Commit 0c315647260ea6842ee5292149894f3ce97b8ea1
1 parent
cee99fe3
Exists in
master
and in
1 other branch
Moved deprecated tests.
Showing
2 changed files
with
460 additions
and
0 deletions
Show diff stats
... | ... | @@ -0,0 +1,186 @@ |
1 | +#!/usr/bin/env python | |
2 | +""" | |
3 | + k-suite - experiment different neighborhood sizes | |
4 | +""" | |
5 | +__author__ = "Tassia Camoes Araujo <tassia@gmail.com>" | |
6 | +__copyright__ = "Copyright (C) 2011 Tassia Camoes Araujo" | |
7 | +__license__ = """ | |
8 | + This program is free software: you can redistribute it and/or modify | |
9 | + it under the terms of the GNU General Public License as published by | |
10 | + the Free Software Foundation, either version 3 of the License, or | |
11 | + (at your option) any later version. | |
12 | + | |
13 | + This program is distributed in the hope that it will be useful, | |
14 | + but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | + GNU General Public License for more details. | |
17 | + | |
18 | + You should have received a copy of the GNU General Public License | |
19 | + along with this program. If not, see <http://www.gnu.org/licenses/>. | |
20 | +""" | |
21 | + | |
22 | +import sys | |
23 | +sys.path.insert(0,'../') | |
24 | +from config import Config | |
25 | +from data import PopconXapianIndex, PopconSubmission | |
26 | +from recommender import Recommender | |
27 | +from user import LocalSystem, User | |
28 | +from evaluation import * | |
29 | +import logging | |
30 | +import random | |
31 | +import Gnuplot | |
32 | +import numpy | |
33 | + | |
34 | +def plot_roc(k,roc_points,log_file): | |
35 | + g = Gnuplot.Gnuplot() | |
36 | + g('set style data points') | |
37 | + g.xlabel('False Positive Rate') | |
38 | + g.ylabel('True Positive Rate') | |
39 | + g('set xrange [0:1.0]') | |
40 | + g('set yrange [0:1.0]') | |
41 | + g.title("Setup: %s-k%d" % (log_file.split("/")[-1],k)) | |
42 | + g.plot(Gnuplot.Data([[0,0],[1,1]],with_="lines lt 7"), | |
43 | + Gnuplot.Data(roc_points)) | |
44 | + g.hardcopy(log_file+("-k%.3d.png"%k),terminal="png") | |
45 | + g.hardcopy(log_file+("-k%.3d.ps"%k),terminal="postscript",enhanced=1,color=1) | |
46 | + | |
47 | +def plot_summary(precision,f05,mcc,log_file): | |
48 | + g = Gnuplot.Gnuplot() | |
49 | + g('set style data lines') | |
50 | + g.xlabel('Neighborhood (k)') | |
51 | + g.title("Setup: %s-size20" % (log_file.split("/")[-1])) | |
52 | + g.plot(Gnuplot.Data([[k,sum(precision[k])/len(precision[k])] for k in precision.keys()],title="P"), | |
53 | + Gnuplot.Data([[k,sum(f05[k])/len(f05[k])] for k in f05.keys()],title="F05"), | |
54 | + Gnuplot.Data([[k,sum(mcc[k])/len(mcc[k])] for k in mcc.keys()],title="MCC")) | |
55 | + g.hardcopy(log_file+(".png"),terminal="png") | |
56 | + g.hardcopy(log_file+(".ps"),terminal="postscript",enhanced=1,color=1) | |
57 | + | |
58 | +class ExperimentResults: | |
59 | + def __init__(self,repo_size): | |
60 | + self.repository_size = repo_size | |
61 | + self.precision = [] | |
62 | + self.recall = [] | |
63 | + self.fpr = [] | |
64 | + self.f05 = [] | |
65 | + self.mcc = [] | |
66 | + | |
67 | + def add_result(self,ranking,sample): | |
68 | + predicted = RecommendationResult(dict.fromkeys(ranking,1)) | |
69 | + real = RecommendationResult(sample) | |
70 | + evaluation = Evaluation(predicted,real,self.repository_size) | |
71 | + self.precision.append(evaluation.run(Precision())) | |
72 | + self.recall.append(evaluation.run(Recall())) | |
