(numOutputSamples > expectedOutputSamples) {
            numOutputSamples = expectedOutputSamples;
        }
        // Empty input and pitch buffers.
        numInputSamples = 0;
        remainingInputToCopy = 0;
        numPitchSamples = 0;
    }

    // Return the number of samples in the output buffer
    public int samplesAvailable()
    {
        return numOutputSamples;
    }

    // If skip is greater than one, average skip samples together and write them to
    // the down-sample buffer.  If numChannels is greater than one, mix the channels
    // together as we down sample.
    private void downSampleInput(
        short samples[],
        int position,
        int skip)
    {
        int numSamples = maxRequired/skip;
        int samplesPerValue = numChannels*skip;
        int value;

        position *= numChannels;
        for(int i = 0; i < numSamples; i++) {
            value = 0;
            for(int j = 0; j < samplesPerValue; j++) {
                value += samples[position + i*samplesPerValue + j];
            }
            value /= samplesPerValue;
            downSampleBuffer[i] = (short)value;
        }
    }

    // Find the best frequency match in the range, and given a sample skip multiple.
    // For now, just find the pitch of the first channel.
    private int findPitchPeriodInRange(
        short samples[],
        int position,
        int minPeriod,
        int maxPeriod)
    {
        int bestPeriod = 0, worstPeriod = 255;
        int minDiff = 1, maxDiff = 0;

        position *= numChannels;
        for(int period = minPeriod; period <= maxPeriod; period++) {
            int diff = 0;
            for(int i = 0; i < period; i++) {
                short sVal = samples[position + i];
                short pVal = samples[position + period + i];
                diff += sVal >= pVal? sVal - pVal : pVal - sVal;
            }
            /* Note that the highest number of samples we add into diff will be less
               than 256, since we skip samples.  Thus, diff is a 24 bit number, and
               we can safely multiply by numSamples without overflow */
            if(diff*bestPeriod < minDiff*period) {
                minDiff = diff;
                bestPeriod = period;
            }
            if(diff*worstPeriod > maxDiff*period) {
                maxDiff = diff;
                worstPeriod = period;
            }
        }
        this.minDiff = minDiff/bestPeriod;
        this.maxDiff = maxDiff/worstPeriod;

        return bestPeriod;
    }

    // At abrupt ends of voiced words, we can have pitch periods that are better
    // approximated by the previous pitch period estimate.  Try to detect this case.
    private boolean prevPeriodBetter(
        int period,
        int minDiff,
        int maxDiff,
        boolean preferNewPeriod)
    {
        if(minDiff == 0 || prevPeriod == 0) {
            return false;
        }
        if(preferNewPeriod) {
            if(maxDiff > minDiff*3) {
                // Got a reasonable match this period
                return false;
            }
            if(minDiff*2 <= prevMinDiff*3) {
                // Mismatch is not that much greater this period
                return false;
            }
        } else {
            if(minDiff <= prevMinDiff) {
                return false;
            }
        }
        return true;
    }

    // Find the pitch period.  This is a critical step, and we may have to try
    // multiple ways to get a good answer.  This version uses AMDF.  To improve
    // speed, we down sample by an integer factor get in the 11KHz range, and then
    // do it again with a narrower frequency range without down sampling
    private int findPitchPeriod(
        short samples[],
        int position,
        boolean preferNewPeriod)
    {
        int period, retPeriod;
        int skip = 1;

        if(sampleRate > SONIC_AMDF_FREQ && quality == 0) {
            skip = sampleRate/SONIC_AMDF_FREQ;
        }
        if(numChannels == 1 && skip == 1) {
            period = findPitchPeriodInRange(samples, position, minPeriod, maxPeriod);
        } else {
            downSampleInput(samples, position, skip);
            period = findPitchPeriodInRange(downSampleBuffer, 0, minPeriod/skip,
                maxPeriod/skip);
            if(skip != 1) {
                period *= skip;
                int minP = period - (skip << 2);
                int maxP = period + (skip << 2);
                if(minP < minPeriod) {
                    minP = minPeriod;
                }
                if(maxP > maxPeriod) {
                    maxP = maxPeriod;
                }
                if(numChannels == 1) {
                    period = findPitchPeriodInRange(samples, position, minP, maxP);
                } else {
                    downSampleInput(samples, position, 1);
                    period = findPitchPeriodInRange(downSampleBuffer, 0, minP, maxP);
                }
            }
        }
        if(prevPeriodBetter(period, minDiff, maxDiff, preferNewPeriod)) {
            retPeriod = prevPeriod;
        } else {
            retPeriod = period;
        }
        prevMinDiff = minDiff;
        prevPeriod = period;
        return retPeriod;
    }

