jmath.h
20.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
/***************************************************************************
* Copyright (C) 2005 by Jeff Ferr *
* root@sat *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
a***************************************************************************/
#ifndef J_MATH_H
#define J_MATH_H
#include "jobject.h"
#include <string>
#include <stdint.h>
#include <math.h>
namespace jmath {
/**
* \brief
*
* \author Jeff Ferr
*/
template<class T>class Math : public virtual jcommon::Object{
public:
// Fundamental Constants
/** \brief PI */
static double PI;
/** \brief Base of natural log */
static double e;
/** \brief Natural log of 10 */
static double ln10;
/** \brief Log of e */
static double logE;
/** \brief Velocity of light (m s^-1) */
static double C;
/** \brief Error */
static double Cuncertainty;
/** \brief Gravitational constant (m^3 kg^-1 s^-1) */
static double G;
/** \brief Error */
static double Guncertainty;
/** \brief (GeV/c^-2)^-2 */
static double GhbarC;
/** \brief Error */
static double GhbarCuncertainty;
/** \brief Standard acceleration of gravity (m s^-2) */
static double Gn;
/** \brief Error */
static double GnUncertainty;
/** \brief Planck's constant (J s) */
static double H;
/** \brief */
static double HUncertainty;
/** \brief h-bar (h over 2 pi) (J s) */
static double Hbar;
/** \brief Error */
static double HbarUncertainty;
/** \brief Boltzmann's constant (J K^-1) */
static double K;
/** \brief */
static double KUncertainty;
/** \brief Stefan-Boltzmann constant (W m^-2 K^-4) */
static double Sigma;
/** \brief Error */
static double SigmaUncertainty;
/** \brief Avogadro constant (Avogadro's Number) (mol^-1) */
static double Na;
/** \brief Error */
static double NaUncertainty;
/** \brief universal gas constant (Na * K) (J K^-1 mol^-1) */
static double R;
/** \brief */
static double RUncertainty;
/** \brief Molecular weight of dry air (kg kmol^-1 (or gm mol^-1)) */
static double MWair;
/** \brief Dry Air Gas Constant (R / MWair) (J kg^-1 K^-1) */
static double Rgair;
/** \brief Elementary charge (C) */
static double Qe;
/** \brief Error */
static double QeUncertainty;
/**
* \brief Round to nearest integer. Rounds half integers to the nearest even integer.
*
*/
static int Nint(T x);
/**
* \brief Verify finite
*
*/
static int Finite(double x);
/**
* \brief Verify not a number
*
*/
static int IsNaN(double x)
{
return isnan(x);
}
/**
* \brief
*
*/
static double Sin(double x)
{
return sin(x);
}
/**
* \brief
*
*/
static double Cos(double x)
{
return cos(x);
}
/**
* \brief
*
*/
static double Tan(double x)
{
return tan(x);
}
/**
* \brief
*
*/
static double SinH(double x)
{
return sinh(x);
}
/**
* \brief
*
*/
static double CosH(double x)
{
return cosh(x);
}
/**
* \brief
*
*/
static double TanH(double x)
{
return tanh(x);
}
/**
* \brief
*
*/
static double ASin(double x)
{
if (x < -1.)
return -Math<T>::PI/2.0;
if (x > 1.)
return Math<T>::PI/2.0;
return asin(x);
}
/**
* \brief
*
*/
static double ACos(double x)
{
if (x < -1.)
return Math<T>::PI;
if (x > 1.)