73 | + self.fpr.append(evaluation.run(FPR())) | |
74 | + self.f05.append(evaluation.run(F_score(0.5))) | |
75 | + self.mcc.append(evaluation.run(MCC())) | |
76 | + | |
77 | + def get_roc_point(self): | |
78 | + tpr = self.recall | |
79 | + fpr = self.fpr | |
80 | + if not tpr or not fpr: | |
81 | + return [0,0] | |
82 | + return [sum(fpr)/len(fpr),sum(tpr)/len(tpr)] | |
83 | + | |
84 | + def get_precision_summary(self): | |
85 | + if not self.precision: return 0 | |
86 | + return sum(self.precision)/len(self.precision) | |
87 | + | |
88 | + def get_f05_summary(self): | |
89 | + if not self.f05: return 0 | |
90 | + return sum(self.f05)/len(self.f05) | |
91 | + | |
92 | + def get_mcc_summary(self): | |
93 | + if not self.mcc: return 0 | |
94 | + return sum(self.mcc)/len(self.mcc) | |
95 | + | |
96 | +if __name__ == '__main__': | |
97 | + if len(sys.argv)<3: | |
98 | + print "Usage: k-suite strategy_str sample_file" | |
99 | + exit(1) | |
100 | + threshold = 20 | |
101 | + iterations = 30 | |
102 | + neighbors = [3,5,10,50,100,150,200,300,400,500] | |
103 | + cfg = Config() | |
104 | + cfg.strategy = sys.argv[1] | |
105 | + sample_file = sys.argv[2] | |
106 | + population_sample = [] | |
107 | + with open(sample_file,'r') as f: | |
108 | + for line in f.readlines(): | |
109 | + user_id = line.strip('\n') | |
110 | + population_sample.append(os.path.join(cfg.popcon_dir,user_id[:2],user_id)) | |
111 | + # setup dictionaries and files | |
112 | + roc_summary = {} | |
113 | + recommended = {} | |
114 | + precision_summary = {} | |
115 | + f05_summary = {} | |
116 | + mcc_summary = {} | |
117 | + sample_dir = ("results/k-suite/%s" % sample_file.split('/')[-1]) | |
118 | + if not os.path.exists(sample_dir): | |
119 | + os.makedirs(sample_dir) | |
120 | + log_file = os.path.join(sample_dir,cfg.strategy) | |
121 | + with open(log_file,'w') as f: | |
122 | + f.write("# %s\n\n" % sample_file.split('/')[-1]) | |
123 | + f.write("# strategy %s recommendation_size %d iterations %d\n\n" % | |
124 | + (cfg.strategy,threshold,iterations)) | |
125 | + f.write("# k coverage \tprecision \tf05 \tmcc\n\n") | |
126 | + | |
127 | + for k in neighbors: | |
128 | + roc_summary[k] = [] | |
129 | + recommended[k] = set() | |
130 | + precision_summary[k] = [] | |
131 | + f05_summary[k] = [] | |
132 | + mcc_summary[k] = [] | |
133 | + with open(log_file+"-k%.3d"%k,'w') as f: | |
134 | + f.write("# %s\n\n" % sample_file.split('/')[-1]) | |
135 | + f.write("# strategy-k %s-k%.3d\n\n" % (cfg.strategy,k)) | |
136 | + f.write("# roc_point \tprecision \tf05 \tmcc\n\n") | |
137 | + | |
138 | + # main loop per user | |
139 | + for submission_file in population_sample: | |
140 | + user = PopconSystem(submission_file) | |
141 | + user.filter_pkg_profile(cfg.pkgs_filter) | |
142 | + user.maximal_pkg_profile() | |
143 | + for k in neighbors: | |
144 | + cfg.k_neighbors = k | |
145 | + rec = Recommender(cfg) | |
146 | + repo_size = rec.items_repository.get_doccount() | |
147 | + results = ExperimentResults(repo_size) | |
148 | + # n iterations for same recommender and user | |
149 | + for n in range(iterations): | |
150 | + # Fill sample profile | |
151 | + profile_len = len(user.pkg_profile) | |
152 | + item_score = {} | |
153 | + for pkg in user.pkg_profile: | |
154 | + item_score[pkg] = user.item_score[pkg] | |
155 | + sample = {} | |
156 | + sample_size = int(profile_len*0.9) | |
157 | + for i in range(sample_size): | |
