hyperloglog.c 56.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
/* hyperloglog.c - Redis HyperLogLog probabilistic cardinality approximation.
 * This file implements the algorithm and the exported Redis commands.
 *
 * Copyright (c) 2014, Salvatore Sanfilippo <antirez at gmail dot com>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 *   * Redistributions of source code must retain the above copyright notice,
 *     this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in the
 *     documentation and/or other materials provided with the distribution.
 *   * Neither the name of Redis nor the names of its contributors may be used
 *     to endorse or promote products derived from this software without
 *     specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include "redis.h"

#include <stdint.h>
#include <math.h>

/* The Redis HyperLogLog implementation is based on the following ideas:
 *
 * * The use of a 64 bit hash function as proposed in [1], in order to don't
 *   limited to cardinalities up to 10^9, at the cost of just 1 additional
 *   bit per register.
 * * The use of 16384 6-bit registers for a great level of accuracy, using
 *   a total of 12k per key.
 * * The use of the Redis string data type. No new type is introduced.
 * * No attempt is made to compress the data structure as in [1]. Also the
 *   algorithm used is the original HyperLogLog Algorithm as in [2], with
 *   the only difference that a 64 bit hash function is used, so no correction
 *   is performed for values near 2^32 as in [1].
 *
 * [1] Heule, Nunkesser, Hall: HyperLogLog in Practice: Algorithmic
 *     Engineering of a State of The Art Cardinality Estimation Algorithm.
 *
 * [2] P. Flajolet, Éric Fusy, O. Gandouet, and F. Meunier. Hyperloglog: The
 *     analysis of a near-optimal cardinality estimation algorithm.
 *
 * Redis uses two representations:
 *
 * 1) A "dense" representation where every entry is represented by
 *    a 6-bit integer.
 * 2) A "sparse" representation using run length compression suitable
 *    for representing HyperLogLogs with many registers set to 0 in
 *    a memory efficient way.
 *
 *
 * HLL header
 * ===
 *
 * Both the dense and sparse representation have a 16 byte header as follows:
 *
 * +------+---+-----+----------+
 * | HYLL | E | N/U | Cardin.  |
 * +------+---+-----+----------+
 *
 * The first 4 bytes are a magic string set to the bytes "HYLL".
 * "E" is one byte encoding, currently set to HLL_DENSE or
 * HLL_SPARSE. N/U are three not used bytes.
 *
 * The "Cardin." field is a 64 bit integer stored in little endian format
 * with the latest cardinality computed that can be reused if the data
 * structure was not modified since the last computation (this is useful
 * because there are high probabilities that HLLADD operations don't
 * modify the actual data structure and hence the approximated cardinality).
 *
 * When the most significant bit in the most significant byte of the cached
 * cardinality is set, it means that the data structure was modified and
 * we can't reuse the cached value that must be recomputed.
 *
 * Dense representation
 * ===
 *
 * The dense representation used by Redis is the following:
 *
 * +--------+--------+--------+------//      //--+
 * |11000000|22221111|33333322|55444444 ....     |
 * +--------+--------+--------+------//      //--+
 *
 * The 6 bits counters are encoded one after the other starting from the
 * LSB to the MSB, and using the next bytes as needed.
 *
 * Sparse representation
 * ===
 *
 * The sparse representation encodes registers using a run length
 * encoding composed of three opcodes, two using one byte, and one using
 * of two bytes. The opcodes are called ZERO, XZERO and VAL.
 *
 * ZERO opcode is represented as 00xxxxxx. The 6-bit integer represented
 * by the six bits 'xxxxxx', plus 1, means that there are N registers set
 * to 0. This opcode can represent from 1 to 64 contiguous registers set
 * to the value of 0.
 *
 * XZERO opcode is represented by two bytes 01xxxxxx yyyyyyyy. The 14-bit
 * integer represented by the bits 'xxxxxx' as most significant bits and
 * 'yyyyyyyy' as least significant bits, plus 1, means that there are N
 * registers set to 0. This opcode can represent from 0 to 16384 contiguous
 * registers set to the value of 0.
 *
 * VAL opcode is represented as 1vvvvvxx. It contains a 5-bit integer
 * representing the value of a register, and a 2-bit integer representing
 * the number of contiguous registers set to that value 'vvvvv'.
 * To obtain the value and run length, the integers vvvvv and xx must be
 * incremented by one. This opcode can represent values from 1 to 32,
 * repeated from 1 to 4 times.
 *
 * The sparse representation can't represent registers with a value greater
 * than 32, however it is very unlikely that we find such a register in an
 * HLL with a cardinality where the sparse representation is still more
 * memory efficient than the dense representation. When this happens the
 * HLL is converted to the dense representation.
 *
 * The sparse representation is purely positional. For example a sparse
 * representation of an empty HLL is just: XZERO:16384.
 *
 * An HLL having only 3 non-zero registers at position 1000, 1020, 1021
 * respectively set to 2, 3, 3, is represented by the following three
 * opcodes:
 *
 * XZERO:1000 (Registers 0-999 are set to 0)
 * VAL:2,1    (1 register set to value 2, that is register 1000)
 * ZERO:19    (Registers 1001-1019 set to 0)
 * VAL:3,2    (2 registers set to value 3, that is registers 1020,1021)
 * XZERO:15362 (Registers 1022-16383 set to 0)
 *
 * In the example the sparse representation used just 7 bytes instead
 * of 12k in order to represent the HLL registers. In general for low
 * cardinality there is a big win in terms of space efficiency, traded
 * with CPU time since the sparse representation is slower to access:
 *
 * The following table shows average cardinality vs bytes used, 100
 * samples per cardinality (when the set was not representable because
 * of registers with too big value, the dense representation size was used
 * as a sample).
 *
 * 100 267
 * 200 485
 * 300 678
 * 400 859
 * 500 1033
 * 600 1205
 * 700 1375
 * 800 1544
 * 900 1713
 * 1000 1882
 * 2000 3480
 * 3000 4879
 * 4000 6089
 * 5000 7138
 * 6000 8042
 * 7000 8823
 * 8000 9500
 * 9000 10088
 * 10000 10591
 *
 * The dense representation uses 12288 bytes, so there is a big win up to
 * a cardinality of ~2000-3000. For bigger cardinalities the constant times
 * involved in updating the sparse representation is not justified by the
 * memory savings. The exact maximum length of the sparse representation
 * when this implementation switches to the dense representation is
 * configured via the define server.hll_sparse_max_bytes.
 */

struct hllhdr {
    char magic[4];      /* "HYLL" */
    uint8_t encoding;   /* HLL_DENSE or HLL_SPARSE. */
    uint8_t notused[3]; /* Reserved for future use, must be zero. */
    uint8_t card[8];    /* Cached cardinality, little endian. */
    uint8_t registers[]; /* Data bytes. */
};

/* The cached cardinality MSB is used to signal validity of the cached value. */
#define HLL_INVALIDATE_CACHE(hdr) (hdr)->card[7] |= (1<<7)
#define HLL_VALID_CACHE(hdr) (((hdr)->card[7] & (1<<7)) == 0)

#define HLL_P 14 /* The greater is P, the smaller the error. */
#define HLL_REGISTERS (1<<HLL_P) /* With P=14, 16384 registers. */
#define HLL_P_MASK (HLL_REGISTERS-1) /* Mask to index register. */
#define HLL_BITS 6 /* Enough to count up to 63 leading zeroes. */
#define HLL_REGISTER_MAX ((1<<HLL_BITS)-1)
#define HLL_HDR_SIZE sizeof(struct hllhdr)
#define HLL_DENSE_SIZE (HLL_HDR_SIZE+((HLL_REGISTERS*HLL_BITS+7)/8))
#define HLL_DENSE 0 /* Dense encoding. */
#define HLL_SPARSE 1 /* Sparse encoding. */
#define HLL_RAW 255 /* Only used internally, never exposed. */
#define HLL_MAX_ENCODING 1

static char *invalid_hll_err = "-INVALIDOBJ Corrupted HLL object detected\r\n";