return 0;
return acos(x);
}
/**
* \brief
*
*/
static double ATan(double x)
{
return atan(x);
}
/**
* \brief
*
*/
static double ATan2(double x, double y)
{
if (x != 0)
return atan2(y, x);
if (y == 0)
return 0;
if (y > 0)
return PI/2.0;
return -PI/2.0;
}
/**
* \brief
*
*/
static double ASinH(double);
/**
* \brief
*
*/
static double ACosH(double);
/**
* \brief
*
*/
static double ATanH(double);
/**
* \brief
*
*/
static double Hypot(double x, double y)
{
return hypot(x, y);
}
/**
* \brief
*
*/
static double Sqrt(double x)
{
return sqrt(x);
}
/**
* \brief
*
*/
static double Ceil(double x)
{
return ceil(x);
}
/**
* \brief
*
*/
static int CeilNint(double x)
{
return Math<T>::Nint(ceil(x));
}
/**
* \brief
*
*/
static double Floor(double x)
{
return floor(x);
}
/**
* \brief
*
*/
static int FloorNint(double x)
{
return Math<T>::Nint(floor(x));
}
/**
* \brief
*
*/
static double Exp(double x)
{
return exp(x);
}
/**
* \brief
*
*/
static double Ldexp(double x, int exp)
{
return ldexp(x, exp);
}
/**
* \brief
*
*/
static double Factorial(int i);
/**
* \brief
*
*/
static double Power(double x, double y)
{
return pow(x, y);
}
/**
* \brief
*
*/
static double Log(double x)
{
return log(x);
}
/**
* \brief
*
*/
static double Log2(double x)
{
return log(x)/log(2.0);
}
/**
* \brief
*
*/
static double Log10(double x)
{
return log10(x);
}
/**
* brief Return next prime number after x, unless x is a prime in which case x is returned.
*
*/
static int64_t NextPrime(int64_t x);
/**
* \brief sqrt (px*px + py*py)
*
*/
static int64_t Hypot(int64_t x, int64_t y);
/**
* \brief Absolute value
*
*/
static T Abs(T d)
{
return (d >= 0) ? d : -d;
}
/**
* \brief Sign value
*
*/
static T Sign(T a, T b)
{
return (b >= 0) ? Abs(a) : -Abs(a);
}
/**
* \brief Even
*
*/
static bool Even(int64_t a)
{
return ! (a & 1);
}
/**
* \brief Odd
*
*/
static bool Odd(int64_t a)
{
return (a & 1);
}
/**
* \brief Min of two scalars
*
*/
static T Min(T a, T b)
{
return a <= b ? a : b;
}
/**
* \brief Max of two scalars
*
*/
static T Max(T a, T b)
{
return a >= b ? a : b;
}
/**
* \brief Min of an array
*
*/
static T MinElement(int64_t n, const T *a);
/**
* \brief Max of an array
*
*/
static T MaxElement(int64_t n, const T *a);
/**
* \brief Locate Min element number in an array
*
*/
static int64_t LocMin(int64_t n, const T *a);
/**
* \brief Locate Max element number in an array
*
*/
static int64_t LocMax(int64_t n, const T *a);
/**
* \brief Mean
*
*/
static double Mean(int64_t n, const T *a, const double *w = 0);
/**
* \brief Geometric Mean
*
*/
static double GeometricMean(int64_t n, const T *a);
/**
* \brief RMS
*
*/
static double RMS(int64_t n, const T *a);
/**
* \brief Return the median of the array a where each entry i has weight w[i].
* Both arrays have a length of at least n . The median is a number obtained
* from the sorted array a through median = (a[jl]+a[jh])/2.
* Where (using also the sorted index on the array w)
* sum_i=0,jl w[i] <= sumTot/2
* sum_i=0,jh w[i] >= sumTot/2
* sumTot = sum_i=0,n w[i]
*
* If w=0, the algorithm defaults to the median definition where it is
* a number that divides the sorted sequence into 2 halves.
* When n is odd or n > 1000, the median is kth element k = (n + 1) / 2.
* when n is even and n < 1000the median is a mean of the elements k = n/2 and k = n/2 + 1.
* If work is supplied, it is used to store the sorting index and assumed to be
* >= n . If work=0, local storage is used, either on the stack if n < kWorkMax
* or on the heap for n >= kWorkMax.
