jbiginteger.h
17.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
/***************************************************************************
* Copyright (C) 2005 by Jeff Ferr *
* root@sat *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
a***************************************************************************/
#ifndef J_BIGINTEGER_H
#define J_BIGINTEGER_H
#include "jobject.h"
#include <string>
#include <stdint.h>
namespace jmath {
/**
* \brief Immutable arbitrary-precision integers.
* Additionally, BigInteger provides operations for modular arithmetic, GCD
* calculation, primality testing, prime generation, bit manipulation,
* and a few other miscellaneous operations.
* Semantics of shift operations extend those of shift operators
* to allow for negative shift distances. A right-shift with a negative
* shift distance results in a left shift, and vice-versa. The unsigned
* right shift operator (>>>) is omitted, as this operation makes
* little sense in combination with the "infinite word size" abstraction
* provided by this class.
* Bit operations operate on a single bit of the two's-complement
* representation of their operand. If necessary, the operand is sign-
* extended so that it contains the designated bit. None of the single-bit
* operations can produce a BigInteger with a different sign from the
* BigInteger being operated on, as they affect only a single bit, and the
* "infinite word size" abstraction provided by this class ensures that there
* are infinitely many "virtual sign bits" preceding each BigInteger.
*
* \author Jeff Ferr
*/
class BigInteger : public virtual jcommon::Object{
private:
/**
* \brief The signum of this BigInteger: -1 for negative, 0 for zero, or
* 1 for positive. Note that the BigInteger zero <i>must</i> have
* a signum of 0. This is necessary to ensures that there is exactly one
* representation for each BigInteger value.
*/
int _signal;
/** \brief */
uint8_t *_integer;
/**
* \brief The magnitude of this BigInteger, in <i>big-endian</i> order: the
* zeroth element of this array is the most-significant int of the
* magnitude. The magnitude must be "minimal" in that the most-significant
* int (<tt>mag[0]</tt>) must be non-zero. This is necessary to
* ensure that there is exactly one representation for each BigInteger
* value. Note that this implies that the BigInteger zero has a
* zero-length mag array.
*/
int _integer_length;
public:
/**
* \brief Translates the std::string representation of a BigInteger in the specified
* radix into a BigInteger. The std::string representation consists of an
* optional minus sign followed by a sequence of one or more digits in the
* specified radix. The character-to-digit mapping is provided by
* <tt>Character.digit</tt>. The std::string may not contain any extraneous
* characters (whitespace, for example).
*
* \param val std::string representation of BigInteger.
* \param radix radix to be used in interpreting <tt>val</tt>.
*/
BigInteger(std::string value, int radix = 10);
/**
* \brief
*
*/
virtual ~BigInteger();
/**
* \brief
*
*/
bool IsValid(std::string value, int radix);
/**
* \brief Returns a positive BigInteger that is probably prime, with the
* specified bitLength. The probability that a BigInteger returned
* by this method is composite does not exceed 2<sup>-100</sup>.
*
* \param bitLength bitLength of the returned BigInteger.
* \param rnd source of random bits used to select candidates to be
* tested for primality.
* \return a BigInteger of <tt>bitLength</tt> bits that is probably prime
*/
static BigInteger * ProbablePrime(int length);
/**
* \brief Returns the first integer greater than this <code>BigInteger</code> that
* is probably prime. The probability that the number returned by this
* method is composite does not exceed 2<sup>-100</sup>. This method will
* never skip over a prime when searching: if it returns <tt>p</tt>, there
* is no prime <tt>q</tt> such that <tt>this < q < p</tt>.
*
* \return the first integer greater than this <code>BigInteger</code> that is probably prime.
*/
BigInteger * NextProbablePrime();
/**
* \brief
*
*/
bool operator==(const BigInteger &value);
/**
* \brief
*
*/
bool operator>(const BigInteger &value);
/**
* \brief
*
*/
bool operator<(const BigInteger &value);
/**
* \brief Returns a BigInteger whose value is <tt>(this + val)</tt>.
*
* \param val value to be added to this BigInteger.
