Commit dc8ededf327ee77c4bf11a528452c1f61c260f2e
1 parent
78a934e4
Exists in
master
and in
1 other branch
Updated experiments.
Showing
4 changed files
with
607 additions
and
0 deletions
Show diff stats
... | ... | @@ -0,0 +1,152 @@ |
1 | +#!/usr/bin/env python | |
2 | +""" | |
3 | + recommender suite - recommender experiments suite | |
4 | +""" | |
5 | +__author__ = "Tassia Camoes Araujo <tassia@gmail.com>" | |
6 | +__copyright__ = "Copyright (C) 2011 Tassia Camoes Araujo" | |
7 | +__license__ = """ | |
8 | + This program is free software: you can redistribute it and/or modify | |
9 | + it under the terms of the GNU General Public License as published by | |
10 | + the Free Software Foundation, either version 3 of the License, or | |
11 | + (at your option) any later version. | |
12 | + | |
13 | + This program is distributed in the hope that it will be useful, | |
14 | + but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | + GNU General Public License for more details. | |
17 | + | |
18 | + You should have received a copy of the GNU General Public License | |
19 | + along with this program. If not, see <http://www.gnu.org/licenses/>. | |
20 | +""" | |
21 | + | |
22 | +import sys | |
23 | +sys.path.insert(0,'../') | |
24 | +from config import Config | |
25 | +from data import PopconXapianIndex, PopconSubmission | |
26 | +from recommender import Recommender | |
27 | +from user import LocalSystem, User | |
28 | +from evaluation import * | |
29 | +import logging | |
30 | +import random | |
31 | +import Gnuplot | |
32 | +import numpy | |
33 | + | |
34 | +def plot_roc(p,roc_points,log_file): | |
35 | + g = Gnuplot.Gnuplot() | |
36 | + g('set style data points') | |
37 | + g.xlabel('False Positive Rate') | |
38 | + g.ylabel('True Positive Rate') | |
39 | + g('set xrange [0:1.0]') | |
40 | + g('set yrange [0:1.0]') | |
41 | + g.title("Setup: %s" % log_file.split("/")[-1]) | |
42 | + g.plot(Gnuplot.Data([[0,0],[1,1]],with_="lines lt 7"), | |
43 | + Gnuplot.Data(roc_points,title="k %d"%k)) | |
44 | + g.hardcopy(log_file+("-k%.3d.png"%k),terminal="png") | |
45 | + g.hardcopy(log_file+("-k%.3d.ps"%k),terminal="postscript",enhanced=1,color=1) | |
46 | + | |
47 | +class ExperimentResults: | |
48 | + def __init__(self,repo_size): | |
49 | + self.repository_size = repo_size | |
50 | + self.precision = [] | |
51 | + self.recall = [] | |
52 | + self.fpr = [] | |
53 | + | |
54 | + def add_result(self,ranking,sample): | |
55 | + predicted = RecommendationResult(dict.fromkeys(ranking,1)) | |
56 | + real = RecommendationResult(sample) | |
57 | + evaluation = Evaluation(predicted,real,self.repository_size) | |
58 | + self.precision.append(evaluation.run(Precision())) | |
59 | + self.recall.append(evaluation.run(Recall())) | |
60 | + self.fpr.append(evaluation.run(FPR())) | |
61 | + | |
62 | + # Average ROC by threshold (whici is the size) | |
63 | + def get_roc_point(self): | |
64 | + tpr = self.recall | |
65 | + fpr = self.fpr | |
66 | + return [sum(fpr)/len(fpr),sum(tpr)/len(tpr)] | |
67 | + | |
68 | + def get_precision_summary(self): | |
69 | + return sum(self.precision)/len(self.precision) | |
70 | + | |
71 | + def get_recall_summary(self): | |
72 | + return sum(self.recall)/len(self.recall) | |
73 | + | |
74 | +if __name__ == '__main__': | |
75 | + # experiment parameters | |
76 | + threshold = 20 | |
77 | + iterations = 30 | |
78 | + sample_file = "results/misc-popcon/sample-050-100" | |