/* =========================== Low level bit macros ========================= */

/* Macros to access the dense representation.
 *
 * We need to get and set 6 bit counters in an array of 8 bit bytes.
 * We use macros to make sure the code is inlined since speed is critical
 * especially in order to compute the approximated cardinality in
 * HLLCOUNT where we need to access all the registers at once.
 * For the same reason we also want to avoid conditionals in this code path.
 *
 * +--------+--------+--------+------//
 * |11000000|22221111|33333322|55444444
 * +--------+--------+--------+------//
 *
 * Note: in the above representation the most significant bit (MSB)
 * of every byte is on the left. We start using bits from the LSB to MSB,
 * and so forth passing to the next byte.
 *
 * Example, we want to access to counter at pos = 1 ("111111" in the
 * illustration above).
 *
 * The index of the first byte b0 containing our data is:
 *
 *  b0 = 6 * pos / 8 = 0
 *
 *   +--------+
 *   |11000000|  <- Our byte at b0
 *   +--------+
 *
 * The position of the first bit (counting from the LSB = 0) in the byte
 * is given by:
 *
 *  fb = 6 * pos % 8 -> 6
 *
 * Right shift b0 of 'fb' bits.
 *
 *   +--------+
 *   |11000000|  <- Initial value of b0
 *   |00000011|  <- After right shift of 6 pos.
 *   +--------+
 *
 * Left shift b1 of bits 8-fb bits (2 bits)
 *
 *   +--------+
 *   |22221111|  <- Initial value of b1
 *   |22111100|  <- After left shift of 2 bits.
 *   +--------+
 *
 * OR the two bits, and finally AND with 111111 (63 in decimal) to
 * clean the higher order bits we are not interested in:
 *
 *   +--------+
 *   |00000011|  <- b0 right shifted
 *   |22111100|  <- b1 left shifted
 *   |22111111|  <- b0 OR b1
 *   |  111111|  <- (b0 OR b1) AND 63, our value.
 *   +--------+
 *
 * We can try with a different example, like pos = 0. In this case
 * the 6-bit counter is actually contained in a single byte.
 *
 *  b0 = 6 * pos / 8 = 0
 *
 *   +--------+
 *   |11000000|  <- Our byte at b0
 *   +--------+
 *
 *  fb = 6 * pos % 8 = 0
 *
 *  So we right shift of 0 bits (no shift in practice) and
 *  left shift the next byte of 8 bits, even if we don't use it,
 *  but this has the effect of clearing the bits so the result
 *  will not be affacted after the OR.
 *
 * -------------------------------------------------------------------------
 *
 * Setting the register is a bit more complex, let's assume that 'val'
 * is the value we want to set, already in the right range.
 *
 * We need two steps, in one we need to clear the bits, and in the other
 * we need to bitwise-OR the new bits.
 *
 * Let's try with 'pos' = 1, so our first byte at 'b' is 0,
 *
 * "fb" is 6 in this case.
 *
 *   +--------+
 *   |11000000|  <- Our byte at b0
 *   +--------+
 *
 * To create a AND-mask to clear the bits about this position, we just
 * initialize the mask with the value 63, left shift it of "fs" bits,
 * and finally invert the result.
 *
 *   +--------+
 *   |00111111|  <- "mask" starts at 63
 *   |11000000|  <- "mask" after left shift of "ls" bits.
 *   |00111111|  <- "mask" after invert.
 *   +--------+
 *
 * Now we can bitwise-AND the byte at "b" with the mask, and bitwise-OR
 * it with "val" left-shifted of "ls" bits to set the new bits.
 *
 * Now let's focus on the next byte b1:
 *
 *   +--------+
 *   |22221111|  <- Initial value of b1
 *   +--------+
 *
 * To build the AND mask we start again with the 63 value, right shift
 * it by 8-fb bits, and invert it.
 *
 *   +--------+
 *   |00111111|  <- "mask" set at 2&6-1
 *   |00001111|  <- "mask" after the right shift by 8-fb = 2 bits
 *   |11110000|  <- "mask" after bitwise not.
 *   +--------+
 *
 * Now we can mask it with b+1 to clear the old bits, and bitwise-OR
 * with "val" left-shifted by "rs" bits to set the new value.
 */

/* Note: if we access the last counter, we will also access the b+1 byte
 * that is out of the array, but sds strings always have an implicit null
 * term, so the byte exists, and we can skip the conditional (or the need
 * to allocate 1 byte more explicitly). */

/* Store the value of the register at position 'regnum' into variable 'target'.
 * 'p' is an array of unsigned bytes. */
#define HLL_DENSE_GET_REGISTER(target,p,regnum) do { \
    uint8_t *_p = (uint8_t*) p; \
    unsigned long _byte = regnum*HLL_BITS/8; \
    unsigned long _fb = regnum*HLL_BITS&7; \
    unsigned long _fb8 = 8 - _fb; \
    unsigned long b0 = _p[_byte]; \
    unsigned long b1 = _p[_byte+1]; \
    target = ((b0 >> _fb) | (b1 << _fb8)) & HLL_REGISTER_MAX; \
} while(0)

/* Set the value of the register at position 'regnum' to 'val'.
 * 'p' is an array of unsigned bytes. */
#define HLL_DENSE_SET_REGISTER(p,regnum,val) do { \
    uint8_t *_p = (uint8_t*) p; \
    unsigned long _byte = regnum*HLL_BITS/8; \
    unsigned long _fb = regnum*HLL_BITS&7; \
    unsigned long _fb8 = 8 - _fb; \
    unsigned long _v = val; \
    _p[_byte] &= ~(HLL_REGISTER_MAX << _fb); \
    _p[_byte] |= _v << _fb; \
    _p[_byte+1] &= ~(HLL_REGISTER_MAX >> _fb8); \
    _p[_byte+1] |= _v >> _fb8; \
} while(0)

/* Macros to access the sparse representation.
 * The macros parameter is expected to be an uint8_t pointer. */
#define HLL_SPARSE_XZERO_BIT 0x40 /* 01xxxxxx */
#define HLL_SPARSE_VAL_BIT 0x80 /* 1vvvvvxx */
#define HLL_SPARSE_IS_ZERO(p) (((*(p)) & 0xc0) == 0) /* 00xxxxxx */
#define HLL_SPARSE_IS_XZERO(p) (((*(p)) & 0xc0) == HLL_SPARSE_XZERO_BIT)
#define HLL_SPARSE_IS_VAL(p) ((*(p)) & HLL_SPARSE_VAL_BIT)
#define HLL_SPARSE_ZERO_LEN(p) (((*(p)) & 0x3f)+1)
#define HLL_SPARSE_XZERO_LEN(p) (((((*(p)) & 0x3f) << 8) | (*((p)+1)))+1)
#define HLL_SPARSE_VAL_VALUE(p) ((((*(p)) >> 2) & 0x1f)+1)
#define HLL_SPARSE_VAL_LEN(p) (((*(p)) & 0x3)+1)
#define HLL_SPARSE_VAL_MAX_VALUE 32
#define HLL_SPARSE_VAL_MAX_LEN 4
#define HLL_SPARSE_ZERO_MAX_LEN 64
#define HLL_SPARSE_XZERO_MAX_LEN 16384
#define HLL_SPARSE_VAL_SET(p,val,len) do { \
    *(p) = (((val)-1)<<2|((len)-1))|HLL_SPARSE_VAL_BIT; \
} while(0)
#define HLL_SPARSE_ZERO_SET(p,len) do { \
    *(p) = (len)-1; \
} while(0)
#define HLL_SPARSE_XZERO_SET(p,len) do { \
    int _l = (len)-1; \
    *(p) = (_l>>8) | HLL_SPARSE_XZERO_BIT; \
    *((p)+1) = (_l&0xff); \
} while(0)