*
*/
static double Median(int64_t n, const T *a, const double *w=0, int64_t *work = 0);
/**
* \brief
*
*/
static T KOrdStat(int64_t n, const T *a, int64_t k, int64_t *work = 0);
/**
* \brief Computes sample quantiles, corresponding to the given probabilities
* Parameters:
* x -the data sample
* n - its size
* quantiles - computed quantiles are returned in there
* prob - probabilities where to compute quantiles
* nprob - size of prob array
* isSorted - is the input array x sorted?
*
* NOTE, that when the input is not sorted, an array of integers of size n needs
* to be allocated. It can be passed by the user in parameter index,
* or, if not passed, it will be allocated inside the function
*
* type - method to compute (from 1 to 9). Following types are provided:
* Discontinuous:
* type=1 - inverse of the empirical distribution function
* type=2 - like type 1, but with averaging at discontinuities
* type=3 - SAS definition: nearest even order statistic
* Piecwise linear continuous:
* In this case, sample quantiles can be obtained by linear interpolation
* between the k-th order statistic and p(k).
* type=4 - linear interpolation of empirical cdf, p(k)=k/n;
* type=5 - a very popular definition, p(k) = (k-0.5)/n;
* type=6 - used by Minitab and SPSS, p(k) = k/(n+1);
* type=7 - used by S-Plus and R, p(k) = (k-1)/(n-1);
* type=8 - resulting sample quantiles are approximately median unbiased
* regardless of the distribution of x. p(k) = (k-1/3)/(n+1/3);
* type=9 - resulting sample quantiles are approximately unbiased, when
* the sample comes from Normal distribution. p(k)=(k-3/8)/(n+1/4);
* default type = 7
*
*/
static void Quantiles(int n, int nprob, double *x, double *quantiles, double *prob, bool isSorted=true, int *index = 0, int type = 7);
/**
* \brief Range
*
*/
static T Range(T lb, T ub, T x)
{
return x < lb ? lb : (x > ub ? ub : x);
}
/**
* \brief Binary search
*
*/
static int64_t BinarySearch(int64_t n, const T *array, T value);
/**
* \brief Binary search
*
*/
static int64_t BinarySearch(int64_t n, const T **array, T value);
/**
* \brief Hashing
*
*/
static uint64_t Hash(const void *txt, int ntxt);
/**
* \brief Hashing
*
*/
static uint64_t Hash(const char *str);
/**
* brief IsInside
*
*/
static bool IsInside(T xp, T yp, int np, T *x, T *y);
/**
* \brief Sorting
*
*/
static void Sort(int n, const T *a, int *index, bool down=true);
/**
* \brief Sorting
*
*/
static void Sort(int64_t n, const T *a, int64_t *index, bool down=true);
/**
* \brief Bubble Sorting
*
*/
static void BubbleHigh(int Narr, double *arr1, int *arr2);
/**
* \brief Bubble Sorting
*
*/
static void BubbleLow (int Narr, double *arr1, int *arr2);
/**
* \brief Calculate the cross product of two vectors
*
*/
static T * Cross(const T v1[3], const T v2[3], T out[3]);
/**
* \brief Normalize a vector
*
*/
static float Normalize(float v[3]);
/**
* \brief Normalize a vector
*
*/
static double Normalize(double v[3]);
/**
* \brief Calculate the normalized cross product of two vectors
*
*/
static T NormCross(const T v1[3], const T v2[3], T out[3]);
/**
* \brief Calculate a normal vector of a plane
*
*/
static T * Normal2Plane(const T v1[3], const T v2[3], const T v3[3], T normal[3]);
/**
* \brief Roots cubic
*
*/
static bool RootsCubic(const double coef[4], double &a, double &b, double &c);
/**
* \brief
*
*/
static double BreitWigner(double x, double mean = 0, double gamma = 1);
/**
* \brief
*
*/
static double Gaussian(double x, double mean = 0, double sigma = 1, bool norm = false);
/**
* \brief The LANDAU function with mpv(most probable value) and sigma.
* This function has been adapted from the CERNLIB routine G110 denlan.
