Commit 0c315647260ea6842ee5292149894f3ce97b8ea1
1 parent
cee99fe3
Exists in
master
and in
1 other branch
Moved deprecated tests.
Showing
2 changed files
with
460 additions
and
0 deletions
Show diff stats
@@ -0,0 +1,186 @@ | @@ -0,0 +1,186 @@ | ||
1 | +#!/usr/bin/env python | ||
2 | +""" | ||
3 | + k-suite - experiment different neighborhood sizes | ||
4 | +""" | ||
5 | +__author__ = "Tassia Camoes Araujo <tassia@gmail.com>" | ||
6 | +__copyright__ = "Copyright (C) 2011 Tassia Camoes Araujo" | ||
7 | +__license__ = """ | ||
8 | + This program is free software: you can redistribute it and/or modify | ||
9 | + it under the terms of the GNU General Public License as published by | ||
10 | + the Free Software Foundation, either version 3 of the License, or | ||
11 | + (at your option) any later version. | ||
12 | + | ||
13 | + This program is distributed in the hope that it will be useful, | ||
14 | + but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
15 | + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
16 | + GNU General Public License for more details. | ||
17 | + | ||
18 | + You should have received a copy of the GNU General Public License | ||
19 | + along with this program. If not, see <http://www.gnu.org/licenses/>. | ||
20 | +""" | ||
21 | + | ||
22 | +import sys | ||
23 | +sys.path.insert(0,'../') | ||
24 | +from config import Config | ||
25 | +from data import PopconXapianIndex, PopconSubmission | ||
26 | +from recommender import Recommender | ||
27 | +from user import LocalSystem, User | ||
28 | +from evaluation import * | ||
29 | +import logging | ||
30 | +import random | ||
31 | +import Gnuplot | ||
32 | +import numpy | ||
33 | + | ||
34 | +def plot_roc(k,roc_points,log_file): | ||
35 | + g = Gnuplot.Gnuplot() | ||
36 | + g('set style data points') | ||
37 | + g.xlabel('False Positive Rate') | ||
38 | + g.ylabel('True Positive Rate') | ||
39 | + g('set xrange [0:1.0]') | ||
40 | + g('set yrange [0:1.0]') | ||
41 | + g.title("Setup: %s-k%d" % (log_file.split("/")[-1],k)) | ||
42 | + g.plot(Gnuplot.Data([[0,0],[1,1]],with_="lines lt 7"), | ||
43 | + Gnuplot.Data(roc_points)) | ||
44 | + g.hardcopy(log_file+("-k%.3d.png"%k),terminal="png") | ||
45 | + g.hardcopy(log_file+("-k%.3d.ps"%k),terminal="postscript",enhanced=1,color=1) | ||
46 | + | ||
47 | +def plot_summary(precision,f05,mcc,log_file): | ||
48 | + g = Gnuplot.Gnuplot() | ||
49 | + g('set style data lines') | ||
50 | + g.xlabel('Neighborhood (k)') | ||
51 | + g.title("Setup: %s-size20" % (log_file.split("/")[-1])) | ||
52 | + g.plot(Gnuplot.Data([[k,sum(precision[k])/len(precision[k])] for k in precision.keys()],title="P"), | ||
53 | + Gnuplot.Data([[k,sum(f05[k])/len(f05[k])] for k in f05.keys()],title="F05"), | ||
54 | + Gnuplot.Data([[k,sum(mcc[k])/len(mcc[k])] for k in mcc.keys()],title="MCC")) | ||
55 | + g.hardcopy(log_file+(".png"),terminal="png") | ||
56 | + g.hardcopy(log_file+(".ps"),terminal="postscript",enhanced=1,color=1) | ||
57 | + | ||
58 | +class ExperimentResults: | ||
59 | + def __init__(self,repo_size): | ||
60 | + self.repository_size = repo_size | ||
61 | + self.precision = [] | ||
62 | + self.recall = [] | ||
63 | + self.fpr = [] | ||
64 | + self.f05 = [] | ||
65 | + self.mcc = [] | ||
66 | + | ||
67 | + def add_result(self,ranking,sample): | ||
68 | + predicted = RecommendationResult(dict.fromkeys(ranking,1)) | ||
69 | + real = RecommendationResult(sample) | ||
70 | + evaluation = Evaluation(predicted,real,self.repository_size) | ||
71 | + self.precision.append(evaluation.run(Precision())) | ||