* \return <tt>this + val</tt>
*/
BigInteger & operator+(BigInteger &value);
/**
* Returns a BigInteger whose value is <tt>(this - val)</tt>.
*
* @param val value to be subtracted from this BigInteger.
* @return <tt>this - val</tt>
*/
BigInteger & operator-(BigInteger &value);
/**
* Returns a BigInteger whose value is <tt>(this / val)</tt>.
*
* \param val value by which this BigInteger is to be divided.
* \return <tt>this / val</tt>
*/
BigInteger & Divide(BigInteger *value);
/**
* Returns an array of two BigIntegers containing <tt>(this / val)</tt>
* followed by <tt>(this % val)</tt>.
*
* \param val value by which this BigInteger is to be divided, and the remainder computed.
* \return an array of two BigIntegers: the quotient <tt>(this / val)</tt>
* is the initial element, and the remainder <tt>(this % val)</tt>
* is the final element.
*/
BigInteger & DivideAndRemainder(BigInteger *value);
/**
* Returns a BigInteger whose value is <tt>(this % val)</tt>.
*
* @param val value by which this BigInteger is to be divided, and the
* remainder computed.
* @return <tt>this % val</tt>
* @throws ArithmeticException <tt>val==0</tt>
*/
BigInteger & Remainder(BigInteger *value);
/**
* \brief Returns a BigInteger whose value is <tt>(this<sup>exponent</sup>)</tt>.
* Note that <tt>exponent</tt> is an integer rather than a BigInteger.
*
* \param exponent exponent to which this BigInteger is to be raised.
* \return <tt>this<sup>exponent</sup></tt>
*/
BigInteger & Pow(int exponent);
/**
* \brief Returns a BigInteger whose value is the greatest common divisor of
* <tt>abs(this)</tt> and <tt>abs(val)</tt>. Returns 0 if
* <tt>this==0 && val==0</tt>.
*
* \param val value with which the GCD is to be computed.
* \return <tt>GCD(abs(this), abs(val))</tt>
*/
BigInteger & GCD(BigInteger *val);
/**
* Returns a BigInteger whose value is the absolute value of this
* BigInteger.
*
* @return <tt>abs(this)</tt>
*/
BigInteger & Absolute();
/**
* Returns a BigInteger whose value is <tt>(-this)</tt>.
*
* @return <tt>-this</tt>
*/
BigInteger & Negate();
/**
* Returns the signum function of this BigInteger.
*
* @return -1, 0 or 1 as the value of this BigInteger is negative, zero or
* positive.
*/
bool IsNegative();
/**
* \brief Returns a BigInteger whose value is <tt>(this mod m</tt>). This method
* differs from <tt>remainder</tt> in that it always returns a
* <i>non-negative</i> BigInteger.
*
* \param m the modulus.
* \return <tt>this mod m</tt>
*/
BigInteger & Mod(BigInteger *value);
/**
* Returns a BigInteger whose value is <tt>(this << n)</tt>.
* The shift distance, <tt>n</tt>, may be negative, in which case
* this method performs a right shift.
* (Computes <tt>floor(this * 2<sup>n</sup>)</tt>.)
*
* @param n shift distance, in bits.
* @return <tt>this << n</tt>
* @see #shiftRight
*/
BigInteger & ShiftLeft(int n);
/**
* Returns a BigInteger whose value is <tt>(this >> n)</tt>. Sign
* extension is performed. The shift distance, <tt>n</tt>, may be
* negative, in which case this method performs a left shift.
* (Computes <tt>floor(this / 2<sup>n</sup>)</tt>.)
*
* @param n shift distance, in bits.
* @return <tt>this >> n</tt>
* @see #shiftLeft
*/
BigInteger & ShiftRight(int n);
/**
* \brief Returns a BigInteger whose value is <tt>(this & val)</tt>. (This
* method returns a negative BigInteger if and only if this and val are
* both negative.)
*
* \param val value to be AND'ed with this BigInteger.