79 | + neighbors = [3,5,10,50,100,150,200,300,400,500] | |
80 | + cfg = Config() | |
81 | + cfg.strategy = "knn" | |
82 | + print cfg.popcon_index | |
83 | + sample = [] | |
84 | + with open(sample_file,'r') as f: | |
85 | + for line in f.readlines(): | |
86 | + user_id = line.strip('\n') | |
87 | + sample.append(os.path.join(cfg.popcon_dir,user_id[:2],user_id)) | |
88 | + # setup dictionaries and files | |
89 | + roc_points = {} | |
90 | + recommended = {} | |
91 | + precisions = {} | |
92 | + aucs = {} | |
93 | + log_file = "results/k-suite/sample-050-100/%s" % (cfg.strategy) | |
94 | + for k in neighbors: | |
95 | + roc_points[k] = [] | |
96 | + recommended[k] = set() | |
97 | + precisions[k] = [] | |
98 | + aucs[k] = [] | |
99 | + with open(log_file+"-k%.3d"%k,'w') as f: | |
100 | + f.write("# strategy-k %s-k%.3d\n\n" % (cfg.strategy,k)) | |
101 | + f.write("# roc_point \tp(20) \tauc\n\n") | |
102 | + # main loop per user | |
103 | + for submission_file in sample: | |
104 | + user = PopconSystem(submission_file) | |
105 | + user.filter_pkg_profile(cfg.pkgs_filter) | |
106 | + user.maximal_pkg_profile() | |
107 | + for k in neighbors: | |
108 | + cfg.k_neighbors = k | |
109 | + rec = Recommender(cfg) | |
110 | + repo_size = rec.items_repository.get_doccount() | |
111 | + results = ExperimentResults(repo_size) | |
112 | + # n iterations for same recommender and user | |
113 | + for n in range(iterations): | |
114 | + # Fill sample profile | |
115 | + profile_size = len(user.pkg_profile) | |
116 | + item_score = {} | |
117 | + for pkg in user.pkg_profile: | |
118 | + item_score[pkg] = user.item_score[pkg] | |
119 | + sample = {} | |
120 | + sample_size = int(profile_size*0.9) | |
121 | + for i in range(sample_size): | |
122 | + key = random.choice(item_score.keys()) | |
123 | + sample[key] = item_score.pop(key) | |
124 | + iteration_user = User(item_score) | |
125 | + recommendation = rec.get_recommendation(iteration_user,threshold) | |
126 | + if hasattr(recommendation,"ranking"): | |
127 | + results.add_result(recommendation.ranking,sample) | |
128 | + print "ranking",recommendation.ranking | |
129 | + print "recommended_%d"%k,recommended[k] | |
130 | + recommended[k] = recommended[k].union(recommendation.ranking) | |
131 | + print recommended[k] | |
132 | + # save summary | |
133 | + roc_point = results.get_roc_point() | |
134 | + auc = numpy.trapz(y=[0,roc_point[1],1],x=[0,roc_point[0],1]) | |
135 | + p_20 = results.get_precision_summary() | |
136 | + roc_points[k].append(roc_point) | |
137 | + aucs[k].append(auc) | |
138 | + precisions[k].append(p_20) | |
139 | + with open(log_file+"-k%.3d"%k,'a') as f: | |
140 | + f.write("%s \t%.2f \t%.4f\n" % (str(roc_point),p_20,auc)) | |
141 | + # back to main flow | |
142 | + with open(log_file,'w') as f: | |
143 | + f.write("# k coverage \tp(20) \tauc\n\n") | |
144 | + for k in neighbors: | |
145 | + print "len_recommended_%d"%k,len(recommended[k]) | |
146 | + print "repo_size",repo_size | |
147 | + coverage = len(recommended[k])/float(repo_size) | |
148 | + print coverage | |
149 | + f.write("%d \t%.2f \t%.2f \t%.2fi\n" % | |
150 | + (k,coverage,float(sum(precisions[k]))/len(precisions[k]), | |
151 | + float(sum(aucs[k]))/len(aucs[k]))) | |
152 | + plot_roc(k,roc_points[k],log_file) | ... | ... |
... | ... | @@ -0,0 +1,74 @@ |
1 | +#! /usr/bin/env python | |
2 | +""" | |