72 | + self.recall.append(evaluation.run(Recall())) | ||
73 | + self.fpr.append(evaluation.run(FPR())) | ||
74 | + self.f05.append(evaluation.run(F_score(0.5))) | ||
75 | + self.mcc.append(evaluation.run(MCC())) | ||
76 | + | ||
77 | + def get_roc_point(self): | ||
78 | + tpr = self.recall | ||
79 | + fpr = self.fpr | ||
80 | + if not tpr or not fpr: | ||
81 | + return [0,0] | ||
82 | + return [sum(fpr)/len(fpr),sum(tpr)/len(tpr)] | ||
83 | + | ||
84 | + def get_precision_summary(self): | ||
85 | + if not self.precision: return 0 | ||
86 | + return sum(self.precision)/len(self.precision) | ||
87 | + | ||
88 | + def get_f05_summary(self): | ||
89 | + if not self.f05: return 0 | ||
90 | + return sum(self.f05)/len(self.f05) | ||
91 | + | ||
92 | + def get_mcc_summary(self): | ||
93 | + if not self.mcc: return 0 | ||
94 | + return sum(self.mcc)/len(self.mcc) | ||
95 | + | ||
96 | +if __name__ == '__main__': | ||
97 | + if len(sys.argv)<3: | ||
98 | + print "Usage: k-suite strategy_str sample_file" | ||
99 | + exit(1) | ||
100 | + threshold = 20 | ||
101 | + iterations = 30 | ||
102 | + neighbors = [3,5,10,50,100,150,200,300,400,500] | ||
103 | + cfg = Config() | ||
104 | + cfg.strategy = sys.argv[1] | ||
105 | + sample_file = sys.argv[2] | ||
106 | + population_sample = [] | ||
107 | + with open(sample_file,'r') as f: | ||
108 | + for line in f.readlines(): | ||
109 | + user_id = line.strip('\n') | ||
110 | + population_sample.append(os.path.join(cfg.popcon_dir,user_id[:2],user_id)) | ||
111 | + # setup dictionaries and files | ||
112 | + roc_summary = {} | ||
113 | + recommended = {} | ||
114 | + precision_summary = {} | ||
115 | + f05_summary = {} | ||
116 | + mcc_summary = {} | ||
117 | + sample_dir = ("results/k-suite/%s" % sample_file.split('/')[-1]) | ||
118 | + if not os.path.exists(sample_dir): | ||
119 | + os.makedirs(sample_dir) | ||
120 | + log_file = os.path.join(sample_dir,cfg.strategy) | ||
121 | + with open(log_file,'w') as f: | ||
122 | + f.write("# %s\n\n" % sample_file.split('/')[-1]) | ||
123 | + f.write("# strategy %s recommendation_size %d iterations %d\n\n" % | ||
124 | + (cfg.strategy,threshold,iterations)) | ||
125 | + f.write("# k coverage \tprecision \tf05 \tmcc\n\n") | ||
126 | + | ||
127 | + for k in neighbors: | ||
128 | + roc_summary[k] = [] | ||
129 | + recommended[k] = set() | ||
130 | + precision_summary[k] = [] | ||
131 | + f05_summary[k] = [] | ||
132 | + mcc_summary[k] = [] | ||
133 | + with open(log_file+"-k%.3d"%k,'w') as f: | ||
134 | + f.write("# %s\n\n" % sample_file.split('/')[-1]) | ||
135 | + f.write("# strategy-k %s-k%.3d\n\n" % (cfg.strategy,k)) | ||
136 | + f.write("# roc_point \tprecision \tf05 \tmcc\n\n") | ||
137 | + | ||
138 | + # main loop per user | ||
139 | + for submission_file in population_sample: | ||
140 | + user = PopconSystem(submission_file) | ||
141 | + user.filter_pkg_profile(cfg.pkgs_filter) | ||
142 | + user.maximal_pkg_profile() | ||
143 | + for k in neighbors: | ||
144 | + cfg.k_neighbors = k | ||
145 | + rec = Recommender(cfg) | ||
146 | + repo_size = rec.items_repository.get_doccount() | ||
147 | + results = ExperimentResults(repo_size) | ||
148 | + # n iterations for same recommender and user | ||
149 | + for n in range(iterations): | ||
150 | + # Fill sample profile | ||
151 | + profile_len = len(user.pkg_profile) | ||
152 | + item_score = {} | ||
153 | + for pkg in user.pkg_profile: | ||
154 | + item_score[pkg] = user.item_score[pkg] | ||
155 | + sample = {} | ||
156 | + sample_size = int(profile_len*0.9) | ||