* \return <tt>this & val</tt>
*/
BigInteger & And(BigInteger *value);
/**
* \brief Returns a BigInteger whose value is <tt>(this | val)</tt>. (This method
* returns a negative BigInteger if and only if either this or val is
* negative.)
*
* \param val value to be OR'ed with this BigInteger.
* \return <tt>this | val</tt>
*/
BigInteger & Or(BigInteger *value);
/**
* \brief Returns a BigInteger whose value is <tt>(this ^ val)</tt>. (This method
* returns a negative BigInteger if and only if exactly one of this and
* val are negative.)
*
* \param val value to be XOR'ed with this BigInteger.
* \return <tt>this ^ val</tt>
*/
BigInteger & Xor(BigInteger *value);
/**
* Returns a BigInteger whose value is <tt>(~this)</tt>. (This method
* returns a negative value if and only if this BigInteger is
* non-negative.)
*
* @return <tt>~this</tt>
*/
BigInteger & Not();
/**
* Returns a BigInteger whose value is <tt>(this & ~val)</tt>. This
* method, which is equivalent to <tt>and(val.not())</tt>, is provided as
* a convenience for masking operations. (This method returns a negative
* BigInteger if and only if <tt>this</tt> is negative and <tt>val</tt> is
* positive.)
*
* \param val value to be complemented and AND'ed with this BigInteger.
* \return <tt>this & ~val</tt>
*/
BigInteger & AndNot(BigInteger *value);
/**
* \brief Returns <tt>true</tt> if and only if the designated bit is set.
* (Computes <tt>((this & (1<<n)) != 0)</tt>.)
*
* \param n index of bit to test.
* \return <tt>true</tt> if and only if the designated bit is set.
*/
bool TestBit(int n);
/**
* Returns a BigInteger whose value is equivalent to this BigInteger
* with the designated bit set. (Computes <tt>(this | (1<<n))</tt>.)
*
* @param n index of bit to set.
* @return <tt>this | (1<<n)</tt>
*/
BigInteger & SetBit(int n);
/**
* \brief Returns a BigInteger whose value is equivalent to this BigInteger
* with the designated bit cleared.
* (Computes <tt>(this & ~(1<<n))</tt>.)
*
* \param n index of bit to clear.
* \return <tt>this & ~(1<<n)</tt>
*/
BigInteger & ClearBit(int n);
/**
* \brief Returns a BigInteger whose value is equivalent to this BigInteger
* with the designated bit flipped.
* (Computes <tt>(this ^ (1<<n))</tt>.)
*
* \param n index of bit to flip.
* \return <tt>this ^ (1<<n)</tt>
*/
BigInteger & FlipBit(int n);
/**
* \brief Returns the index of the rightmost (lowest-order) one bit in this
* BigInteger (the number of zero bits to the right of the rightmost
* one bit). Returns -1 if this BigInteger contains no one bits.
* (Computes <tt>(this==0? -1 : log<sub>2</sub>(this & -this))</tt>.)
*
* Initialize lowestSetBit field the first time this method is
* executed. This method depends on the atomicity of int modifies;
* without this guarantee, it would have to be synchronized.
*
* \return index of the rightmost one bit in this BigInteger.
*/
int GetLowestSetBit();
/**
* \brief Returns the number of bits in the minimal two's-complement
* representation of this BigInteger, <i>excluding</i> a sign bit.
* For positive BigIntegers, this is equivalent to the number of bits in
* the ordinary binary representation. (Computes
* <tt>(ceil(log<sub>2</sub>(this < 0 ? -this : this+1)))</tt>.)
*
* Initialize bitLength field the first time this method is executed.
* This method depends on the atomicity of int modifies; without
* this guarantee, it would have to be synchronized.
*
* \return number of bits in the minimal two's-complement
* representation of this BigInteger, <i>excluding</i> a sign bit.
*/
int GetBitLength();
/**
* \brief Returns <tt>true</tt> if this BigInteger is probably prime,
* <tt>false</tt> if it's definitely composite. If
* <tt>certainty</tt> is <tt> <= 0</tt>, <tt>true</tt> is
* returned.