3 | + misc_popcon - misc experiments with popcon data | |
4 | +""" | |
5 | +__author__ = "Tassia Camoes Araujo <tassia@gmail.com>" | |
6 | +__copyright__ = "Copyright (C) 2011 Tassia Camoes Araujo" | |
7 | +__license__ = """ | |
8 | + This program is free software: you can redistribute it and/or modify | |
9 | + it under the terms of the GNU General Public License as published by | |
10 | + the Free Software Foundation, either version 3 of the License, or | |
11 | + (at your option) any later version. | |
12 | + | |
13 | + This program is distributed in the hope that it will be useful, | |
14 | + but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | + GNU General Public License for more details. | |
17 | + | |
18 | + You should have received a copy of the GNU General Public License | |
19 | + along with this program. If not, see <http://www.gnu.org/licenses/>. | |
20 | +""" | |
21 | + | |
22 | +import Gnuplot | |
23 | +import xapian | |
24 | +import os | |
25 | +import random | |
26 | +import sys | |
27 | + | |
28 | +def get_population_profile(popcon): | |
29 | + profiles_size = [] | |
30 | + for n in range(1,popcon.get_doccount()): | |
31 | + user = popcon.get_document(n) | |
32 | + pkgs_profile = [t.term for t in user.termlist() if t.term.startswith("XP")] | |
33 | + if len(pkgs_profile)<10: | |
34 | + print "-- profile<10:",user.get_data() | |
35 | + profiles_size.append(len(pkgs_profile)) | |
36 | + max_profile = max(profiles_size) | |
37 | + population_profile = [(n,profiles_size.count(n)) | |
38 | + for n in range(max_profile+1) | |
39 | + if profiles_size.count(n)>0 ] | |
40 | + return population_profile,max_profile | |
41 | + | |
42 | +def get_profile_ranges(population_profile,max_profile,popcon_size): | |
43 | + ranges = range(0,251,50) | |
44 | + ranges.append(max_profile) | |
45 | + ranges_population = [] | |
46 | + ranges_percentage = [] | |
47 | + for maximum in ranges[1:]: | |
48 | + minimum = ranges[ranges.index(maximum)-1] | |
49 | + valid = [x[1] for x in population_profile | |
50 | + if x[0]>minimum and x[0]<=maximum] | |
51 | + ranges_population.append((maximum,sum(valid))) | |
52 | + ranges_percentage.append((maximum,sum(valid)/float(popcon_size))) | |
53 | + return ranges_population,ranges_percentage | |
54 | + | |
55 | +def plot(data,xlabel,ylabel,output): | |
56 | + g = Gnuplot.Gnuplot() | |
57 | + g('set style data points') | |
58 | + g.xlabel(xlabel) | |
59 | + g.ylabel(ylabel) | |
60 | + g.plot(data) | |
61 | + g.hardcopy(output+".png", terminal="png") | |
62 | + g.hardcopy(output+".ps", terminal="postscript", enhanced=1, color=1) | |
63 | + | |
64 | +if __name__ == '__main__': | |
65 | + popcon = xapian.Database(os.path.expanduser("~/.app-recommender/popcon_desktopapps")) | |
66 | + print ("Popcon repository size: %d" % popcon.get_doccount()) | |
67 | + | |
68 | + profile_population,max_profile = get_population_profile(popcon) | |
69 | + ranges_population,ranges_percentage = get_profile_ranges(profile_population, | |
70 | + max_profile,popcon.get_doccount()) | |
71 | + print "Population per profile range (up to index)" | |
72 | + print ranges_population | |
73 | + plot(profile_population,"Desktop profile size","Population size", | |
74 | + "results/misc-popcon/profile_population") | ... | ... |
... | ... | @@ -0,0 +1,328 @@ |
1 | +#!/usr/bin/env python | |
2 | +""" | |
3 | + recommender suite - recommender experiments suite | |
4 | +""" | |