157 | + for i in range(sample_size): | ||
158 | + key = random.choice(item_score.keys()) | ||
159 | + sample[key] = item_score.pop(key) | ||
160 | + iteration_user = User(item_score) | ||
161 | + recommendation = rec.get_recommendation(iteration_user,threshold) | ||
162 | + if hasattr(recommendation,"ranking"): | ||
163 | + results.add_result(recommendation.ranking,sample) | ||
164 | + recommended[k] = recommended[k].union(recommendation.ranking) | ||
165 | + # save summary | ||
166 | + roc_point = results.get_roc_point() | ||
167 | + roc_summary[k].append(roc_point) | ||
168 | + precision = results.get_precision_summary() | ||
169 | + precision_summary[k].append(precision) | ||
170 | + f05 = results.get_f05_summary() | ||
171 | + f05_summary[k].append(f05) | ||
172 | + mcc = results.get_mcc_summary() | ||
173 | + mcc_summary[k].append(mcc) | ||
174 | + with open(log_file+"-k%.3d"%k,'a') as f: | ||
175 | + f.write("[%.2f,%.2f] \t%.4f \t%.4f \t%.4f\n" % | ||
176 | + (roc_point[0],roc_point[1],precision,f05,mcc)) | ||
177 | + # back to main flow | ||
178 | + with open(log_file,'a') as f: | ||
179 | + plot_summary(precision_summary,f05_summary,mcc_summary,log_file) | ||
180 | + for k in neighbors: | ||
181 | + coverage = len(recommended[size])/float(repo_size) | ||
182 | + f.write("%3d \t%.2f \t%.4f \t%.4f \t%.4f\n" % | ||
183 | + (k,coverage,float(sum(precision_summary[k]))/len(precision_summary[k]), | ||
184 | + float(sum(f05_summary[k]))/len(f05_summary[k]), | ||
185 | + float(sum(mcc_summary[k]))/len(mcc_summary[k]))) | ||
186 | + plot_roc(k,roc_summary[k],log_file) |
@@ -0,0 +1,274 @@ | @@ -0,0 +1,274 @@ | ||
1 | +#!/usr/bin/env python | ||
2 | +""" | ||
3 | + recommender suite - recommender experiments suite | ||
4 | +""" | ||
5 | +__author__ = "Tassia Camoes Araujo <tassia@gmail.com>" | ||
6 | +__copyright__ = "Copyright (C) 2011 Tassia Camoes Araujo" | ||
7 | +__license__ = """ | ||
8 | + This program is free software: you can redistribute it and/or modify | ||
9 | + it under the terms of the GNU General Public License as published by | ||
10 | + the Free Software Foundation, either version 3 of the License, or | ||
11 | + (at your option) any later version. | ||
12 | + | ||
13 | + This program is distributed in the hope that it will be useful, | ||
14 | + but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
15 | + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
16 | + GNU General Public License for more details. | ||
17 | + | ||
18 | + You should have received a copy of the GNU General Public License | ||
19 | + along with this program. If not, see <http://www.gnu.org/licenses/>. | ||
20 | +""" | ||
21 | + | ||
22 | +import sys | ||
23 | +sys.path.insert(0,'../') | ||
24 | +from config import Config | ||
25 | +from data import PopconXapianIndex, PopconSubmission, AppAptXapianIndex | ||
26 | +from recommender import Recommender | ||
27 | +from user import LocalSystem, User | ||
28 | +from evaluation import * | ||
29 | +import logging | ||
30 | +import random | ||
31 | +import Gnuplot | ||
32 | + | ||
33 | +#iterations = 3 | ||
34 | +#sample_proportions = [0.9] | ||
35 | +#weighting = [('bm25',1.2)] | ||
36 | +#collaborative = ['knn'] | ||
37 | +#content_based = [] | ||
38 | +#hybrid = ['knnco'] | ||
39 | +#profile_size = [50,100] | ||
40 | +#popcon_size = ["1000"] | ||
41 | +#neighbors = [50] | ||
42 | + | ||
43 | +iterations = 10 | ||
44 | +sample_proportions = [0.5, 0.6, 0.7, 0.8, 0.9] | ||
45 | +weighting = [('bm25',1.2), ('bm25',1.6), ('bm25',2.0), ('trad',0)] | ||