/* ========================= HyperLogLog algorithm  ========================= */

/* Our hash function is MurmurHash2, 64 bit version.
 * It was modified for Redis in order to provide the same result in
 * big and little endian archs (endian neutral). */
uint64_t MurmurHash64A (const void * key, int len, unsigned int seed) {
    const uint64_t m = 0xc6a4a7935bd1e995;
    const int r = 47;
    uint64_t h = seed ^ (len * m);
    const uint8_t *data = (const uint8_t *)key;
    const uint8_t *end = data + (len-(len&7));

    while(data != end) {
        uint64_t k;

#if (BYTE_ORDER == LITTLE_ENDIAN)
        k = *((uint64_t*)data);
#else
        k = (uint64_t) data[0];
        k |= (uint64_t) data[1] << 8;
        k |= (uint64_t) data[2] << 16;
        k |= (uint64_t) data[3] << 24;
        k |= (uint64_t) data[4] << 32;
        k |= (uint64_t) data[5] << 40;
        k |= (uint64_t) data[6] << 48;
        k |= (uint64_t) data[7] << 56;
#endif

        k *= m;
        k ^= k >> r;
        k *= m;
        h ^= k;
        h *= m;
        data += 8;
    }

    switch(len & 7) {
    case 7: h ^= (uint64_t)data[6] << 48;
    case 6: h ^= (uint64_t)data[5] << 40;
    case 5: h ^= (uint64_t)data[4] << 32;
    case 4: h ^= (uint64_t)data[3] << 24;
    case 3: h ^= (uint64_t)data[2] << 16;
    case 2: h ^= (uint64_t)data[1] << 8;
    case 1: h ^= (uint64_t)data[0];
            h *= m;
    };

    h ^= h >> r;
    h *= m;
    h ^= h >> r;
    return h;
}

/* Given a string element to add to the HyperLogLog, returns the length
 * of the pattern 000..1 of the element hash. As a side effect 'regp' is
 * set to the register index this element hashes to. */
int hllPatLen(unsigned char *ele, size_t elesize, long *regp) {
    uint64_t hash, bit, index;
    int count;

    /* Count the number of zeroes starting from bit HLL_REGISTERS
     * (that is a power of two corresponding to the first bit we don't use
     * as index). The max run can be 64-P+1 bits.
     *
     * Note that the final "1" ending the sequence of zeroes must be
     * included in the count, so if we find "001" the count is 3, and
     * the smallest count possible is no zeroes at all, just a 1 bit
     * at the first position, that is a count of 1.
     *
     * This may sound like inefficient, but actually in the average case
     * there are high probabilities to find a 1 after a few iterations. */
    hash = MurmurHash64A(ele,elesize,0xadc83b19ULL);
    index = hash & HLL_P_MASK; /* Register index. */
    hash |= ((uint64_t)1<<63); /* Make sure the loop terminates. */
    bit = HLL_REGISTERS; /* First bit not used to address the register. */
    count = 1; /* Initialized to 1 since we count the "00000...1" pattern. */
    while((hash & bit) == 0) {
        count++;
        bit <<= 1;
    }
    *regp = (int) index;
    return count;
}

/* ================== Dense representation implementation  ================== */

/* "Add" the element in the dense hyperloglog data structure.
 * Actually nothing is added, but the max 0 pattern counter of the subset
 * the element belongs to is incremented if needed.
 *
 * 'registers' is expected to have room for HLL_REGISTERS plus an
 * additional byte on the right. This requirement is met by sds strings
 * automatically since they are implicitly null terminated.
 *
 * The function always succeed, however if as a result of the operation
 * the approximated cardinality changed, 1 is returned. Otherwise 0
 * is returned. */
int hllDenseAdd(uint8_t *registers, unsigned char *ele, size_t elesize) {
    uint8_t oldcount, count;
    long index;

    /* Update the register if this element produced a longer run of zeroes. */
    count = hllPatLen(ele,elesize,&index);
    HLL_DENSE_GET_REGISTER(oldcount,registers,index);
    if (count > oldcount) {
        HLL_DENSE_SET_REGISTER(registers,index,count);
        return 1;
    } else {
        return 0;
    }
}

/* Compute SUM(2^-reg) in the dense representation.
 * PE is an array with a pre-computer table of values 2^-reg indexed by reg.
 * As a side effect the integer pointed by 'ezp' is set to the number
 * of zero registers. */
double hllDenseSum(uint8_t *registers, double *PE, int *ezp) {
    double E = 0;
    int j, ez = 0;

    /* Redis default is to use 16384 registers 6 bits each. The code works
     * with other values by modifying the defines, but for our target value
     * we take a faster path with unrolled loops. */
    if (HLL_REGISTERS == 16384 && HLL_BITS == 6) {
        uint8_t *r = registers;
        unsigned long r0, r1, r2, r3, r4, r5, r6, r7, r8, r9,
                      r10, r11, r12, r13, r14, r15;
        for (j = 0; j < 1024; j++) {
            /* Handle 16 registers per iteration. */
            r0 = r[0] & 63; if (r0 == 0) ez++;
            r1 = (r[0] >> 6 | r[1] << 2) & 63; if (r1 == 0) ez++;
            r2 = (r[1] >> 4 | r[2] << 4) & 63; if (r2 == 0) ez++;
            r3 = (r[2] >> 2) & 63; if (r3 == 0) ez++;
            r4 = r[3] & 63; if (r4 == 0) ez++;
            r5 = (r[3] >> 6 | r[4] << 2) & 63; if (r5 == 0) ez++;
            r6 = (r[4] >> 4 | r[5] << 4) & 63; if (r6 == 0) ez++;
            r7 = (r[5] >> 2) & 63; if (r7 == 0) ez++;
            r8 = r[6] & 63; if (r8 == 0) ez++;
            r9 = (r[6] >> 6 | r[7] << 2) & 63; if (r9 == 0) ez++;
            r10 = (r[7] >> 4 | r[8] << 4) & 63; if (r10 == 0) ez++;
            r11 = (r[8] >> 2) & 63; if (r11 == 0) ez++;
            r12 = r[9] & 63; if (r12 == 0) ez++;
            r13 = (r[9] >> 6 | r[10] << 2) & 63; if (r13 == 0) ez++;
            r14 = (r[10] >> 4 | r[11] << 4) & 63; if (r14 == 0) ez++;
            r15 = (r[11] >> 2) & 63; if (r15 == 0) ez++;

            /* Additional parens will allow the compiler to optimize the
             * code more with a loss of precision that is not very relevant
             * here (floating point math is not commutative!). */
            E += (PE[r0] + PE[r1]) + (PE[r2] + PE[r3]) + (PE[r4] + PE[r5]) +
                 (PE[r6] + PE[r7]) + (PE[r8] + PE[r9]) + (PE[r10] + PE[r11]) +
                 (PE[r12] + PE[r13]) + (PE[r14] + PE[r15]);
            r += 12;
        }
    } else {
        for (j = 0; j < HLL_REGISTERS; j++) {
            unsigned long reg;

            HLL_DENSE_GET_REGISTER(reg,registers,j);
            if (reg == 0) {
                ez++;
                /* Increment E at the end of the loop. */
            } else {
                E += PE[reg]; /* Precomputed 2^(-reg[j]). */
            }
        }
        E += ez; /* Add 2^0 'ez' times. */
    }
    *ezp = ez;
    return E;
}