    // Overlap two sound segments, ramp the volume of one down, while ramping the
    // other one from zero up, and add them, storing the result at the output.
    private void overlapAdd(
        int numSamples,
        int numChannels,
        short out[],
        int outPos,
        short rampDown[],
        int rampDownPos,
        short rampUp[],
        int rampUpPos)
    {
         for(int i = 0; i < numChannels; i++) {
            int o = outPos*numChannels + i;
            int u = rampUpPos*numChannels + i;
            int d = rampDownPos*numChannels + i;
            for(int t = 0; t < numSamples; t++) {
                out[o] = (short)((rampDown[d]*(numSamples - t) + rampUp[u]*t)/numSamples);
                o += numChannels;
                d += numChannels;
                u += numChannels;
            }
        }
    }

    // Overlap two sound segments, ramp the volume of one down, while ramping the
    // other one from zero up, and add them, storing the result at the output.
    private void overlapAddWithSeparation(
        int numSamples,
        int numChannels,
        int separation,
        short out[],
        int outPos,
        short rampDown[],
        int rampDownPos,
        short rampUp[],
        int rampUpPos)
    {
        for(int i = 0; i < numChannels; i++) {
            int o = outPos*numChannels + i;
            int u = rampUpPos*numChannels + i;
            int d = rampDownPos*numChannels + i;
            for(int t = 0; t < numSamples + separation; t++) {
                if(t < separation) {
                    out[o] = (short)(rampDown[d]*(numSamples - t)/numSamples);
                    d += numChannels;
                } else if(t < numSamples) {
                    out[o] = (short)((rampDown[d]*(numSamples - t) + rampUp[u]*(t - separation))/numSamples);
                    d += numChannels;
                    u += numChannels;
                } else {
                    out[o] = (short)(rampUp[u]*(t - separation)/numSamples);
                    u += numChannels;
                }
                o += numChannels;
            }
        }
    }

    // Just move the new samples in the output buffer to the pitch buffer
    private void moveNewSamplesToPitchBuffer(
        int originalNumOutputSamples)
    {
        int numSamples = numOutputSamples - originalNumOutputSamples;

        if(numPitchSamples + numSamples > pitchBufferSize) {
            pitchBufferSize += (pitchBufferSize >> 1) + numSamples;
            pitchBuffer = resize(pitchBuffer, pitchBufferSize);
        }
        move(pitchBuffer, numPitchSamples, outputBuffer, originalNumOutputSamples, numSamples);
        numOutputSamples = originalNumOutputSamples;
        numPitchSamples += numSamples;
    }

    // Remove processed samples from the pitch buffer.
    private void removePitchSamples(
        int numSamples)
    {
        if(numSamples == 0) {
            return;
        }
        move(pitchBuffer, 0, pitchBuffer, numSamples, numPitchSamples - numSamples);
        numPitchSamples -= numSamples;
    }

    // Change the pitch.  The latency this introduces could be reduced by looking at
    // past samples to determine pitch, rather than future.
    private void adjustPitch(
        int originalNumOutputSamples)
    {
        int period, newPeriod, separation;
        int position = 0;

        if(numOutputSamples == originalNumOutputSamples) {
            return;
        }
        moveNewSamplesToPitchBuffer(originalNumOutputSamples);
        while(numPitchSamples - position >= maxRequired) {
            period = findPitchPeriod(pitchBuffer, position, false);
            newPeriod = (int)(period/pitch);
            enlargeOutputBufferIfNeeded(newPeriod);
            if(pitch >= 1.0f) {
                overlapAdd(newPeriod, numChannels, outputBuffer, numOutputSamples, pitchBuffer,
                	position, pitchBuffer, position + period - newPeriod);
            } else {
                separation = newPeriod - period;
                overlapAddWithSeparation(period, numChannels, separation, outputBuffer, numOutputSamples,
                	pitchBuffer, position, pitchBuffer, position);
            }
            numOutputSamples += newPeriod;
            position += period;
        }
        removePitchSamples(position);
    }