46 | +content_based = ['cb','cbt','cbd','cbh','cb_eset','cbt_eset','cbd_eset','cbh_eset'] | ||
47 | +collaborative = ['knn_eset','knn','knn_plus'] | ||
48 | +hybrid = ['knnco','knnco_eset'] | ||
49 | + | ||
50 | +profile_size = range(20,100,20) | ||
51 | +#popcon_size = [1000,10000,50000,'full'] | ||
52 | +neighbors = range(10,510,50) | ||
53 | + | ||
54 | +def write_recall_log(label,n,sample,recommendation,profile_size,repo_size,log_file): | ||
55 | + # Write recall log | ||
56 | + output = open(("%s-%d" % (log_file,n)),'w') | ||
57 | + output.write("# %s-n\n" % label["description"]) | ||
58 | + output.write("# %s-%d\n" % (label["values"],n)) | ||
59 | + output.write("\n%d %d %d\n" % \ | ||
60 | + (repo_size,profile_size,len(sample))) | ||
61 | + if hasattr(recommendation,"ranking"): | ||
62 | + notfound = [] | ||
63 | + ranks = [] | ||
64 | + for pkg in sample.keys(): | ||
65 | + if pkg in recommendation.ranking: | ||
66 | + ranks.append(recommendation.ranking.index(pkg)) | ||
67 | + else: | ||
68 | + notfound.append(pkg) | ||
69 | + for r in sorted(ranks): | ||
70 | + output.write(str(r)+"\n") | ||
71 | + if notfound: | ||
72 | + output.write("Out of recommendation:\n") | ||
73 | + for pkg in notfound: | ||
74 | + output.write(pkg+"\n") | ||
75 | + output.close() | ||
76 | + | ||
77 | +def plot_summary(precision,recall,f1,f05,accuracy,log_file): | ||
78 | + # Plot metrics summary | ||
79 | + g = Gnuplot.Gnuplot() | ||
80 | + g('set style data lines') | ||
81 | + g.xlabel('Recommendation size') | ||
82 | + g.title("Setup: %s" % log_file.split("/")[-1]) | ||
83 | + g.plot(Gnuplot.Data(accuracy,title="Accuracy"), | ||
84 | + Gnuplot.Data(precision,title="Precision"), | ||
85 | + Gnuplot.Data(recall,title="Recall"), | ||
86 | + Gnuplot.Data(f1,title="F_1"), | ||
87 | + Gnuplot.Data(f05,title="F_0.5")) | ||
88 | + g.hardcopy(log_file+".png",terminal="png") | ||
89 | + g.hardcopy(log_file+".ps",terminal="postscript",enhanced=1,color=1) | ||
90 | + g('set logscale x') | ||
91 | + g('replot') | ||
92 | + g.hardcopy(log_file+"-logscale.png",terminal="png") | ||
93 | + g.hardcopy(log_file+"-logscale.ps",terminal="postscript",enhanced=1,color=1) | ||
94 | + | ||
95 | +def get_label(cfg,sample_proportion): | ||
96 | + label = {} | ||
97 | + if cfg.strategy in content_based: | ||
98 | + label["description"] = "strategy-filter-profile-k1_bm25-sample" | ||
99 | + label["values"] = ("%s-profile%d-%s-kbm%.1f-sample%.1f" % | ||
100 | + (cfg.strategy,cfg.profile_size, | ||
101 | + cfg.pkgs_filter.split("/")[-1], | ||
102 | + cfg.bm25_k1,sample_proportion)) | ||
103 | + elif cfg.strategy in collaborative: | ||
104 | + label["description"] = "strategy-knn-filter-k1_bm25-sample" | ||
105 | + label["values"] = ("%s-k%d-%s-kbm%.1f-sample%.1f" % | ||
106 | + (cfg.strategy,cfg.k_neighbors, | ||
107 | + cfg.pkgs_filter.split("/")[-1], | ||
108 | + cfg.bm25_k1,sample_proportion)) | ||
109 | + elif cfg.strategy in hybrid: | ||
110 | + label["description"] = "strategy-knn-filter-profile-k1_bm25-sample" | ||
111 | + label["values"] = ("%s-k%d-profile%d-%s-kbm%.1f-sample%.1f" % | ||
112 | + (cfg.strategy,cfg.k_neighbors,cfg.profile_size, | ||
113 | + cfg.pkgs_filter.split("/")[-1], | ||
114 | + cfg.bm25_k1,sample_proportion)) | ||
115 | + else: | ||
116 | + print "Unknown strategy" | ||
117 | + return label | ||
118 | + | ||
119 | +class ExperimentResults: | ||
120 | + def __init__(self,repo_size): | ||
121 | + self.repository_size = repo_size | ||
122 | + self.accuracy = {} | ||
123 | + self.precision = {} | ||
124 | + self.recall = {} | ||