5 | +__author__ = "Tassia Camoes Araujo <tassia@gmail.com>" | |
6 | +__copyright__ = "Copyright (C) 2011 Tassia Camoes Araujo" | |
7 | +__license__ = """ | |
8 | + This program is free software: you can redistribute it and/or modify | |
9 | + it under the terms of the GNU General Public License as published by | |
10 | + the Free Software Foundation, either version 3 of the License, or | |
11 | + (at your option) any later version. | |
12 | + | |
13 | + This program is distributed in the hope that it will be useful, | |
14 | + but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | + GNU General Public License for more details. | |
17 | + | |
18 | + You should have received a copy of the GNU General Public License | |
19 | + along with this program. If not, see <http://www.gnu.org/licenses/>. | |
20 | +""" | |
21 | + | |
22 | +import sys | |
23 | +sys.path.insert(0,'../') | |
24 | +from config import Config | |
25 | +from data import PopconXapianIndex, PopconSubmission | |
26 | +from recommender import Recommender | |
27 | +from user import LocalSystem, User | |
28 | +from evaluation import * | |
29 | +import logging | |
30 | +import random | |
31 | +import Gnuplot | |
32 | +import numpy | |
33 | + | |
34 | +#iterations = 3 | |
35 | +#sample_proportions = [0.9] | |
36 | +#weighting = [('bm25',1.2)] | |
37 | +#collaborative = ['knn_eset'] | |
38 | +#content_based = ['cb'] | |
39 | +#hybrid = ['knnco'] | |
40 | +#profile_size = [50,100] | |
41 | +#popcon_size = ["1000"] | |
42 | +#neighbors = [50] | |
43 | + | |
44 | +iterations = 30 | |
45 | +sample_proportions = [0.9] | |
46 | +weighting = [('bm25',1.0),('bm25',1.2),('bm25',2.0),('trad',0)] | |
47 | +content_based = ['cb','cbt','cbd','cbh','cb_eset','cbt_eset','cbd_eset','cbh_eset'] | |
48 | +collaborative = ['knn_eset','knn','knn_plus'] | |
49 | +hybrid = ['knnco','knnco_eset'] | |
50 | +profile_size = range(20,200,20) | |
51 | +neighbors = range(10,510,50) | |
52 | + | |
53 | +def write_recall_log(label,n,sample,recommendation,profile_size,repo_size,log_file): | |
54 | + # Write recall log | |
55 | + output = open(("%s-%.2d" % (log_file,n)),'w') | |
56 | + output.write("# %s-n\n" % label["description"]) | |
57 | + output.write("# %s-%.2d\n" % (label["values"],n)) | |
58 | + output.write("\n# repository profile sample\n%d %d %d\n" % \ | |
59 | + (repo_size,profile_size,len(sample))) | |
60 | + if hasattr(recommendation,"ranking"): | |
61 | + notfound = [] | |
62 | + ranks = [] | |
63 | + for pkg in sample.keys(): | |
64 | + if pkg in recommendation.ranking: | |
65 | + ranks.append(recommendation.ranking.index(pkg)) | |
66 | + else: | |
67 | + notfound.append(pkg) | |
68 | + for r in sorted(ranks): | |
69 | + output.write(str(r)+"\n") | |
70 | + if notfound: | |
71 | + output.write("# out of recommendation:\n") | |
72 | + for pkg in notfound: | |
73 | + output.write(pkg+"\n") | |
74 | + output.close() | |
75 | + | |
76 | +def plot_roc(roc_points,auc,eauc,c,p,log_file): | |
77 | + g = Gnuplot.Gnuplot() | |
78 | + g('set style data lines') | |
79 | + g.xlabel('False Positive Rate') | |
80 | + g.ylabel('True Positive Rate') | |
81 | + g('set xrange [0:1.0]') | |
82 | + g('set yrange [0:1.0]') | |
83 | + g.title("Setup: %s" % log_file.split("/")[-1]) | |
84 | + g('set label "C %.2f" at 0.8,0.25' % c) | |
85 | + g('set label "P(20) %.2f" at 0.8,0.2' % p) | |
86 | + g('set label "AUC %.4f" at 0.8,0.15' % auc) | |