158 | + key = random.choice(item_score.keys()) | |
159 | + sample[key] = item_score.pop(key) | |
160 | + iteration_user = User(item_score) | |
161 | + recommendation = rec.get_recommendation(iteration_user,threshold) | |
162 | + if hasattr(recommendation,"ranking"): | |
163 | + results.add_result(recommendation.ranking,sample) | |
164 | + recommended[k] = recommended[k].union(recommendation.ranking) | |
165 | + # save summary | |
166 | + roc_point = results.get_roc_point() | |
167 | + roc_summary[k].append(roc_point) | |
168 | + precision = results.get_precision_summary() | |
169 | + precision_summary[k].append(precision) | |
170 | + f05 = results.get_f05_summary() | |
171 | + f05_summary[k].append(f05) | |
172 | + mcc = results.get_mcc_summary() | |
173 | + mcc_summary[k].append(mcc) | |
174 | + with open(log_file+"-k%.3d"%k,'a') as f: | |
175 | + f.write("[%.2f,%.2f] \t%.4f \t%.4f \t%.4f\n" % | |
176 | + (roc_point[0],roc_point[1],precision,f05,mcc)) | |
177 | + # back to main flow | |
178 | + with open(log_file,'a') as f: | |
179 | + plot_summary(precision_summary,f05_summary,mcc_summary,log_file) | |
180 | + for k in neighbors: | |
181 | + coverage = len(recommended[size])/float(repo_size) | |
182 | + f.write("%3d \t%.2f \t%.4f \t%.4f \t%.4f\n" % | |
183 | + (k,coverage,float(sum(precision_summary[k]))/len(precision_summary[k]), | |
184 | + float(sum(f05_summary[k]))/len(f05_summary[k]), | |
185 | + float(sum(mcc_summary[k]))/len(mcc_summary[k]))) | |
186 | + plot_roc(k,roc_summary[k],log_file) | ... | ... |
... | ... | @@ -0,0 +1,274 @@ |
1 | +#!/usr/bin/env python | |
2 | +""" | |
3 | + recommender suite - recommender experiments suite | |
4 | +""" | |
5 | +__author__ = "Tassia Camoes Araujo <tassia@gmail.com>" | |
6 | +__copyright__ = "Copyright (C) 2011 Tassia Camoes Araujo" | |
7 | +__license__ = """ | |
8 | + This program is free software: you can redistribute it and/or modify | |
9 | + it under the terms of the GNU General Public License as published by | |
10 | + the Free Software Foundation, either version 3 of the License, or | |
11 | + (at your option) any later version. | |
12 | + | |
13 | + This program is distributed in the hope that it will be useful, | |
14 | + but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | + GNU General Public License for more details. | |
17 | + | |
18 | + You should have received a copy of the GNU General Public License | |
19 | + along with this program. If not, see <http://www.gnu.org/licenses/>. | |
20 | +""" | |
21 | + | |
22 | +import sys | |
23 | +sys.path.insert(0,'../') | |
24 | +from config import Config | |
25 | +from data import PopconXapianIndex, PopconSubmission, AppAptXapianIndex | |
26 | +from recommender import Recommender | |
27 | +from user import LocalSystem, User | |
28 | +from evaluation import * | |
29 | +import logging | |
30 | +import random | |
31 | +import Gnuplot | |
32 | + | |
33 | +#iterations = 3 | |
34 | +#sample_proportions = [0.9] | |
35 | +#weighting = [('bm25',1.2)] | |
36 | +#collaborative = ['knn'] | |
37 | +#content_based = [] | |
38 | +#hybrid = ['knnco'] | |
39 | +#profile_size = [50,100] | |
40 | +#popcon_size = ["1000"] | |
41 | +#neighbors = [50] | |
42 | + | |
43 | +iterations = 10 | |
44 | +sample_proportions = [0.5, 0.6, 0.7, 0.8, 0.9] | |
45 | +weighting = [('bm25',1.2), ('bm25',1.6), ('bm25',2.0), ('trad',0)] | |
46 | +content_based = ['cb','cbt','cbd','cbh','cb_eset','cbt_eset','cbd_eset','cbh_eset'] | |