*
*/
static double Landau(double x, double mpv = 0, double sigma = 1, bool norm = false);
/**
* \brief Computation of Voigt function (normalised).
* Voigt is a convolution of gauss(xx) = 1/(sqrt(2*pi)*sigma) * exp(xx*xx/(2*sigma*sigma)
* and lorentz(xx) = (1/pi) * (lg/2) / (xx*xx + g*g/4) functions.
*
* The Voigt function is known to be the real part of Faddeeva function also
* called complex error function [2].
* The algoritm was developed by J. Humlicek [1]. This code is based on
* fortran code presented by R. J. Wells [2]. Translated and adapted by Miha D. Puc.
*
* To calculate the Faddeeva function with relative error less than 10^(-r).
* r can be set by the the user subject to the constraints 2 <= r <= 5.
*
*/
static double Voigt(double x, double sigma, double lg, int R = 4);
/**
* \brief Bessel functions
*
*/
static double BesselI(int n,double x); // integer order modified Bessel function I_n(x)
/**
* \brief Integer order modified Bessel function K_n(x)
*
*/
static double BesselK(int n,double x);
/**
* \brief Modified Bessel function I_0(x)
*
*/
static double BesselI0(double x);
/**
* \brief modified Bessel function K_0(x)
*
*/
static double BesselK0(double x);
/**
* \brief modified Bessel function I_1(x)
*
*/
static double BesselI1(double x);
/**
* \brief modified Bessel function K_1(x)
*
*/
static double BesselK1(double x);
/**
* \brief Bessel function J0(x) for any real x
*
*/
static double BesselJ0(double x);
/**
* \brief Bessel function J1(x) for any real x
*
*/
static double BesselJ1(double x);
/**
* \brief Bessel function Y0(x) for positive x
*
*/
static double BesselY0(double x);
/**
* \brief Bessel function Y1(x) for positive x
*
*/
static double BesselY1(double x);
/**
* \brief Struve functions of order 0
*
*/
static double StruveH0(double x);
/**
* \brief Struve functions of order 1
*
*/
static double StruveH1(double x);
/**
* \brief Modified Struve functions of order 0
*
*/
static double StruveL0(double x);
/**
* \brief Modified Struve functions of order 1
*
*/
static double StruveL1(double x);
/**
* \brief Statistics
*
*/
static double Beta(double p, double q);
/**
* \brief Statistics
*
*/
static double BetaCf(double x, double a, double b);
/**
* \brief Statistics
*
*/
static double BetaDist(double x, double p, double q);
/**
* \brief Statistics
*
*/
static double BetaDistI(double x, double p, double q);
/**
* \brief Statistics
*
*/
static double BetaIncomplete(double x, double a, double b);
/**
* \brief Statistics
*
*/
static double Binomial(int n,int k); // Calculate the binomial coefficient n over k
/**
* \brief Statistics
*
*/
static double BinomialI(double p, int n, int k);
/**
* \brief Statistics
*
*/
static double CauchyDist(double x, double t=0, double s=1);
/**
* \brief Statistics
*
*/
static double ChisquareQuantile(double p, double ndf);
/**
* \brief The DiLogarithm function.
* Code translated by R.Brun from CERNLIB DILOG function C332.
*
*/
static double DiLog(double x);
/**
* \brief Computation of the error function erf(x).
*
*/
static double Erf(double x);
/**
* \brief Returns inverse error function.
*
*/
static double ErfInverse(double x);
/**
* \brief Compute the complementary error function erfc(x).
*
*/
static double Erfc(double x);
/**
* \brief Statistics
*
*/
static double ErfcInverse(double x) {
return ErfInverse(1.0 - x);
}
/**
* \brief Statistics
*
*/
static double FDist(double F, double N, double M);
/**
* \brief Statistics
*
*/
static double FDistI(double F, double N, double M);
/**
* \brief Computation of the normal frequency function freq(x).
*
*/
static double Freq(double x);
/**
* \brief Computation of gamma(z) for all z>0.