87 | + g('set label "EAUC %.4f" at 0.8,0.1' % eauc) | |
88 | + g.plot(Gnuplot.Data(roc_points,title="ROC"), | |
89 | + Gnuplot.Data([[0,0],[1,1]],with_="lines lt 7"), | |
90 | + Gnuplot.Data([roc_points[-1],[1,1]],with_="lines lt 6")) | |
91 | + g.hardcopy(log_file+"-roc.png",terminal="png") | |
92 | + g.hardcopy(log_file+"-roc.ps",terminal="postscript",enhanced=1,color=1) | |
93 | + | |
94 | +def plot_summary(precision,recall,f1,f05,accuracy,log_file): | |
95 | + # Plot metrics summary | |
96 | + g = Gnuplot.Gnuplot() | |
97 | + g('set style data lines') | |
98 | + g.xlabel('Recommendation size') | |
99 | + g.title("Setup: %s" % log_file.split("/")[-1]) | |
100 | + g.plot(Gnuplot.Data(accuracy,title="Accuracy"), | |
101 | + Gnuplot.Data(precision,title="Precision"), | |
102 | + Gnuplot.Data(recall,title="Recall"), | |
103 | + Gnuplot.Data(f1,title="F_1"), | |
104 | + Gnuplot.Data(f05,title="F_0.5")) | |
105 | + g.hardcopy(log_file+".png",terminal="png") | |
106 | + g.hardcopy(log_file+".ps",terminal="postscript",enhanced=1,color=1) | |
107 | + g('set logscale x') | |
108 | + g('replot') | |
109 | + g.hardcopy(log_file+"-logscale.png",terminal="png") | |
110 | + g.hardcopy(log_file+"-logscale.ps",terminal="postscript",enhanced=1,color=1) | |
111 | + | |
112 | +def get_label(cfg,sample_proportion): | |
113 | + label = {} | |
114 | + if cfg.strategy in content_based: | |
115 | + label["description"] = "strategy-filter-profile-k1_bm25" | |
116 | + label["values"] = ("%s-profile%.3d-%s-kbm%.1f" % | |
117 | + (cfg.strategy,cfg.profile_size, | |
118 | + cfg.pkgs_filter.split("/")[-1], | |
119 | + cfg.bm25_k1)) | |
120 | + elif cfg.strategy in collaborative: | |
121 | + label["description"] = "strategy-knn-filter-k1_bm25" | |
122 | + label["values"] = ("%s-k%.3d-%s-kbm%.1f" % | |
123 | + (cfg.strategy,cfg.k_neighbors, | |
124 | + cfg.pkgs_filter.split("/")[-1], | |
125 | + cfg.bm25_k1)) | |
126 | + elif cfg.strategy in hybrid: | |
127 | + label["description"] = "strategy-knn-filter-profile-k1_bm25" | |
128 | + label["values"] = ("%s-k%.3d-profile%.3d-%s-kbm%.1f" % | |
129 | + (cfg.strategy,cfg.k_neighbors,cfg.profile_size, | |
130 | + cfg.pkgs_filter.split("/")[-1], | |
131 | + cfg.bm25_k1)) | |
132 | + else: | |
133 | + print "Unknown strategy" | |
134 | + return label | |
135 | + | |
136 | +class ExperimentResults: | |
137 | + def __init__(self,repo_size): | |
138 | + self.repository_size = repo_size | |
139 | + self.accuracy = {} | |
140 | + self.precision = {} | |
141 | + self.recall = {} | |
142 | + self.f1 = {} | |
143 | + self.f05 = {} | |
144 | + self.fpr = {} | |
145 | + #points = [1]+range(10,200,10)+range(200,self.repository_size,100) | |
146 | + points = [1]+range(10,self.repository_size,10) | |
147 | + self.recommended = set() | |
148 | + for size in points: | |
149 | + self.accuracy[size] = [] | |
150 | + self.precision[size] = [] | |
151 | + self.recall[size] = [] | |
152 | + self.f1[size] = [] | |
153 | + self.f05[size] = [] | |
154 | + self.fpr[size] = [] | |
155 | + | |
156 | + def add_result(self,ranking,sample): | |
157 | + print "len_recommended", len(self.recommended) | |
158 | + print "len_rank", len(ranking) | |
159 | + self.recommended = self.recommended.union(ranking) | |
160 | + print "len_recommended", len(self.recommended) | |
161 | + # get data only for point | |
162 | + for size in self.accuracy.keys(): | |