/* ================== Sparse representation implementation  ================= */

/* Convert the HLL with sparse representation given as input in its dense
 * representation. Both representations are represented by SDS strings, and
 * the input representation is freed as a side effect.
 *
 * The function returns REDIS_OK if the sparse representation was valid,
 * otherwise REDIS_ERR is returned if the representation was corrupted. */
int hllSparseToDense(robj *o) {
    sds sparse = o->ptr, dense;
    struct hllhdr *hdr, *oldhdr = (struct hllhdr*)sparse;
    int idx = 0, runlen, regval;
    uint8_t *p = (uint8_t*)sparse, *end = p+sdslen(sparse);

    /* If the representation is already the right one return ASAP. */
    hdr = (struct hllhdr*) sparse;
    if (hdr->encoding == HLL_DENSE) return REDIS_OK;

    /* Create a string of the right size filled with zero bytes.
     * Note that the cached cardinality is set to 0 as a side effect
     * that is exactly the cardinality of an empty HLL. */
    dense = sdsnewlen(NULL,HLL_DENSE_SIZE);
    hdr = (struct hllhdr*) dense;
    *hdr = *oldhdr; /* This will copy the magic and cached cardinality. */
    hdr->encoding = HLL_DENSE;

    /* Now read the sparse representation and set non-zero registers
     * accordingly. */
    p += HLL_HDR_SIZE;
    while(p < end) {
        if (HLL_SPARSE_IS_ZERO(p)) {
            runlen = HLL_SPARSE_ZERO_LEN(p);
            idx += runlen;
            p++;
        } else if (HLL_SPARSE_IS_XZERO(p)) {
            runlen = HLL_SPARSE_XZERO_LEN(p);
            idx += runlen;
            p += 2;
        } else {
            runlen = HLL_SPARSE_VAL_LEN(p);
            regval = HLL_SPARSE_VAL_VALUE(p);
            while(runlen--) {
                HLL_DENSE_SET_REGISTER(hdr->registers,idx,regval);
                idx++;
            }
            p++;
        }
    }

    /* If the sparse representation was valid, we expect to find idx
     * set to HLL_REGISTERS. */
    if (idx != HLL_REGISTERS) {
        sdsfree(dense);
        return REDIS_ERR;
    }

    /* Free the old representation and set the new one. */
    sdsfree(o->ptr);
    o->ptr = dense;
    return REDIS_OK;
}

/* "Add" the element in the sparse hyperloglog data structure.
 * Actually nothing is added, but the max 0 pattern counter of the subset
 * the element belongs to is incremented if needed.
 *
 * The object 'o' is the String object holding the HLL. The function requires
 * a reference to the object in order to be able to enlarge the string if
 * needed.
 *
 * On success, the function returns 1 if the cardinality changed, or 0
 * if the register for this element was not updated.
 * On error (if the representation is invalid) -1 is returned.
 *
 * As a side effect the function may promote the HLL representation from
 * sparse to dense: this happens when a register requires to be set to a value
 * not representable with the sparse representation, or when the resulting
 * size would be greater than server.hll_sparse_max_bytes. */
int hllSparseAdd(robj *o, unsigned char *ele, size_t elesize) {
    struct hllhdr *hdr;
    uint8_t oldcount, count, *sparse, *end, *p, *prev, *next;
    long index, first, span;
    long is_zero = 0, is_xzero = 0, is_val = 0, runlen = 0;

    /* Update the register if this element produced a longer run of zeroes. */
    count = hllPatLen(ele,elesize,&index);

    /* If the count is too big to be representable by the sparse representation
     * switch to dense representation. */
    if (count > HLL_SPARSE_VAL_MAX_VALUE) goto promote;

    /* When updating a sparse representation, sometimes we may need to
     * enlarge the buffer for up to 3 bytes in the worst case (XZERO split
     * into XZERO-VAL-XZERO). Make sure there is enough space right now
     * so that the pointers we take during the execution of the function
     * will be valid all the time. */
    o->ptr = sdsMakeRoomFor(o->ptr,3);

    /* Step 1: we need to locate the opcode we need to modify to check
     * if a value update is actually needed. */
    sparse = p = ((uint8_t*)o->ptr) + HLL_HDR_SIZE;
    end = p + sdslen(o->ptr) - HLL_HDR_SIZE;

    first = 0;
    prev = NULL; /* Points to previos opcode at the end of the loop. */
    next = NULL; /* Points to the next opcode at the end of the loop. */
    span = 0;
    while(p < end) {
        long oplen;

        /* Set span to the number of registers covered by this opcode.
         *
         * This is the most performance critical loop of the sparse
         * representation. Sorting the conditionals from the most to the
         * least frequent opcode in many-bytes sparse HLLs is faster. */
        oplen = 1;
        if (HLL_SPARSE_IS_ZERO(p)) {
            span = HLL_SPARSE_ZERO_LEN(p);
        } else if (HLL_SPARSE_IS_VAL(p)) {
            span = HLL_SPARSE_VAL_LEN(p);
        } else { /* XZERO. */
            span = HLL_SPARSE_XZERO_LEN(p);
            oplen = 2;
        }
        /* Break if this opcode covers the register as 'index'. */
        if (index <= first+span-1) break;
        prev = p;
        p += oplen;
        first += span;
    }
    if (span == 0) return -1; /* Invalid format. */

    next = HLL_SPARSE_IS_XZERO(p) ? p+2 : p+1;
    if (next >= end) next = NULL;

    /* Cache current opcode type to avoid using the macro again and
     * again for something that will not change.
     * Also cache the run-length of the opcode. */
    if (HLL_SPARSE_IS_ZERO(p)) {
        is_zero = 1;
        runlen = HLL_SPARSE_ZERO_LEN(p);
    } else if (HLL_SPARSE_IS_XZERO(p)) {
        is_xzero = 1;
        runlen = HLL_SPARSE_XZERO_LEN(p);
    } else {
        is_val = 1;
        runlen = HLL_SPARSE_VAL_LEN(p);
    }

    /* Step 2: After the loop:
     *
     * 'first' stores to the index of the first register covered
     *  by the current opcode, which is pointed by 'p'.
     *
     * 'next' ad 'prev' store respectively the next and previous opcode,
     *  or NULL if the opcode at 'p' is respectively the last or first.
     *
     * 'span' is set to the number of registers covered by the current
     *  opcode.
     *
     * There are different cases in order to update the data structure
     * in place without generating it from scratch:
     *
     * A) If it is a VAL opcode already set to a value >= our 'count'
     *    no update is needed, regardless of the VAL run-length field.
     *    In this case PFADD returns 0 since no changes are performed.
     *
     * B) If it is a VAL opcode with len = 1 (representing only our
     *    register) and the value is less than 'count', we just update it
     *    since this is a trivial case. */
    if (is_val) {
        oldcount = HLL_SPARSE_VAL_VALUE(p);
        /* Case A. */
        if (oldcount >= count) return 0;

        /* Case B. */
        if (runlen == 1) {
            HLL_SPARSE_VAL_SET(p,count,1);
            goto updated;
        }
    }

    /* C) Another trivial to handle case is a ZERO opcode with a len of 1.
     * We can just replace it with a VAL opcode with our value and len of 1. */
    if (is_zero && runlen == 1) {
        HLL_SPARSE_VAL_SET(p,count,1);
        goto updated;
    }