*
*/
static double Gamma(double z);
/**
* \brief Computation of the upper incomplete gamma function P(a,x) as defined in the
* Handbook of Mathematical Functions by Abramowitz and Stegun, formula 6.5.1 on page 260.
*
* Note that this is the version of the incomplete gamma function as used in statistics :
* its normalization is such that Math<T>::Gamma(a,+infinity) = 1.
*
*/
static double Gamma(double a,double x);
/**
* \brief Statistics
*
*/
static double GammaDist(double x, double gamma, double mu=0, double beta=1);
/**
* \brief Statistics
*
*/
static double GamCf(double a, double x);
/**
* \brief Statistics
*
*/
static double GamSer(double a, double x);
/**
* \brief Statistics
*
*/
static double KolmogorovProb(double z);
/**
* \brief Statistics
*
*/
static double LandauI(double x);
/**
* \brief Statistics
*
*/
static double LaplaceDist(double x, double alpha=0, double beta=1);
/**
* \brief Statistics
*
*/
static double LaplaceDistI(double x, double alpha=0, double beta=1);
/**
* \brief Computation of ln[gamma(z)] for all z>0.
*
* C.Lanczos, SIAM Journal of Numerical Analysis B1 (1964), 86.
* The accuracy of the result is better than 2e-10.
* Nve 14-nov-1998 UU-SAP Utrecht
*
*/
static double LnGamma(double z)
{
if (z<=0) return 0;
// Coefficients for the series expansion
double c[7] = { 2.5066282746310005, 76.18009172947146, -86.50532032941677
,24.01409824083091, -1.231739572450155, 0.1208650973866179e-2
,-0.5395239384953e-5};
double x = z;
double y = x;
double tmp = x+5.5;
tmp = (x+0.5)*Log(tmp)-tmp;
double ser = 1.000000000190015;
for (int i=1; i<7; i++) {
y += 1;
ser += c[i]/y;
}
double v = tmp+Log(c[0]*ser/x);
return v;
}
/**
* \brief Statistics
*
*/
static double LogNormal(double x, double sigma, double theta=0, double m=1);
/**
* \brief Statistics
*
*/
static double NormQuantile(double p);
/**
* \brief Statistics
*
*/
static bool Permute(int n, int *a); // Find permutations
/**
* \brief Compute the Poisson distribution function for (x,par).
* The Poisson PDF is implemented by means of Euler's Gamma-function
* (for the factorial), so for all integer arguments it is correct.
* BUT for non-integer values it IS NOT equal to the Poisson distribution.
*
*/
static double Poisson(double x, double par);
/**
* \brief Statistics
*
*/
static double PoissonI(double x, double par);
/**
* \brief Computation of the probability for a certain Chi-squared (chi2)
* and number of degrees of freedom (ndf).
* Calculations are based on the incomplete gamma function P(a,x), where a=ndf/2 and x=chi2/2.
*
* P(a,x) represents the probability that the observed Chi-squared
* for a correct model should be less than the value chi2.
*
* The returned probability corresponds to 1-P(a,x), which denotes the probability
* that an observed Chi-squared exceeds the value chi2 by chance, even for a correct model.
*
*/
static double Prob(double chi2,int ndf);
/**
* \brief Statistics
*
*/
static double Student(double t, double ndf);
/**
* \brief Statistics
*
*/
static double StudentI(double t, double ndf);
/**
* \brief Statistics
*
*/
static double StudentQuantile(double p, double ndf, bool lower_tail=true);
/**
* \brief Statistics
*
*/
void VavilovSet(double rkappa, double beta2, bool mode, double *WCM, double *AC, double *HC, int &itype, int &npt);
/**
* \brief Statistics
*
*/
double VavilovDenEval(double rlam, double *AC, double *HC, int itype);
/**
* \brief Statistics
*
*/
static double Vavilov(double x, double kappa, double beta2);
/**
* \brief Statistics
*
*/
static double VavilovI(double x, double kappa, double beta2);
};
}
#endif