163 | + predicted = RecommendationResult(dict.fromkeys(ranking[:size],1)) | |
164 | + real = RecommendationResult(sample) | |
165 | + evaluation = Evaluation(predicted,real,self.repository_size) | |
166 | + #self.accuracy[size].append(evaluation.run(Accuracy())) | |
167 | + self.precision[size].append(evaluation.run(Precision())) | |
168 | + self.recall[size].append(evaluation.run(Recall())) | |
169 | + #self.f1[size].append(evaluation.run(F_score(1))) | |
170 | + #self.f05[size].append(evaluation.run(F_score(0.5))) | |
171 | + self.fpr[size].append(evaluation.run(FPR())) | |
172 | + | |
173 | + # Average ROC by threshold (whici is the size) | |
174 | + def get_roc_points(self): | |
175 | + points = [] | |
176 | + for size in self.recall.keys(): | |
177 | + tpr = self.recall[size] | |
178 | + fpr = self.fpr[size] | |
179 | + points.append([sum(fpr)/len(fpr),sum(tpr)/len(tpr)]) | |
180 | + return sorted(points) | |
181 | + | |
182 | + def get_precision_summary(self): | |
183 | + summary = [[size,sum(values)/len(values)] for size,values in self.precision.items()] | |
184 | + return sorted(summary) | |
185 | + | |
186 | + def get_recall_summary(self): | |
187 | + summary = [[size,sum(values)/len(values)] for size,values in self.recall.items()] | |
188 | + return sorted(summary) | |
189 | + | |
190 | + def get_f1_summary(self): | |
191 | + summary = [[size,sum(values)/len(values)] for size,values in self.f1.items()] | |
192 | + return sorted(summary) | |
193 | + | |
194 | + def get_f05_summary(self): | |
195 | + summary = [[size,sum(values)/len(values)] for size,values in self.f05.items()] | |
196 | + return sorted(summary) | |
197 | + | |
198 | + def get_accuracy_summary(self): | |
199 | + summary = [[size,sum(values)/len(values)] for size,values in self.accuracy.items()] | |
200 | + return sorted(summary) | |
201 | + | |
202 | + def best_precision(self): | |
203 | + size = max(self.precision, key = lambda x: max(self.precision[x]) and x>10) | |
204 | + return (size,max(self.precision[size])) | |
205 | + | |
206 | + def best_f1(self): | |
207 | + size = max(self.f1, key = lambda x: max(self.f1[x])) | |
208 | + return (size,max(self.f1[size])) | |
209 | + | |
210 | + def best_f05(self): | |
211 | + size = max(self.f05, key = lambda x: max(self.f05[x])) | |
212 | + return (size,max(self.f05[size])) | |
213 | + | |
214 | +def run_strategy(cfg,user): | |
215 | + for weight in weighting: | |
216 | + cfg.weight = weight[0] | |
217 | + cfg.bm25_k1 = weight[1] | |
218 | + rec = Recommender(cfg) | |
219 | + repo_size = rec.items_repository.get_doccount() | |
220 | + for proportion in sample_proportions: | |
221 | + results = ExperimentResults(repo_size) | |
222 | + label = get_label(cfg,proportion) | |
223 | + #log_file = "results/20110906/4a67a295/"+label["values"] | |
224 | + log_file = "results/"+label["values"] | |
225 | + for n in range(iterations): | |
226 | + # Fill sample profile | |
227 | + profile_size = len(user.pkg_profile) | |
228 | + item_score = {} | |
229 | + for pkg in user.pkg_profile: | |
230 | + item_score[pkg] = user.item_score[pkg] | |
231 | + sample = {} | |
232 | + sample_size = int(profile_size*proportion) | |
233 | + for i in range(sample_size): | |
234 | + key = random.choice(item_score.keys()) | |
235 | + sample[key] = item_score.pop(key) | |
236 | + iteration_user = User(item_score) | |
237 | + recommendation = rec.get_recommendation(iteration_user,repo_size) | |
