Commit dc8ededf327ee77c4bf11a528452c1f61c260f2e
1 parent
78a934e4
Exists in
master
and in
1 other branch
Updated experiments.
Showing
4 changed files
with
607 additions
and
0 deletions
Show diff stats
@@ -0,0 +1,152 @@ | @@ -0,0 +1,152 @@ | ||
1 | +#!/usr/bin/env python | ||
2 | +""" | ||
3 | + recommender suite - recommender experiments suite | ||
4 | +""" | ||
5 | +__author__ = "Tassia Camoes Araujo <tassia@gmail.com>" | ||
6 | +__copyright__ = "Copyright (C) 2011 Tassia Camoes Araujo" | ||
7 | +__license__ = """ | ||
8 | + This program is free software: you can redistribute it and/or modify | ||
9 | + it under the terms of the GNU General Public License as published by | ||
10 | + the Free Software Foundation, either version 3 of the License, or | ||
11 | + (at your option) any later version. | ||
12 | + | ||
13 | + This program is distributed in the hope that it will be useful, | ||
14 | + but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
15 | + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
16 | + GNU General Public License for more details. | ||
17 | + | ||
18 | + You should have received a copy of the GNU General Public License | ||
19 | + along with this program. If not, see <http://www.gnu.org/licenses/>. | ||
20 | +""" | ||
21 | + | ||
22 | +import sys | ||
23 | +sys.path.insert(0,'../') | ||
24 | +from config import Config | ||
25 | +from data import PopconXapianIndex, PopconSubmission | ||
26 | +from recommender import Recommender | ||
27 | +from user import LocalSystem, User | ||
28 | +from evaluation import * | ||
29 | +import logging | ||
30 | +import random | ||
31 | +import Gnuplot | ||
32 | +import numpy | ||
33 | + | ||
34 | +def plot_roc(p,roc_points,log_file): | ||
35 | + g = Gnuplot.Gnuplot() | ||
36 | + g('set style data points') | ||
37 | + g.xlabel('False Positive Rate') | ||
38 | + g.ylabel('True Positive Rate') | ||
39 | + g('set xrange [0:1.0]') | ||
40 | + g('set yrange [0:1.0]') | ||
41 | + g.title("Setup: %s" % log_file.split("/")[-1]) | ||
42 | + g.plot(Gnuplot.Data([[0,0],[1,1]],with_="lines lt 7"), | ||
43 | + Gnuplot.Data(roc_points,title="k %d"%k)) | ||
44 | + g.hardcopy(log_file+("-k%.3d.png"%k),terminal="png") | ||
45 | + g.hardcopy(log_file+("-k%.3d.ps"%k),terminal="postscript",enhanced=1,color=1) | ||
46 | + | ||
47 | +class ExperimentResults: | ||
48 | + def __init__(self,repo_size): | ||
49 | + self.repository_size = repo_size | ||
50 | + self.precision = [] | ||
51 | + self.recall = [] | ||
52 | + self.fpr = [] | ||
53 | + | ||
54 | + def add_result(self,ranking,sample): | ||
55 | + predicted = RecommendationResult(dict.fromkeys(ranking,1)) | ||
56 | + real = RecommendationResult(sample) | ||
57 | + evaluation = Evaluation(predicted,real,self.repository_size) | ||
58 | + self.precision.append(evaluation.run(Precision())) | ||
59 | + self.recall.append(evaluation.run(Recall())) | ||
60 | + self.fpr.append(evaluation.run(FPR())) | ||
61 | + | ||
62 | + # Average ROC by threshold (whici is the size) | ||
63 | + def get_roc_point(self): | ||
64 | + tpr = self.recall | ||
65 | + fpr = self.fpr | ||
66 | + return [sum(fpr)/len(fpr),sum(tpr)/len(tpr)] | ||
67 | + | ||
68 | + def get_precision_summary(self): | ||
69 | + return sum(self.precision)/len(self.precision) | ||
70 | + | ||
71 | + def get_recall_summary(self): | ||
72 | + return sum(self.recall)/len(self.recall) | ||
73 | + | ||
74 | +if __name__ == '__main__': | ||
75 | + # experiment parameters | ||
76 | + threshold = 20 | ||
77 | + iterations = 30 | ||
78 | + sample_file = "results/misc-popcon/sample-050-100" | ||
79 | + neighbors = [3,5,10,50,100,150,200,300,400,500] | ||
80 | + cfg = Config() | ||
81 | + cfg.strategy = "knn" | ||
82 | + print cfg.popcon_index | ||
83 | + sample = [] | ||
84 | + with open(sample_file,'r') as f: | ||
85 | + for line in f.readlines(): | ||
86 | + user_id = line.strip('\n') | ||
87 | + sample.append(os.path.join(cfg.popcon_dir,user_id[:2],user_id)) | ||
88 | + # setup dictionaries and files | ||
89 | + roc_points = {} | ||
90 | + recommended = {} | ||
91 | + precisions = {} | ||
92 | + aucs = {} | ||
93 | + log_file = "results/k-suite/sample-050-100/%s" % (cfg.strategy) | ||
94 | + for k in neighbors: | ||