125 | + self.f1 = {} | ||
126 | + self.f05 = {} | ||
127 | + points = [1]+range(10,200,10)+range(200,self.repository_size,100) | ||
128 | + for size in points: | ||
129 | + self.accuracy[size] = [] | ||
130 | + self.precision[size] = [] | ||
131 | + self.recall[size] = [] | ||
132 | + self.f1[size] = [] | ||
133 | + self.f05[size] = [] | ||
134 | + | ||
135 | + def add_result(self,ranking,sample): | ||
136 | + for size in self.accuracy.keys(): | ||
137 | + predicted = RecommendationResult(dict.fromkeys(ranking[:size],1)) | ||
138 | + real = RecommendationResult(sample) | ||
139 | + evaluation = Evaluation(predicted,real,self.repository_size) | ||
140 | + self.accuracy[size].append(evaluation.run(Accuracy())) | ||
141 | + self.precision[size].append(evaluation.run(Precision())) | ||
142 | + self.recall[size].append(evaluation.run(Recall())) | ||
143 | + self.f1[size].append(evaluation.run(F_score(1))) | ||
144 | + self.f05[size].append(evaluation.run(F_score(0.5))) | ||
145 | + | ||
146 | + def get_precision_summary(self): | ||
147 | + summary = [[size,sum(values)/len(values)] for size,values in self.precision.items()] | ||
148 | + return sorted(summary) | ||
149 | + | ||
150 | + def get_recall_summary(self): | ||
151 | + summary = [[size,sum(values)/len(values)] for size,values in self.recall.items()] | ||
152 | + return sorted(summary) | ||
153 | + | ||
154 | + def get_f1_summary(self): | ||
155 | + summary = [[size,sum(values)/len(values)] for size,values in self.f1.items()] | ||
156 | + return sorted(summary) | ||
157 | + | ||
158 | + def get_f05_summary(self): | ||
159 | + summary = [[size,sum(values)/len(values)] for size,values in self.f05.items()] | ||
160 | + return sorted(summary) | ||
161 | + | ||
162 | + def get_accuracy_summary(self): | ||
163 | + summary = [[size,sum(values)/len(values)] for size,values in self.accuracy.items()] | ||
164 | + return sorted(summary) | ||
165 | + | ||
166 | + def best_precision(self): | ||
167 | + size = max(self.precision, key = lambda x: max(self.precision[x])) | ||
168 | + return (size,max(self.precision[size])) | ||
169 | + | ||
170 | + def best_f1(self): | ||
171 | + size = max(self.f1, key = lambda x: max(self.f1[x])) | ||
172 | + return (size,max(self.f1[size])) | ||
173 | + | ||
174 | + def best_f05(self): | ||
175 | + size = max(self.f05, key = lambda x: max(self.f05[x])) | ||
176 | + return (size,max(self.f05[size])) | ||
177 | + | ||
178 | +def run_strategy(cfg,user): | ||
179 | + for weight in weighting: | ||
180 | + cfg.weight = weight[0] | ||
181 | + cfg.bm25_k1 = weight[1] | ||
182 | + rec = Recommender(cfg) | ||
183 | + repo_size = rec.items_repository.get_doccount() | ||
184 | + for proportion in sample_proportions: | ||
185 | + results = ExperimentResults(repo_size) | ||
186 | + label = get_label(cfg,proportion) | ||
187 | + log_file = "results/strategies/"+label["values"] | ||
188 | + for n in range(iterations): | ||
189 | + # Fill sample profile | ||
190 | + profile_size = len(user.pkg_profile) | ||
191 | + item_score = {} | ||
192 | + for pkg in user.pkg_profile: | ||
193 | + item_score[pkg] = user.item_score[pkg] | ||
194 | + sample = {} | ||
195 | + sample_size = int(profile_size*proportion) | ||
196 | + for i in range(sample_size): | ||
197 | + key = random.choice(item_score.keys()) | ||
198 | + sample[key] = item_score.pop(key) | ||
199 | + iteration_user = User(item_score) | ||
200 | + recommendation = rec.get_recommendation(iteration_user,repo_size) | ||
201 | + write_recall_log(label,n,sample,recommendation,profile_size,repo_size,log_file) | ||