    /* D) General case.
     *
     * The other cases are more complex: our register requires to be updated
     * and is either currently represented by a VAL opcode with len > 1,
     * by a ZERO opcode with len > 1, or by an XZERO opcode.
     *
     * In those cases the original opcode must be split into muliple
     * opcodes. The worst case is an XZERO split in the middle resuling into
     * XZERO - VAL - XZERO, so the resulting sequence max length is
     * 5 bytes.
     *
     * We perform the split writing the new sequence into the 'new' buffer
     * with 'newlen' as length. Later the new sequence is inserted in place
     * of the old one, possibly moving what is on the right a few bytes
     * if the new sequence is longer than the older one. */
    uint8_t seq[5], *n = seq;
    int last = first+span-1; /* Last register covered by the sequence. */
    int len;

    if (is_zero || is_xzero) {
        /* Handle splitting of ZERO / XZERO. */
        if (index != first) {
            len = index-first;
            if (len > HLL_SPARSE_ZERO_MAX_LEN) {
                HLL_SPARSE_XZERO_SET(n,len);
                n += 2;
            } else {
                HLL_SPARSE_ZERO_SET(n,len);
                n++;
            }
        }
        HLL_SPARSE_VAL_SET(n,count,1);
        n++;
        if (index != last) {
            len = last-index;
            if (len > HLL_SPARSE_ZERO_MAX_LEN) {
                HLL_SPARSE_XZERO_SET(n,len);
                n += 2;
            } else {
                HLL_SPARSE_ZERO_SET(n,len);
                n++;
            }
        }
    } else {
        /* Handle splitting of VAL. */
        int curval = HLL_SPARSE_VAL_VALUE(p);

        if (index != first) {
            len = index-first;
            HLL_SPARSE_VAL_SET(n,curval,len);
            n++;
        }
        HLL_SPARSE_VAL_SET(n,count,1);
        n++;
        if (index != last) {
            len = last-index;
            HLL_SPARSE_VAL_SET(n,curval,len);
            n++;
        }
    }

    /* Step 3: substitute the new sequence with the old one.
     *
     * Note that we already allocated space on the sds string
     * calling sdsMakeRoomFor(). */
     int seqlen = n-seq;
     int oldlen = is_xzero ? 2 : 1;
     int deltalen = seqlen-oldlen;

     if (deltalen > 0 &&
         sdslen(o->ptr)+deltalen > server.hll_sparse_max_bytes) goto promote;
     if (deltalen && next) memmove(next+deltalen,next,end-next);
     sdsIncrLen(o->ptr,deltalen);
     memcpy(p,seq,seqlen);
     end += deltalen;

updated:
    /* Step 4: Merge adjacent values if possible.
     *
     * The representation was updated, however the resulting representation
     * may not be optimal: adjacent VAL opcodes can sometimes be merged into
     * a single one. */
    p = prev ? prev : sparse;
    int scanlen = 5; /* Scan up to 5 upcodes starting from prev. */
    while (p < end && scanlen--) {
        if (HLL_SPARSE_IS_XZERO(p)) {
            p += 2;
            continue;
        } else if (HLL_SPARSE_IS_ZERO(p)) {
            p++;
            continue;
        }
        /* We need two adjacent VAL opcodes to try a merge, having
         * the same value, and a len that fits the VAL opcode max len. */
        if (p+1 < end && HLL_SPARSE_IS_VAL(p+1)) {
            int v1 = HLL_SPARSE_VAL_VALUE(p);
            int v2 = HLL_SPARSE_VAL_VALUE(p+1);
            if (v1 == v2) {
                int len = HLL_SPARSE_VAL_LEN(p)+HLL_SPARSE_VAL_LEN(p+1);
                if (len <= HLL_SPARSE_VAL_MAX_LEN) {
                    HLL_SPARSE_VAL_SET(p+1,v1,len);
                    memmove(p,p+1,end-p);
                    sdsIncrLen(o->ptr,-1);
                    end--;
                    /* After a merge we reiterate without incrementing 'p'
                     * in order to try to merge the just merged value with
                     * a value on its right. */
                    continue;
                }
            }
        }
        p++;
    }

    /* Invalidate the cached cardinality. */
    hdr = o->ptr;
    HLL_INVALIDATE_CACHE(hdr);
    return 1;

promote: /* Promote to dense representation. */
    if (hllSparseToDense(o) == REDIS_ERR) return -1; /* Corrupted HLL. */
    hdr = o->ptr;

    /* We need to call hllDenseAdd() to perform the operation after the
     * conversion. However the result must be 1, since if we need to
     * convert from sparse to dense a register requires to be updated.
     *
     * Note that this in turn means that PFADD will make sure the command
     * is propagated to slaves / AOF, so if there is a sparse -> dense
     * convertion, it will be performed in all the slaves as well. */
    int dense_retval = hllDenseAdd(hdr->registers, ele, elesize);
    redisAssert(dense_retval == 1);
    return dense_retval;
}

/* Compute SUM(2^-reg) in the sparse representation.
 * PE is an array with a pre-computer table of values 2^-reg indexed by reg.
 * As a side effect the integer pointed by 'ezp' is set to the number
 * of zero registers. */
double hllSparseSum(uint8_t *sparse, int sparselen, double *PE, int *ezp, int *invalid) {
    double E = 0;
    int ez = 0, idx = 0, runlen, regval;
    uint8_t *end = sparse+sparselen, *p = sparse;

    while(p < end) {
        if (HLL_SPARSE_IS_ZERO(p)) {
            runlen = HLL_SPARSE_ZERO_LEN(p);
            idx += runlen;
            ez += runlen;
            /* Increment E at the end of the loop. */
            p++;
        } else if (HLL_SPARSE_IS_XZERO(p)) {
            runlen = HLL_SPARSE_XZERO_LEN(p);
            idx += runlen;
            ez += runlen;
            /* Increment E at the end of the loop. */
            p += 2;
        } else {
            runlen = HLL_SPARSE_VAL_LEN(p);
            regval = HLL_SPARSE_VAL_VALUE(p);
            idx += runlen;
            E += PE[regval]*runlen;
            p++;
        }
    }
    if (idx != HLL_REGISTERS && invalid) *invalid = 1;
    E += ez; /* Add 2^0 'ez' times. */
    *ezp = ez;
    return E;
}

/* ========================= HyperLogLog Count ==============================
 * This is the core of the algorithm where the approximated count is computed.
 * The function uses the lower level hllDenseSum() and hllSparseSum() functions
 * as helpers to compute the SUM(2^-reg) part of the computation, which is
 * representation-specific, while all the rest is common. */

/* Implements the SUM operation for uint8_t data type which is only used
 * internally as speedup for PFCOUNT with multiple keys. */
double hllRawSum(uint8_t *registers, double *PE, int *ezp) {
    double E = 0;
    int j, ez = 0;
    uint64_t *word = (uint64_t*) registers;
    uint8_t *bytes;

    for (j = 0; j < HLL_REGISTERS/8; j++) {
        if (*word == 0) {
            ez += 8;
        } else {
            bytes = (uint8_t*) word;
            if (bytes[0]) E += PE[bytes[0]]; else ez++;
            if (bytes[1]) E += PE[bytes[1]]; else ez++;
            if (bytes[2]) E += PE[bytes[2]]; else ez++;
            if (bytes[3]) E += PE[bytes[3]]; else ez++;
            if (bytes[4]) E += PE[bytes[4]]; else ez++;
            if (bytes[5]) E += PE[bytes[5]]; else ez++;
            if (bytes[6]) E += PE[bytes[6]]; else ez++;
            if (bytes[7]) E += PE[bytes[7]]; else ez++;
        }
        word++;
    }
    E += ez; /* 2^(-reg[j]) is 1 when m is 0, add it 'ez' times for every
                zero register in the HLL. */
    *ezp = ez;
    return E;
}