238 | + #write_recall_log(label,n,sample,recommendation,profile_size,repo_size,log_file) | |
239 | + if hasattr(recommendation,"ranking"): | |
240 | + results.add_result(recommendation.ranking,sample) | |
241 | + with open(log_file,'w') as f: | |
242 | + roc_points = results.get_roc_points() | |
243 | + x_coord = [p[0] for p in roc_points] | |
244 | + y_coord = [p[1] for p in roc_points] | |
245 | + auc = numpy.trapz(y=y_coord, x=x_coord) | |
246 | + eauc = (auc+ | |
247 | + numpy.trapz(y=[0,roc_points[0][1]],x=[0,roc_points[0][0]])+ | |
248 | + numpy.trapz(y=[roc_points[-1][1],1],x=[roc_points[-1][0],1])) | |
249 | + precision_20 = sum(results.precision[10])/len(results.precision[10]) | |
250 | + print results.recommended | |
251 | + print "len",len(results.recommended) | |
252 | + coverage = len(results.recommended)/float(repo_size) | |
253 | + print "repo_size: ", float(repo_size) | |
254 | + print coverage | |
255 | + exit(1) | |
256 | + #f1_10 = sum(results.f1[10])/len(results.f1[10]) | |
257 | + #f05_10 = sum(results.f05[10])/len(results.f05[10]) | |
258 | + f.write("# %s\n# %s\n\n" % | |
259 | + (label["description"],label["values"])) | |
260 | + f.write("# coverage \tp(20) \tauc \teauc\n\t%.2f \t%.2f \t%.4f \t%.4f\n\n" % | |
261 | + (coverage,precision_20,auc,eauc)) | |
262 | + #f.write("# best results (recommendation size; metric)\n") | |
263 | + #f.write("precision (%d; %.2f)\nf1 (%d; %.2f)\nf05 (%d; %.2f)\n\n" % | |
264 | + # (results.best_precision()[0],results.best_precision()[1], | |
265 | + # results.best_f1()[0],results.best_f1()[1], | |
266 | + # results.best_f05()[0],results.best_f05()[1])) | |
267 | + #f.write("# recommendation size 10\nprecision (10; %.2f)\nf1 (10; %.2f)\nf05 (10; %.2f)" % | |
268 | + # (precision_10,f1_10,f05_10)) | |
269 | + #precision = results.get_precision_summary() | |
270 | + #recall = results.get_recall_summary() | |
271 | + #f1 = results.get_f1_summary() | |
272 | + #f05 = results.get_f05_summary() | |
273 | + #accuracy = results.get_accuracy_summary() | |
274 | + #plot_summary(precision,recall,f1,f05,accuracy,log_file) | |
275 | + plot_roc(roc_points,auc,eauc,coverage,precision_20,log_file) | |
276 | + | |
277 | +def run_content(user,cfg): | |
278 | + for strategy in content_based: | |
279 | + cfg.strategy = strategy | |
280 | + for size in profile_size: | |
281 | + cfg.profile_size = size | |
282 | + run_strategy(cfg,user) | |
283 | + | |
284 | +def run_collaborative(user,cfg): | |
285 | + popcon_desktopapps = cfg.popcon_desktopapps | |
286 | + popcon_programs = cfg.popcon_programs | |
287 | + for strategy in collaborative: | |
288 | + cfg.strategy = strategy | |
289 | + for k in neighbors: | |
290 | + cfg.k_neighbors = k | |
291 | + #for size in popcon_size: | |
292 | + # if size: | |
293 | + # cfg.popcon_desktopapps = popcon_desktopapps+"_"+size | |
294 | + # cfg.popcon_programs = popcon_programs+"_"+size | |
295 | + run_strategy(cfg,user) | |
296 | + | |
297 | +def run_hybrid(user,cfg): | |
298 | + popcon_desktopapps = cfg.popcon_desktopapps | |
299 | + popcon_programs = cfg.popcon_programs | |
300 | + for strategy in hybrid: | |
301 | + cfg.strategy = strategy | |
302 | + for k in neighbors: | |
303 | + cfg.k_neighbors = k | |
304 | + #for size in popcon_size: | |
305 | + # if size: | |
306 | + # cfg.popcon_desktopapps = popcon_desktopapps+"_"+size | |
307 | + # cfg.popcon_programs = popcon_programs+"_"+size | |