    // Interpolate the new output sample.
    private short interpolate(
        short in[],
        int inPos,
        int oldSampleRate,
        int newSampleRate)
    {
        short left = in[inPos*numChannels];
        short right = in[inPos*numChannels + numChannels];
        int position = newRatePosition*oldSampleRate;
        int leftPosition = oldRatePosition*newSampleRate;
        int rightPosition = (oldRatePosition + 1)*newSampleRate;
        int ratio = rightPosition - position;
        int width = rightPosition - leftPosition;

        return (short)((ratio*left + (width - ratio)*right)/width);
    }

    // Change the rate.
    private void adjustRate(
        float rate,
        int originalNumOutputSamples)
    {
        int newSampleRate = (int)(sampleRate/rate);
        int oldSampleRate = sampleRate;
        int position;

        // Set these values to help with the integer math
        while(newSampleRate > (1 << 14) || oldSampleRate > (1 << 14)) {
            newSampleRate >>= 1;
            oldSampleRate >>= 1;
        }
        if(numOutputSamples == originalNumOutputSamples) {
            return;
        }
        moveNewSamplesToPitchBuffer(originalNumOutputSamples);
        // Leave at least one pitch sample in the buffer
        for(position = 0; position < numPitchSamples - 1; position++) {
            while((oldRatePosition + 1)*newSampleRate > newRatePosition*oldSampleRate) {
                enlargeOutputBufferIfNeeded(1);
                for(int i = 0; i < numChannels; i++) {
                    outputBuffer[numOutputSamples*numChannels + i] = interpolate(pitchBuffer, position + i,
                    	oldSampleRate, newSampleRate);
                }
                newRatePosition++;
                numOutputSamples++;
            }
            oldRatePosition++;
            if(oldRatePosition == oldSampleRate) {
                oldRatePosition = 0;
                if(newRatePosition != newSampleRate) {
                    System.out.printf("Assertion failed: newRatePosition != newSampleRate\n");
                    assert false;
                }
                newRatePosition = 0;
            }
        }
        removePitchSamples(position);
    }


    // Skip over a pitch period, and copy period/speed samples to the output
    private int skipPitchPeriod(
        short samples[],
        int position,
        float speed,
        int period)
    {
        int newSamples;

        if(speed >= 2.0f) {
            newSamples = (int)(period/(speed - 1.0f));
        } else {
            newSamples = period;
            remainingInputToCopy = (int)(period*(2.0f - speed)/(speed - 1.0f));
        }
        enlargeOutputBufferIfNeeded(newSamples);
        overlapAdd(newSamples, numChannels, outputBuffer, numOutputSamples, samples, position,
        	samples, position + period);
        numOutputSamples += newSamples;
        return newSamples;
    }

    // Insert a pitch period, and determine how much input to copy directly.
    private int insertPitchPeriod(
        short samples[],
        int position,
        float speed,
        int period)
    {
        int newSamples;

        if(speed < 0.5f) {
            newSamples = (int)(period*speed/(1.0f - speed));
        } else {
            newSamples = period;
            remainingInputToCopy = (int)(period*(2.0f*speed - 1.0f)/(1.0f - speed));
        }
        enlargeOutputBufferIfNeeded(period + newSamples);
        move(outputBuffer, numOutputSamples, samples, position, period);
        overlapAdd(newSamples, numChannels, outputBuffer, numOutputSamples + period, samples,
        	position + period, samples, position);
        numOutputSamples += period + newSamples;
        return newSamples;
    }