47 | +collaborative = ['knn_eset','knn','knn_plus'] | |
48 | +hybrid = ['knnco','knnco_eset'] | |
49 | + | |
50 | +profile_size = range(20,100,20) | |
51 | +#popcon_size = [1000,10000,50000,'full'] | |
52 | +neighbors = range(10,510,50) | |
53 | + | |
54 | +def write_recall_log(label,n,sample,recommendation,profile_size,repo_size,log_file): | |
55 | + # Write recall log | |
56 | + output = open(("%s-%d" % (log_file,n)),'w') | |
57 | + output.write("# %s-n\n" % label["description"]) | |
58 | + output.write("# %s-%d\n" % (label["values"],n)) | |
59 | + output.write("\n%d %d %d\n" % \ | |
60 | + (repo_size,profile_size,len(sample))) | |
61 | + if hasattr(recommendation,"ranking"): | |
62 | + notfound = [] | |
63 | + ranks = [] | |
64 | + for pkg in sample.keys(): | |
65 | + if pkg in recommendation.ranking: | |
66 | + ranks.append(recommendation.ranking.index(pkg)) | |
67 | + else: | |
68 | + notfound.append(pkg) | |
69 | + for r in sorted(ranks): | |
70 | + output.write(str(r)+"\n") | |
71 | + if notfound: | |
72 | + output.write("Out of recommendation:\n") | |
73 | + for pkg in notfound: | |
74 | + output.write(pkg+"\n") | |
75 | + output.close() | |
76 | + | |
77 | +def plot_summary(precision,recall,f1,f05,accuracy,log_file): | |
78 | + # Plot metrics summary | |
79 | + g = Gnuplot.Gnuplot() | |
80 | + g('set style data lines') | |
81 | + g.xlabel('Recommendation size') | |
82 | + g.title("Setup: %s" % log_file.split("/")[-1]) | |
83 | + g.plot(Gnuplot.Data(accuracy,title="Accuracy"), | |
84 | + Gnuplot.Data(precision,title="Precision"), | |
85 | + Gnuplot.Data(recall,title="Recall"), | |
86 | + Gnuplot.Data(f1,title="F_1"), | |
87 | + Gnuplot.Data(f05,title="F_0.5")) | |
88 | + g.hardcopy(log_file+".png",terminal="png") | |
89 | + g.hardcopy(log_file+".ps",terminal="postscript",enhanced=1,color=1) | |
90 | + g('set logscale x') | |
91 | + g('replot') | |
92 | + g.hardcopy(log_file+"-logscale.png",terminal="png") | |
93 | + g.hardcopy(log_file+"-logscale.ps",terminal="postscript",enhanced=1,color=1) | |
94 | + | |
95 | +def get_label(cfg,sample_proportion): | |
96 | + label = {} | |
97 | + if cfg.strategy in content_based: | |
98 | + label["description"] = "strategy-filter-profile-k1_bm25-sample" | |
99 | + label["values"] = ("%s-profile%d-%s-kbm%.1f-sample%.1f" % | |
100 | + (cfg.strategy,cfg.profile_size, | |
101 | + cfg.pkgs_filter.split("/")[-1], | |
102 | + cfg.bm25_k1,sample_proportion)) | |
103 | + elif cfg.strategy in collaborative: | |
104 | + label["description"] = "strategy-knn-filter-k1_bm25-sample" | |
105 | + label["values"] = ("%s-k%d-%s-kbm%.1f-sample%.1f" % | |
106 | + (cfg.strategy,cfg.k_neighbors, | |
107 | + cfg.pkgs_filter.split("/")[-1], | |
108 | + cfg.bm25_k1,sample_proportion)) | |
109 | + elif cfg.strategy in hybrid: | |
110 | + label["description"] = "strategy-knn-filter-profile-k1_bm25-sample" | |
111 | + label["values"] = ("%s-k%d-profile%d-%s-kbm%.1f-sample%.1f" % | |
112 | + (cfg.strategy,cfg.k_neighbors,cfg.profile_size, | |
113 | + cfg.pkgs_filter.split("/")[-1], | |
114 | + cfg.bm25_k1,sample_proportion)) | |
115 | + else: | |
116 | + print "Unknown strategy" | |
117 | + return label | |
118 | + | |
119 | +class ExperimentResults: | |
120 | + def __init__(self,repo_size): | |
121 | + self.repository_size = repo_size | |
122 | + self.accuracy = {} | |
123 | + self.precision = {} | |
124 | + self.recall = {} | |
125 | + self.f1 = {} | |
126 | + self.f05 = {} | |