/* Return the approximated cardinality of the set based on the harmonic
 * mean of the registers values. 'hdr' points to the start of the SDS
 * representing the String object holding the HLL representation.
 *
 * If the sparse representation of the HLL object is not valid, the integer
 * pointed by 'invalid' is set to non-zero, otherwise it is left untouched.
 *
 * hllCount() supports a special internal-only encoding of HLL_RAW, that
 * is, hdr->registers will point to an uint8_t array of HLL_REGISTERS element.
 * This is useful in order to speedup PFCOUNT when called against multiple
 * keys (no need to work with 6-bit integers encoding). */
uint64_t hllCount(struct hllhdr *hdr, int *invalid) {
    double m = HLL_REGISTERS;
    double E, alpha = 0.7213/(1+1.079/m);
    int j, ez; /* Number of registers equal to 0. */

    /* We precompute 2^(-reg[j]) in a small table in order to
     * speedup the computation of SUM(2^-register[0..i]). */
    static int initialized = 0;
    static double PE[64];
    if (!initialized) {
        PE[0] = 1; /* 2^(-reg[j]) is 1 when m is 0. */
        for (j = 1; j < 64; j++) {
            /* 2^(-reg[j]) is the same as 1/2^reg[j]. */
            PE[j] = 1.0/(1ULL << j);
        }
        initialized = 1;
    }

    /* Compute SUM(2^-register[0..i]). */
    if (hdr->encoding == HLL_DENSE) {
        E = hllDenseSum(hdr->registers,PE,&ez);
    } else if (hdr->encoding == HLL_SPARSE) {
        E = hllSparseSum(hdr->registers,
                         sdslen((sds)hdr)-HLL_HDR_SIZE,PE,&ez,invalid);
    } else if (hdr->encoding == HLL_RAW) {
        E = hllRawSum(hdr->registers,PE,&ez);
    } else {
        redisPanic("Unknown HyperLogLog encoding in hllCount()");
    }

    /* Muliply the inverse of E for alpha_m * m^2 to have the raw estimate. */
    E = (1/E)*alpha*m*m;

    /* Use the LINEARCOUNTING algorithm for small cardinalities.
     * For larger values but up to 72000 HyperLogLog raw approximation is
     * used since linear counting error starts to increase. However HyperLogLog
     * shows a strong bias in the range 2.5*16384 - 72000, so we try to
     * compensate for it. */
    if (E < m*2.5 && ez != 0) {
        E = m*log(m/ez); /* LINEARCOUNTING() */
    } else if (m == 16384 && E < 72000) {
        /* We did polynomial regression of the bias for this range, this
         * way we can compute the bias for a given cardinality and correct
         * according to it. Only apply the correction for P=14 that's what
         * we use and the value the correction was verified with. */
        double bias = 5.9119*1.0e-18*(E*E*E*E)
                      -1.4253*1.0e-12*(E*E*E)+
                      1.2940*1.0e-7*(E*E)
                      -5.2921*1.0e-3*E+
                      83.3216;
        E -= E*(bias/100);
    }
    /* We don't apply the correction for E > 1/30 of 2^32 since we use
     * a 64 bit function and 6 bit counters. To apply the correction for
     * 1/30 of 2^64 is not needed since it would require a huge set
     * to approach such a value. */
    return (uint64_t) E;
}

/* Call hllDenseAdd() or hllSparseAdd() according to the HLL encoding. */
int hllAdd(robj *o, unsigned char *ele, size_t elesize) {
    struct hllhdr *hdr = o->ptr;
    switch(hdr->encoding) {
    case HLL_DENSE: return hllDenseAdd(hdr->registers,ele,elesize);
    case HLL_SPARSE: return hllSparseAdd(o,ele,elesize);
    default: return -1; /* Invalid representation. */
    }
}

/* Merge by computing MAX(registers[i],hll[i]) the HyperLogLog 'hll'
 * with an array of uint8_t HLL_REGISTERS registers pointed by 'max'.
 *
 * The hll object must be already validated via isHLLObjectOrReply()
 * or in some other way.
 *
 * If the HyperLogLog is sparse and is found to be invalid, REDIS_ERR
 * is returned, otherwise the function always succeeds. */
int hllMerge(uint8_t *max, robj *hll) {
    struct hllhdr *hdr = hll->ptr;
    int i;

    if (hdr->encoding == HLL_DENSE) {
        uint8_t val;

        for (i = 0; i < HLL_REGISTERS; i++) {
            HLL_DENSE_GET_REGISTER(val,hdr->registers,i);
            if (val > max[i]) max[i] = val;
        }
    } else {
        uint8_t *p = hll->ptr, *end = p + sdslen(hll->ptr);
        long runlen, regval;

        p += HLL_HDR_SIZE;
        i = 0;
        while(p < end) {
            if (HLL_SPARSE_IS_ZERO(p)) {
                runlen = HLL_SPARSE_ZERO_LEN(p);
                i += runlen;
                p++;
            } else if (HLL_SPARSE_IS_XZERO(p)) {
                runlen = HLL_SPARSE_XZERO_LEN(p);
                i += runlen;
                p += 2;
            } else {
                runlen = HLL_SPARSE_VAL_LEN(p);
                regval = HLL_SPARSE_VAL_VALUE(p);
                while(runlen--) {
                    if (regval > max[i]) max[i] = regval;
                    i++;
                }
                p++;
            }
        }
        if (i != HLL_REGISTERS) return REDIS_ERR;
    }
    return REDIS_OK;
}

/* ========================== HyperLogLog commands ========================== */

/* Create an HLL object. We always create the HLL using sparse encoding.
 * This will be upgraded to the dense representation as needed. */
robj *createHLLObject(void) {
    robj *o;
    struct hllhdr *hdr;
    sds s;
    uint8_t *p;
    int sparselen = HLL_HDR_SIZE +
                    (((HLL_REGISTERS+(HLL_SPARSE_XZERO_MAX_LEN-1)) /
                     HLL_SPARSE_XZERO_MAX_LEN)*2);
    int aux;

    /* Populate the sparse representation with as many XZERO opcodes as
     * needed to represent all the registers. */
    aux = HLL_REGISTERS;
    s = sdsnewlen(NULL,sparselen);
    p = (uint8_t*)s + HLL_HDR_SIZE;
    while(aux) {
        int xzero = HLL_SPARSE_XZERO_MAX_LEN;
        if (xzero > aux) xzero = aux;
        HLL_SPARSE_XZERO_SET(p,xzero);
        p += 2;
        aux -= xzero;
    }
    redisAssert((p-(uint8_t*)s) == sparselen);

    /* Create the actual object. */
    o = createObject(REDIS_STRING,s);
    hdr = o->ptr;
    memcpy(hdr->magic,"HYLL",4);
    hdr->encoding = HLL_SPARSE;
    return o;
}

/* Check if the object is a String with a valid HLL representation.
 * Return REDIS_OK if this is true, otherwise reply to the client
 * with an error and return REDIS_ERR. */
int isHLLObjectOrReply(redisClient *c, robj *o) {
    struct hllhdr *hdr;

    /* Key exists, check type */
    if (checkType(c,o,REDIS_STRING))
        return REDIS_ERR; /* Error already sent. */

    if (stringObjectLen(o) < sizeof(*hdr)) goto invalid;
    hdr = o->ptr;

    /* Magic should be "HYLL". */
    if (hdr->magic[0] != 'H' || hdr->magic[1] != 'Y' ||
        hdr->magic[2] != 'L' || hdr->magic[3] != 'L') goto invalid;

    if (hdr->encoding > HLL_MAX_ENCODING) goto invalid;

    /* Dense representation string length should match exactly. */
    if (hdr->encoding == HLL_DENSE &&
        stringObjectLen(o) != HLL_DENSE_SIZE) goto invalid;

    /* All tests passed. */
    return REDIS_OK;

invalid:
    addReplySds(c,
        sdsnew("-WRONGTYPE Key is not a valid "
               "HyperLogLog string value.\r\n"));
    return REDIS_ERR;
}