*
* \param certainty a measure of the uncertainty that the caller is
* willing to tolerate: if the call returns <tt>true</tt>
* the probability that this BigInteger is prime exceeds
* <tt>(1 - 1/2<sup>certainty</sup>)</tt>. The execution time of
* this method is proportional to the value of this parameter.
* \return <tt>true</tt> if this BigInteger is probably prime,
* <tt>false</tt> if it's definitely composite.
*/
bool IsProbablePrime(int certainty);
/**
* Compares this BigInteger with the specified BigInteger. This method is
* provided in preference to individual methods for each of the six
* boolean comparison operators (<, ==, >, >=, !=, <=). The
* suggested idiom for performing these comparisons is:
* <tt>(x.compareTo(y)</tt> <<i>op</i>> <tt>0)</tt>,
* where <<i>op</i>> is one of the six comparison operators.
*
* @param val BigInteger to which this BigInteger is to be compared.
* @return -1, 0 or 1 as this BigInteger is numerically less than, equal
* to, or greater than <tt>val</tt>.
*/
int Compare(jcommon::Object *o);
/**
* Compares this BigInteger with the specified jcommon::Object *for equality.
*
* @param x jcommon::Object *to which this BigInteger is to be compared.
* @return <tt>true</tt> if and only if the specified jcommon::Object *is a
* BigInteger whose value is numerically equal to this BigInteger.
*/
bool Equals(jcommon::Object *o);
/**
* \brief Returns the minimum of this BigInteger and <tt>val</tt>.
*
* \param val value with which the minimum is to be computed.
* \return the BigInteger whose value is the lesser of this BigInteger and
* <tt>val</tt>. If they are equal, either may be returned.
*/
BigInteger & Minimum(BigInteger *value);
/**
* \brief Returns the maximum of this BigInteger and <tt>val</tt>.
*
* \param val value with which the maximum is to be computed.
* \return the BigInteger whose value is the greater of this and
* <tt>val</tt>. If they are equal, either may be returned.
*/
BigInteger & Maximum(BigInteger *value);
/**
* \brief Returns the hash code for this BigInteger.
*
* \return hash code for this BigInteger.
*/
virtual unsigned long long Hash();
/**
* \brief Returns the std::string representation of this BigInteger in the
* given radix. If the radix is outside the range from {@link
* Character#MIN_RADIX} to {@link Character#MAX_RADIX} inclusive,
* it will default to 10 (as is the case for
* <tt>Integer.tostd::string</tt>). The digit-to-character mapping
* provided by <tt>Character.forDigit</tt> is used, and a minus
* sign is prepended if appropriate. (This representation is
* compatible with the {@link #BigInteger(std::string, int) (std::string,
* <code>int</code>)} constructor.)
*
* \param radix radix of the std::string representation.
* @return std::string representation of this BigInteger in the given radix.
*/
std::string what(int radix);
/**
* Returns the decimal std::string representation of this BigInteger.
* The digit-to-character mapping provided by
* <tt>Character.forDigit</tt> is used, and a minus sign is
* prepended if appropriate. (This representation is compatible
* with the {@link #BigInteger(std::string) (std::string)} constructor, and
* allows for std::string concatenation with Java's + operator.)
*
* @return decimal std::string representation of this BigInteger.
* @see Character#forDigit
* @see #BigInteger(java.lang.std::string)
*/
std::string what();
/**
* \brief Converts this BigInteger to an <code>int</code>. This
* conversion is analogous to a <a
* href="http://java.sun.com/docs/books/jls/second_edition/html/conversions.doc.html#25363"><i>narrowing
* primitive conversion</i></a> from <code>long</code> to
* <code>int</code> as defined in the <a
* href="http://java.sun.com/docs/books/jls/html/">Java Language
* Specification</a>: if this BigInteger is too big to fit in an
* <code>int</code>, only the low-order 32 bits are returned.
* Note that this conversion can lose information about the
* overall magnitude of the BigInteger value as well as return a
* result with the opposite sign.
*
* \return this BigInteger converted to an <code>int</code>.
*/
long long GetValue();
};
};
#endif