127 | + points = [1]+range(10,200,10)+range(200,self.repository_size,100) | |
128 | + for size in points: | |
129 | + self.accuracy[size] = [] | |
130 | + self.precision[size] = [] | |
131 | + self.recall[size] = [] | |
132 | + self.f1[size] = [] | |
133 | + self.f05[size] = [] | |
134 | + | |
135 | + def add_result(self,ranking,sample): | |
136 | + for size in self.accuracy.keys(): | |
137 | + predicted = RecommendationResult(dict.fromkeys(ranking[:size],1)) | |
138 | + real = RecommendationResult(sample) | |
139 | + evaluation = Evaluation(predicted,real,self.repository_size) | |
140 | + self.accuracy[size].append(evaluation.run(Accuracy())) | |
141 | + self.precision[size].append(evaluation.run(Precision())) | |
142 | + self.recall[size].append(evaluation.run(Recall())) | |
143 | + self.f1[size].append(evaluation.run(F_score(1))) | |
144 | + self.f05[size].append(evaluation.run(F_score(0.5))) | |
145 | + | |
146 | + def get_precision_summary(self): | |
147 | + summary = [[size,sum(values)/len(values)] for size,values in self.precision.items()] | |
148 | + return sorted(summary) | |
149 | + | |
150 | + def get_recall_summary(self): | |
151 | + summary = [[size,sum(values)/len(values)] for size,values in self.recall.items()] | |
152 | + return sorted(summary) | |
153 | + | |
154 | + def get_f1_summary(self): | |
155 | + summary = [[size,sum(values)/len(values)] for size,values in self.f1.items()] | |
156 | + return sorted(summary) | |
157 | + | |
158 | + def get_f05_summary(self): | |
159 | + summary = [[size,sum(values)/len(values)] for size,values in self.f05.items()] | |
160 | + return sorted(summary) | |
161 | + | |
162 | + def get_accuracy_summary(self): | |
163 | + summary = [[size,sum(values)/len(values)] for size,values in self.accuracy.items()] | |
164 | + return sorted(summary) | |
165 | + | |
166 | + def best_precision(self): | |
167 | + size = max(self.precision, key = lambda x: max(self.precision[x])) | |
168 | + return (size,max(self.precision[size])) | |
169 | + | |
170 | + def best_f1(self): | |
171 | + size = max(self.f1, key = lambda x: max(self.f1[x])) | |
172 | + return (size,max(self.f1[size])) | |
173 | + | |
174 | + def best_f05(self): | |
175 | + size = max(self.f05, key = lambda x: max(self.f05[x])) | |
176 | + return (size,max(self.f05[size])) | |
177 | + | |
178 | +def run_strategy(cfg,user): | |
179 | + for weight in weighting: | |
180 | + cfg.weight = weight[0] | |
181 | + cfg.bm25_k1 = weight[1] | |
182 | + rec = Recommender(cfg) | |
183 | + repo_size = rec.items_repository.get_doccount() | |
184 | + for proportion in sample_proportions: | |
185 | + results = ExperimentResults(repo_size) | |
186 | + label = get_label(cfg,proportion) | |
187 | + log_file = "results/strategies/"+label["values"] | |
188 | + for n in range(iterations): | |
189 | + # Fill sample profile | |
190 | + profile_size = len(user.pkg_profile) | |
191 | + item_score = {} | |
192 | + for pkg in user.pkg_profile: | |
193 | + item_score[pkg] = user.item_score[pkg] | |
194 | + sample = {} | |
195 | + sample_size = int(profile_size*proportion) | |
196 | + for i in range(sample_size): | |
197 | + key = random.choice(item_score.keys()) | |
198 | + sample[key] = item_score.pop(key) | |
199 | + iteration_user = User(item_score) | |
200 | + recommendation = rec.get_recommendation(iteration_user,repo_size) | |
201 | + write_recall_log(label,n,sample,recommendation,profile_size,repo_size,log_file) | |