/* PFADD var ele ele ele ... ele => :0 or :1 */
void pfaddCommand(redisClient *c) {
    robj *o = lookupKeyWrite(c->db,c->argv[1]);
    struct hllhdr *hdr;
    int updated = 0, j;

    if (o == NULL) {
        /* Create the key with a string value of the exact length to
         * hold our HLL data structure. sdsnewlen() when NULL is passed
         * is guaranteed to return bytes initialized to zero. */
        o = createHLLObject();
        dbAdd(c->db,c->argv[1],o);
        updated++;
    } else {
        if (isHLLObjectOrReply(c,o) != REDIS_OK) return;
        o = dbUnshareStringValue(c->db,c->argv[1],o);
    }
    /* Perform the low level ADD operation for every element. */
    for (j = 2; j < c->argc; j++) {
        int retval = hllAdd(o, (unsigned char*)c->argv[j]->ptr,
                               sdslen(c->argv[j]->ptr));
        switch(retval) {
        case 1:
            updated++;
            break;
        case -1:
            addReplySds(c,sdsnew(invalid_hll_err));
            return;
        }
    }
    hdr = o->ptr;
    if (updated) {
        signalModifiedKey(c->db,c->argv[1]);
        notifyKeyspaceEvent(REDIS_NOTIFY_STRING,"pfadd",c->argv[1],c->db->id);
        server.dirty++;
        HLL_INVALIDATE_CACHE(hdr);
    }
    addReply(c, updated ? shared.cone : shared.czero);
}

/* PFCOUNT var -> approximated cardinality of set. */
void pfcountCommand(redisClient *c) {
    robj *o;
    struct hllhdr *hdr;
    uint64_t card;

    /* Case 1: multi-key keys, cardinality of the union.
     *
     * When multiple keys are specified, PFCOUNT actually computes
     * the cardinality of the merge of the N HLLs specified. */
    if (c->argc > 2) {
        uint8_t max[HLL_HDR_SIZE+HLL_REGISTERS], *registers;
        int j;

        /* Compute an HLL with M[i] = MAX(M[i]_j). */
        memset(max,0,sizeof(max));
        hdr = (struct hllhdr*) max;
        hdr->encoding = HLL_RAW; /* Special internal-only encoding. */
        registers = max + HLL_HDR_SIZE;
        for (j = 1; j < c->argc; j++) {
            /* Check type and size. */
            robj *o = lookupKeyRead(c->db,c->argv[j]);
            if (o == NULL) continue; /* Assume empty HLL for non existing var.*/
            if (isHLLObjectOrReply(c,o) != REDIS_OK) return;

            /* Merge with this HLL with our 'max' HHL by setting max[i]
             * to MAX(max[i],hll[i]). */
            if (hllMerge(registers,o) == REDIS_ERR) {
                addReplySds(c,sdsnew(invalid_hll_err));
                return;
            }
        }

        /* Compute cardinality of the resulting set. */
        addReplyLongLong(c,hllCount(hdr,NULL));
        return;
    }

    /* Case 2: cardinality of the single HLL.
     *
     * The user specified a single key. Either return the cached value
     * or compute one and update the cache. */
    o = lookupKeyRead(c->db,c->argv[1]);
    if (o == NULL) {
        /* No key? Cardinality is zero since no element was added, otherwise
         * we would have a key as HLLADD creates it as a side effect. */
        addReply(c,shared.czero);
    } else {
        if (isHLLObjectOrReply(c,o) != REDIS_OK) return;
        o = dbUnshareStringValue(c->db,c->argv[1],o);

        /* Check if the cached cardinality is valid. */
        hdr = o->ptr;
        if (HLL_VALID_CACHE(hdr)) {
            /* Just return the cached value. */
            card = (uint64_t)hdr->card[0];
            card |= (uint64_t)hdr->card[1] << 8;
            card |= (uint64_t)hdr->card[2] << 16;
            card |= (uint64_t)hdr->card[3] << 24;
            card |= (uint64_t)hdr->card[4] << 32;
            card |= (uint64_t)hdr->card[5] << 40;
            card |= (uint64_t)hdr->card[6] << 48;
            card |= (uint64_t)hdr->card[7] << 56;
        } else {
            int invalid = 0;
            /* Recompute it and update the cached value. */
            card = hllCount(hdr,&invalid);
            if (invalid) {
                addReplySds(c,sdsnew(invalid_hll_err));
                return;
            }
            hdr->card[0] = card & 0xff;
            hdr->card[1] = (card >> 8) & 0xff;
            hdr->card[2] = (card >> 16) & 0xff;
            hdr->card[3] = (card >> 24) & 0xff;
            hdr->card[4] = (card >> 32) & 0xff;
            hdr->card[5] = (card >> 40) & 0xff;
            hdr->card[6] = (card >> 48) & 0xff;
            hdr->card[7] = (card >> 56) & 0xff;
            /* This is not considered a read-only command even if the
             * data structure is not modified, since the cached value
             * may be modified and given that the HLL is a Redis string
             * we need to propagate the change. */
            signalModifiedKey(c->db,c->argv[1]);
            server.dirty++;
        }
        addReplyLongLong(c,card);
    }
}

/* PFMERGE dest src1 src2 src3 ... srcN => OK */
void pfmergeCommand(redisClient *c) {
    uint8_t max[HLL_REGISTERS];
    struct hllhdr *hdr;
    int j;

    /* Compute an HLL with M[i] = MAX(M[i]_j).
     * We we the maximum into the max array of registers. We'll write
     * it to the target variable later. */
    memset(max,0,sizeof(max));
    for (j = 1; j < c->argc; j++) {
        /* Check type and size. */
        robj *o = lookupKeyRead(c->db,c->argv[j]);
        if (o == NULL) continue; /* Assume empty HLL for non existing var. */
        if (isHLLObjectOrReply(c,o) != REDIS_OK) return;

        /* Merge with this HLL with our 'max' HHL by setting max[i]
         * to MAX(max[i],hll[i]). */
        if (hllMerge(max,o) == REDIS_ERR) {
            addReplySds(c,sdsnew(invalid_hll_err));
            return;
        }
    }

    /* Create / unshare the destination key's value if needed. */
    robj *o = lookupKeyWrite(c->db,c->argv[1]);
    if (o == NULL) {
        /* Create the key with a string value of the exact length to
         * hold our HLL data structure. sdsnewlen() when NULL is passed
         * is guaranteed to return bytes initialized to zero. */
        o = createHLLObject();
        dbAdd(c->db,c->argv[1],o);
    } else {
        /* If key exists we are sure it's of the right type/size
         * since we checked when merging the different HLLs, so we
         * don't check again. */
        o = dbUnshareStringValue(c->db,c->argv[1],o);
    }

    /* Only support dense objects as destination. */
    if (hllSparseToDense(o) == REDIS_ERR) {
        addReplySds(c,sdsnew(invalid_hll_err));
        return;
    }

    /* Write the resulting HLL to the destination HLL registers and
     * invalidate the cached value. */
    hdr = o->ptr;
    for (j = 0; j < HLL_REGISTERS; j++) {
        HLL_DENSE_SET_REGISTER(hdr->registers,j,max[j]);
    }
    HLL_INVALIDATE_CACHE(hdr);

    signalModifiedKey(c->db,c->argv[1]);
    /* We generate an PFADD event for PFMERGE for semantical simplicity
     * since in theory this is a mass-add of elements. */
    notifyKeyspaceEvent(REDIS_NOTIFY_STRING,"pfadd",c->argv[1],c->db->id);
    server.dirty++;
    addReply(c,shared.ok);
}