202 | + if hasattr(recommendation,"ranking"): | ||
203 | + results.add_result(recommendation.ranking,sample) | ||
204 | + with open(log_file,'w') as f: | ||
205 | + precision_10 = sum(results.precision[10])/len(results.precision[10]) | ||
206 | + f1_10 = sum(results.f1[10])/len(results.f1[10]) | ||
207 | + f05_10 = sum(results.f05[10])/len(results.f05[10]) | ||
208 | + f.write("# %s\n# %s\n\ncoverage %d\n\n" % | ||
209 | + (label["description"],label["values"],recommendation.size)) | ||
210 | + f.write("# best results (recommendation size; metric)\n") | ||
211 | + f.write("precision (%d; %.2f)\nf1 (%d; %.2f)\nf05 (%d; %.2f)\n\n" % | ||
212 | + (results.best_precision()[0],results.best_precision()[1], | ||
213 | + results.best_f1()[0],results.best_f1()[1], | ||
214 | + results.best_f05()[0],results.best_f05()[1])) | ||
215 | + f.write("# recommendation size 10\nprecision (10; %.2f)\nf1 (10; %.2f)\nf05 (10; %.2f)" % | ||
216 | + (precision_10,f1_10,f05_10)) | ||
217 | + precision = results.get_precision_summary() | ||
218 | + recall = results.get_recall_summary() | ||
219 | + f1 = results.get_f1_summary() | ||
220 | + f05 = results.get_f05_summary() | ||
221 | + accuracy = results.get_accuracy_summary() | ||
222 | + plot_summary(precision,recall,f1,f05,accuracy,log_file) | ||
223 | + | ||
224 | +def run_content(user,cfg): | ||
225 | + for strategy in content_based: | ||
226 | + cfg.strategy = strategy | ||
227 | + for size in profile_size: | ||
228 | + cfg.profile_size = size | ||
229 | + run_strategy(cfg,user) | ||
230 | + | ||
231 | +def run_collaborative(user,cfg): | ||
232 | + popcon_desktopapps = cfg.popcon_desktopapps | ||
233 | + popcon_programs = cfg.popcon_programs | ||
234 | + for strategy in collaborative: | ||
235 | + cfg.strategy = strategy | ||
236 | + for k in neighbors: | ||
237 | + cfg.k_neighbors = k | ||
238 | + #for size in popcon_size: | ||
239 | + # if size: | ||
240 | + # cfg.popcon_desktopapps = popcon_desktopapps+"_"+size | ||
241 | + # cfg.popcon_programs = popcon_programs+"_"+size | ||
242 | + run_strategy(cfg,user) | ||
243 | + | ||
244 | +def run_hybrid(user,cfg): | ||
245 | + popcon_desktopapps = cfg.popcon_desktopapps | ||
246 | + popcon_programs = cfg.popcon_programs | ||
247 | + for strategy in hybrid: | ||
248 | + cfg.strategy = strategy | ||
249 | + for k in neighbors: | ||
250 | + cfg.k_neighbors = k | ||
251 | + #for size in popcon_size: | ||
252 | + # if size: | ||
253 | + # cfg.popcon_desktopapps = popcon_desktopapps+"_"+size | ||
254 | + # cfg.popcon_programs = popcon_programs+"_"+size | ||
255 | + for size in profile_size: | ||
256 | + cfg.profile_size = size | ||
257 | + run_strategy(cfg,user) | ||
258 | + | ||
259 | +if __name__ == '__main__': | ||
260 | + #user = LocalSystem() | ||
261 | + #user = RandomPopcon(cfg.popcon_dir,os.path.join(cfg.filters_dir,"desktopapps")) | ||
262 | + | ||
263 | + cfg = Config() | ||
264 | + user = PopconSystem("/root/.app-recommender/popcon-entries/8b/8b44fcdbcf676e711a153d5db09979d7") | ||
265 | + #user = PopconSystem("/root/.app-recommender/popcon-entries/4a/4a67a295ec14826db2aa1d90be2f1623") | ||
266 | + user.filter_pkg_profile(cfg.pkgs_filter) | ||
267 | + user.maximal_pkg_profile() | ||
268 | + | ||
269 | + if "content" in sys.argv or len(sys.argv)<2: | ||
270 | + run_content(user,cfg) | ||
271 | + if "collaborative" in sys.argv or len(sys.argv)<2: | ||
272 | + run_collaborative(user,cfg) | ||
273 | + if "hybrid" in sys.argv or len(sys.argv)<2: | ||
274 | + run_hybrid(user,cfg) |