308 | + for size in profile_size: | |
309 | + cfg.profile_size = size | |
310 | + run_strategy(cfg,user) | |
311 | + | |
312 | +if __name__ == '__main__': | |
313 | + #user = LocalSystem() | |
314 | + #user = RandomPopcon(cfg.popcon_dir,os.path.join(cfg.filters_dir,"desktopapps")) | |
315 | + | |
316 | + cfg = Config() | |
317 | + #user = PopconSystem("/root/.app-recommender/popcon-entries/8b/8b44fcdbcf676e711a153d5db09979d7") | |
318 | + user = PopconSystem("/root/.app-recommender/popcon-entries/4a/4a67a295ec14826db2aa1d90be2f1623") | |
319 | + #user = PopconSystem("/root/.app-recommender/popcon-entries/4a/4a5834eb2aba6b6f17312239e0761c70") | |
320 | + user.filter_pkg_profile(cfg.pkgs_filter) | |
321 | + user.maximal_pkg_profile() | |
322 | + | |
323 | + if "content" in sys.argv or len(sys.argv)<2: | |
324 | + run_content(user,cfg) | |
325 | + if "collaborative" in sys.argv or len(sys.argv)<2: | |
326 | + run_collaborative(user,cfg) | |
327 | + if "hybrid" in sys.argv or len(sys.argv)<2: | |
328 | + run_hybrid(user,cfg) | ... | ... |
... | ... | @@ -0,0 +1,53 @@ |
1 | +#! /usr/bin/env python | |
2 | +""" | |
3 | + sample-popcon - extract a sample from popcon population | |
4 | +""" | |
5 | +__author__ = "Tassia Camoes Araujo <tassia@gmail.com>" | |
6 | +__copyright__ = "Copyright (C) 2011 Tassia Camoes Araujo" | |
7 | +__license__ = """ | |
8 | + This program is free software: you can redistribute it and/or modify | |
9 | + it under the terms of the GNU General Public License as published by | |
10 | + the Free Software Foundation, either version 3 of the License, or | |
11 | + (at your option) any later version. | |
12 | + | |
13 | + This program is distributed in the hope that it will be useful, | |
14 | + but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | + GNU General Public License for more details. | |
17 | + | |
18 | + You should have received a copy of the GNU General Public License | |
19 | + along with this program. If not, see <http://www.gnu.org/licenses/>. | |
20 | +""" | |
21 | + | |
22 | +import xapian | |
23 | +import os | |
24 | +import random | |
25 | +import sys | |
26 | + | |
27 | +def extract_sample(size,popcon,min_profile,max_profile,output): | |
28 | + sample = [] | |
29 | + for n in range(1,popcon.get_doccount()+1): | |
30 | + user = popcon.get_document(n) | |
31 | + pkgs_profile = [t.term for t in user.termlist() if t.term.startswith("XP")] | |
32 | + print len(pkgs_profile) | |
33 | + if len(pkgs_profile)>min_profile and len(pkgs_profile)<=max_profile: | |
34 | + sample.append(user.get_data()) | |
35 | + print n,len(sample) | |
36 | + if len(sample)==size: | |
37 | + break | |
38 | + with open(("%s-%d-%d"%(output,min_profile,max_profile)),'w') as f: | |
39 | + for s in sample: | |
40 | + f.write(s+'\n') | |
41 | + | |
42 | +if __name__ == '__main__': | |
43 | + popcon = xapian.Database(os.path.expanduser("~/.app-recommender/popcon_desktopapps")) | |
44 | + print ("Popcon repository size: %d" % popcon.get_doccount()) | |
45 | + try: | |
46 | + min_profile = int(sys.argv[1]) | |
47 | + max_profile = int(sys.argv[2]) | |
48 | + size = int(sys.argv[3]) | |
49 | + except: | |
50 | + print "Usage: sample-popcon min_profile max_profile sample_size" | |
51 | + exit(1) | |
52 | + sample_file = "results/misc-popcon/sample" | |
53 | + extract_sample(size,popcon,min_profile,max_profile,sample_file) | ... | ... |