    // Resample as many pitch periods as we have buffered on the input.  Return 0 if
    // we fail to resize an input or output buffer.  Also scale the output by the volume.
    private void changeSpeed(
        float speed)
    {
        int numSamples = numInputSamples;
        int position = 0, period, newSamples;

        if(numInputSamples < maxRequired) {
            return;
        }
        do {
            if(remainingInputToCopy > 0) {
                newSamples = copyInputToOutput(position);
                position += newSamples;
            } else {
                period = findPitchPeriod(inputBuffer, position, true);
                if(speed > 1.0) {
                    newSamples = skipPitchPeriod(inputBuffer, position, speed, period);
                    position += period + newSamples;
                } else {
                    newSamples = insertPitchPeriod(inputBuffer, position, speed, period);
                    position += newSamples;
                }
            }
        } while(position + maxRequired <= numSamples);
        removeInputSamples(position);
    }

    // Resample as many pitch periods as we have buffered on the input.  Scale the output by the volume.
    private void processStreamInput()
    {
        int originalNumOutputSamples = numOutputSamples;
        float s = speed/pitch;
        float r = rate;

        if(!useChordPitch) {
            r *= pitch;
        }
        if(s > 1.00001 || s < 0.99999) {
            changeSpeed(s);
        } else {
            copyToOutput(inputBuffer, 0, numInputSamples);
            numInputSamples = 0;
        }
        if(useChordPitch) {
            if(pitch != 1.0f) {
                adjustPitch(originalNumOutputSamples);
            }
        } else if(r != 1.0f) {
            adjustRate(r, originalNumOutputSamples);
        }
        if(volume != 1.0f) {
            // Adjust output volume.
            scaleSamples(outputBuffer, originalNumOutputSamples, numOutputSamples - originalNumOutputSamples,
                volume);
        }
    }

    // Write floating point data to the input buffer and process it.
    public void writeFloatToStream(
        float samples[],
        int numSamples)
    {
        addFloatSamplesToInputBuffer(samples, numSamples);
        processStreamInput();
    }

    // Write the data to the input stream, and process it.
    public void writeShortToStream(
        short samples[],
        int numSamples)
    {
        addShortSamplesToInputBuffer(samples, numSamples);
        processStreamInput();
    }

    // Simple wrapper around sonicWriteFloatToStream that does the unsigned byte to short
    // conversion for you.
    public void writeUnsignedByteToStream(
        byte samples[],
        int numSamples)
    {
        addUnsignedByteSamplesToInputBuffer(samples, numSamples);
        processStreamInput();
    }

    // Simple wrapper around sonicWriteBytesToStream that does the byte to 16-bit LE conversion.
    public void writeBytesToStream(
        byte inBuffer[],
        int numBytes)
    {
        addBytesToInputBuffer(inBuffer, numBytes);
        processStreamInput();
    }

    // This is a non-stream oriented interface to just change the speed of a sound sample
    public static int changeFloatSpeed(
        float samples[],
        int numSamples,
        float speed,
        float pitch,
        float rate,
        float volume,
        boolean useChordPitch,
        int sampleRate,
        int numChannels)
    {
        Sonic stream = new Sonic(sampleRate, numChannels);

        stream.setSpeed(speed);
        stream.setPitch(pitch);
        stream.setRate(rate);
        stream.setVolume(volume);
        stream.setChordPitch(useChordPitch);
        stream.writeFloatToStream(samples, numSamples);
        stream.flushStream();
        numSamples = stream.samplesAvailable();
        stream.readFloatFromStream(samples, numSamples);
        return numSamples;
    }

    /* This is a non-stream oriented interface to just change the speed of a sound sample */
    public int sonicChangeShortSpeed(
        short samples[],
        int numSamples,
        float speed,
        float pitch,
        float rate,
        float volume,
        boolean useChordPitch,
        int sampleRate,
        int numChannels)
    {
        Sonic stream = new Sonic(sampleRate, numChannels);

        stream.setSpeed(speed);
        stream.setPitch(pitch);
        stream.setRate(rate);
        stream.setVolume(volume);
        stream.setChordPitch(useChordPitch);
        stream.writeShortToStream(samples, numSamples);
        stream.flushStream();
        numSamples = stream.samplesAvailable();
        stream.readShortFromStream(samples, numSamples);
        return numSamples;
    }
}