/* ========================== Testing / Debugging  ========================== */

/* PFSELFTEST
 * This command performs a self-test of the HLL registers implementation.
 * Something that is not easy to test from within the outside. */
#define HLL_TEST_CYCLES 1000
void pfselftestCommand(redisClient *c) {
    unsigned int j, i;
    sds bitcounters = sdsnewlen(NULL,HLL_DENSE_SIZE);
    struct hllhdr *hdr = (struct hllhdr*) bitcounters, *hdr2;
    robj *o = NULL;
    uint8_t bytecounters[HLL_REGISTERS];

    /* Test 1: access registers.
     * The test is conceived to test that the different counters of our data
     * structure are accessible and that setting their values both result in
     * the correct value to be retained and not affect adjacent values. */
    for (j = 0; j < HLL_TEST_CYCLES; j++) {
        /* Set the HLL counters and an array of unsigned byes of the
         * same size to the same set of random values. */
        for (i = 0; i < HLL_REGISTERS; i++) {
            unsigned int r = rand() & HLL_REGISTER_MAX;

            bytecounters[i] = r;
            HLL_DENSE_SET_REGISTER(hdr->registers,i,r);
        }
        /* Check that we are able to retrieve the same values. */
        for (i = 0; i < HLL_REGISTERS; i++) {
            unsigned int val;

            HLL_DENSE_GET_REGISTER(val,hdr->registers,i);
            if (val != bytecounters[i]) {
                addReplyErrorFormat(c,
                    "TESTFAILED Register %d should be %d but is %d",
                    i, (int) bytecounters[i], (int) val);
                goto cleanup;
            }
        }
    }

    /* Test 2: approximation error.
     * The test adds unique elements and check that the estimated value
     * is always reasonable bounds.
     *
     * We check that the error is smaller than a few times than the expected
     * standard error, to make it very unlikely for the test to fail because
     * of a "bad" run.
     *
     * The test is performed with both dense and sparse HLLs at the same
     * time also verifying that the computed cardinality is the same. */
    memset(hdr->registers,0,HLL_DENSE_SIZE-HLL_HDR_SIZE);
    o = createHLLObject();
    double relerr = 1.04/sqrt(HLL_REGISTERS);
    int64_t checkpoint = 1;
    uint64_t seed = (uint64_t)rand() | (uint64_t)rand() << 32;
    uint64_t ele;
    for (j = 1; j <= 10000000; j++) {
        ele = j ^ seed;
        hllDenseAdd(hdr->registers,(unsigned char*)&ele,sizeof(ele));
        hllAdd(o,(unsigned char*)&ele,sizeof(ele));

        /* Make sure that for small cardinalities we use sparse
         * encoding. */
        if (j == checkpoint && j < server.hll_sparse_max_bytes/2) {
            hdr2 = o->ptr;
            if (hdr2->encoding != HLL_SPARSE) {
                addReplyError(c, "TESTFAILED sparse encoding not used");
                goto cleanup;
            }
        }

        /* Check that dense and sparse representations agree. */
        if (j == checkpoint && hllCount(hdr,NULL) != hllCount(o->ptr,NULL)) {
                addReplyError(c, "TESTFAILED dense/sparse disagree");
                goto cleanup;
        }

        /* Check error. */
        if (j == checkpoint) {
            int64_t abserr = checkpoint - (int64_t)hllCount(hdr,NULL);
            uint64_t maxerr = ceil(relerr*6*checkpoint);

            /* Adjust the max error we expect for cardinality 10
             * since from time to time it is statistically likely to get
             * much higher error due to collision, resulting into a false
             * positive. */
            if (j == 10) maxerr = 1;

            if (abserr < 0) abserr = -abserr;
            if (abserr > (int64_t)maxerr) {
                addReplyErrorFormat(c,
                    "TESTFAILED Too big error. card:%llu abserr:%llu",
                    (unsigned long long) checkpoint,
                    (unsigned long long) abserr);
                goto cleanup;
            }
            checkpoint *= 10;
        }
    }

    /* Success! */
    addReply(c,shared.ok);

cleanup:
    sdsfree(bitcounters);
    if (o) decrRefCount(o);
}

/* PFDEBUG <subcommand> <key> ... args ...
 * Different debugging related operations about the HLL implementation. */
void pfdebugCommand(redisClient *c) {
    char *cmd = c->argv[1]->ptr;
    struct hllhdr *hdr;
    robj *o;
    int j;

    o = lookupKeyRead(c->db,c->argv[2]);
    if (o == NULL) {
        addReplyError(c,"The specified key does not exist");
        return;
    }
    if (isHLLObjectOrReply(c,o) != REDIS_OK) return;
    o = dbUnshareStringValue(c->db,c->argv[2],o);
    hdr = o->ptr;

    /* PFDEBUG GETREG <key> */
    if (!strcasecmp(cmd,"getreg")) {
        if (c->argc != 3) goto arityerr;

        if (hdr->encoding == HLL_SPARSE) {
            if (hllSparseToDense(o) == REDIS_ERR) {
                addReplySds(c,sdsnew(invalid_hll_err));
                return;
            }
            server.dirty++; /* Force propagation on encoding change. */
        }

        hdr = o->ptr;
        addReplyMultiBulkLen(c,HLL_REGISTERS);
        for (j = 0; j < HLL_REGISTERS; j++) {
            uint8_t val;

            HLL_DENSE_GET_REGISTER(val,hdr->registers,j);
            addReplyLongLong(c,val);
        }
    }
    /* PFDEBUG DECODE <key> */
    else if (!strcasecmp(cmd,"decode")) {
        if (c->argc != 3) goto arityerr;

        uint8_t *p = o->ptr, *end = p+sdslen(o->ptr);
        sds decoded = sdsempty();

        if (hdr->encoding != HLL_SPARSE) {
            addReplyError(c,"HLL encoding is not sparse");
            return;
        }

        p += HLL_HDR_SIZE;
        while(p < end) {
            int runlen, regval;

            if (HLL_SPARSE_IS_ZERO(p)) {
                runlen = HLL_SPARSE_ZERO_LEN(p);
                p++;
                decoded = sdscatprintf(decoded,"z:%d ",runlen);
            } else if (HLL_SPARSE_IS_XZERO(p)) {
                runlen = HLL_SPARSE_XZERO_LEN(p);
                p += 2;
                decoded = sdscatprintf(decoded,"Z:%d ",runlen);
            } else {
                runlen = HLL_SPARSE_VAL_LEN(p);
                regval = HLL_SPARSE_VAL_VALUE(p);
                p++;
                decoded = sdscatprintf(decoded,"v:%d,%d ",regval,runlen);
            }
        }
        decoded = sdstrim(decoded," ");
        addReplyBulkCBuffer(c,decoded,sdslen(decoded));
        sdsfree(decoded);
    }
    /* PFDEBUG ENCODING <key> */
    else if (!strcasecmp(cmd,"encoding")) {
        char *encodingstr[2] = {"dense","sparse"};
        if (c->argc != 3) goto arityerr;

        addReplyStatus(c,encodingstr[hdr->encoding]);
    }
    /* PFDEBUG TODENSE <key> */
    else if (!strcasecmp(cmd,"todense")) {
        int conv = 0;
        if (c->argc != 3) goto arityerr;

        if (hdr->encoding == HLL_SPARSE) {
            if (hllSparseToDense(o) == REDIS_ERR) {
                addReplySds(c,sdsnew(invalid_hll_err));
                return;
            }
            conv = 1;
            server.dirty++; /* Force propagation on encoding change. */
        }
        addReply(c,conv ? shared.cone : shared.czero);
    } else {
        addReplyErrorFormat(c,"Unknown PFDEBUG subcommand '%s'", cmd);
    }
    return;

arityerr:
    addReplyErrorFormat(c,
        "Wrong number of arguments for the '%s' subcommand",cmd);
}