202 | + if hasattr(recommendation,"ranking"): | |
203 | + results.add_result(recommendation.ranking,sample) | |
204 | + with open(log_file,'w') as f: | |
205 | + precision_10 = sum(results.precision[10])/len(results.precision[10]) | |
206 | + f1_10 = sum(results.f1[10])/len(results.f1[10]) | |
207 | + f05_10 = sum(results.f05[10])/len(results.f05[10]) | |
208 | + f.write("# %s\n# %s\n\ncoverage %d\n\n" % | |
209 | + (label["description"],label["values"],recommendation.size)) | |
210 | + f.write("# best results (recommendation size; metric)\n") | |
211 | + f.write("precision (%d; %.2f)\nf1 (%d; %.2f)\nf05 (%d; %.2f)\n\n" % | |
212 | + (results.best_precision()[0],results.best_precision()[1], | |
213 | + results.best_f1()[0],results.best_f1()[1], | |
214 | + results.best_f05()[0],results.best_f05()[1])) | |
215 | + f.write("# recommendation size 10\nprecision (10; %.2f)\nf1 (10; %.2f)\nf05 (10; %.2f)" % | |
216 | + (precision_10,f1_10,f05_10)) | |
217 | + precision = results.get_precision_summary() | |
218 | + recall = results.get_recall_summary() | |
219 | + f1 = results.get_f1_summary() | |
220 | + f05 = results.get_f05_summary() | |
221 | + accuracy = results.get_accuracy_summary() | |
222 | + plot_summary(precision,recall,f1,f05,accuracy,log_file) | |
223 | + | |
224 | +def run_content(user,cfg): | |
225 | + for strategy in content_based: | |
226 | + cfg.strategy = strategy | |
227 | + for size in profile_size: | |
228 | + cfg.profile_size = size | |
229 | + run_strategy(cfg,user) | |
230 | + | |
231 | +def run_collaborative(user,cfg): | |
232 | + popcon_desktopapps = cfg.popcon_desktopapps | |
233 | + popcon_programs = cfg.popcon_programs | |
234 | + for strategy in collaborative: | |
235 | + cfg.strategy = strategy | |
236 | + for k in neighbors: | |
237 | + cfg.k_neighbors = k | |
238 | + #for size in popcon_size: | |
239 | + # if size: | |
240 | + # cfg.popcon_desktopapps = popcon_desktopapps+"_"+size | |
241 | + # cfg.popcon_programs = popcon_programs+"_"+size | |
242 | + run_strategy(cfg,user) | |
243 | + | |
244 | +def run_hybrid(user,cfg): | |
245 | + popcon_desktopapps = cfg.popcon_desktopapps | |
246 | + popcon_programs = cfg.popcon_programs | |
247 | + for strategy in hybrid: | |
248 | + cfg.strategy = strategy | |
249 | + for k in neighbors: | |
250 | + cfg.k_neighbors = k | |
251 | + #for size in popcon_size: | |
252 | + # if size: | |
253 | + # cfg.popcon_desktopapps = popcon_desktopapps+"_"+size | |
254 | + # cfg.popcon_programs = popcon_programs+"_"+size | |
255 | + for size in profile_size: | |
256 | + cfg.profile_size = size | |
257 | + run_strategy(cfg,user) | |
258 | + | |
259 | +if __name__ == '__main__': | |
260 | + #user = LocalSystem() | |
261 | + #user = RandomPopcon(cfg.popcon_dir,os.path.join(cfg.filters_dir,"desktopapps")) | |
262 | + | |
263 | + cfg = Config() | |
264 | + user = PopconSystem("/root/.app-recommender/popcon-entries/8b/8b44fcdbcf676e711a153d5db09979d7") | |
265 | + #user = PopconSystem("/root/.app-recommender/popcon-entries/4a/4a67a295ec14826db2aa1d90be2f1623") | |
266 | + user.filter_pkg_profile(cfg.pkgs_filter) | |
267 | + user.maximal_pkg_profile() | |
268 | + | |
269 | + if "content" in sys.argv or len(sys.argv)<2: | |
270 | + run_content(user,cfg) | |
271 | + if "collaborative" in sys.argv or len(sys.argv)<2: | |
272 | + run_collaborative(user,cfg) | |
273 | + if "hybrid" in sys.argv or len(sys.argv)<2: | |
274 | + run_hybrid(user,cfg) | ... | ... |