95 | + roc_points[k] = [] | ||
96 | + recommended[k] = set() | ||
97 | + precisions[k] = [] | ||
98 | + aucs[k] = [] | ||
99 | + with open(log_file+"-k%.3d"%k,'w') as f: | ||
100 | + f.write("# strategy-k %s-k%.3d\n\n" % (cfg.strategy,k)) | ||
101 | + f.write("# roc_point \tp(20) \tauc\n\n") | ||
102 | + # main loop per user | ||
103 | + for submission_file in sample: | ||
104 | + user = PopconSystem(submission_file) | ||
105 | + user.filter_pkg_profile(cfg.pkgs_filter) | ||
106 | + user.maximal_pkg_profile() | ||
107 | + for k in neighbors: | ||
108 | + cfg.k_neighbors = k | ||
109 | + rec = Recommender(cfg) | ||
110 | + repo_size = rec.items_repository.get_doccount() | ||
111 | + results = ExperimentResults(repo_size) | ||
112 | + # n iterations for same recommender and user | ||
113 | + for n in range(iterations): | ||
114 | + # Fill sample profile | ||
115 | + profile_size = len(user.pkg_profile) | ||
116 | + item_score = {} | ||
117 | + for pkg in user.pkg_profile: | ||
118 | + item_score[pkg] = user.item_score[pkg] | ||
119 | + sample = {} | ||
120 | + sample_size = int(profile_size*0.9) | ||
121 | + for i in range(sample_size): | ||
122 | + key = random.choice(item_score.keys()) | ||
123 | + sample[key] = item_score.pop(key) | ||
124 | + iteration_user = User(item_score) | ||
125 | + recommendation = rec.get_recommendation(iteration_user,threshold) | ||
126 | + if hasattr(recommendation,"ranking"): | ||
127 | + results.add_result(recommendation.ranking,sample) | ||
128 | + print "ranking",recommendation.ranking | ||
129 | + print "recommended_%d"%k,recommended[k] | ||
130 | + recommended[k] = recommended[k].union(recommendation.ranking) | ||
131 | + print recommended[k] | ||
132 | + # save summary | ||
133 | + roc_point = results.get_roc_point() | ||
134 | + auc = numpy.trapz(y=[0,roc_point[1],1],x=[0,roc_point[0],1]) | ||
135 | + p_20 = results.get_precision_summary() | ||
136 | + roc_points[k].append(roc_point) | ||
137 | + aucs[k].append(auc) | ||
138 | + precisions[k].append(p_20) | ||
139 | + with open(log_file+"-k%.3d"%k,'a') as f: | ||
140 | + f.write("%s \t%.2f \t%.4f\n" % (str(roc_point),p_20,auc)) | ||
141 | + # back to main flow | ||
142 | + with open(log_file,'w') as f: | ||
143 | + f.write("# k coverage \tp(20) \tauc\n\n") | ||
144 | + for k in neighbors: | ||
145 | + print "len_recommended_%d"%k,len(recommended[k]) | ||
146 | + print "repo_size",repo_size | ||
147 | + coverage = len(recommended[k])/float(repo_size) | ||
148 | + print coverage | ||
149 | + f.write("%d \t%.2f \t%.2f \t%.2fi\n" % | ||
150 | + (k,coverage,float(sum(precisions[k]))/len(precisions[k]), | ||
151 | + float(sum(aucs[k]))/len(aucs[k]))) | ||
152 | + plot_roc(k,roc_points[k],log_file) |
@@ -0,0 +1,74 @@ | @@ -0,0 +1,74 @@ | ||
1 | +#! /usr/bin/env python | ||
2 | +""" | ||
3 | + misc_popcon - misc experiments with popcon data | ||
4 | +""" | ||
5 | +__author__ = "Tassia Camoes Araujo <tassia@gmail.com>" | ||
6 | +__copyright__ = "Copyright (C) 2011 Tassia Camoes Araujo" | ||
7 | +__license__ = """ | ||
8 | + This program is free software: you can redistribute it and/or modify | ||
9 | + it under the terms of the GNU General Public License as published by | ||
10 | + the Free Software Foundation, either version 3 of the License, or | ||
11 | + (at your option) any later version. | ||
12 | + | ||
13 | + This program is distributed in the hope that it will be useful, | ||
14 | + but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
15 | + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
16 | + GNU General Public License for more details. | ||
17 | + | ||
18 | + You should have received a copy of the GNU General Public License | ||
19 | + along with this program. If not, see <http://www.gnu.org/licenses/>. | ||
20 | +""" | ||
21 | + | ||
22 | +import Gnuplot | ||
23 | +import xapian | ||
24 | +import os | ||
25 | +import random | ||
26 | +import sys | ||
27 | + | ||
28 | +def get_population_profile(popcon): | ||
29 | + profiles_size = [] | ||
30 | + for n in range(1,popcon.get_doccount()): | ||
31 | + user = popcon.get_document(n) | ||
32 | + pkgs_profile = [t.term for t in user.termlist() if t.term.startswith("XP")] | ||
33 | + if len(pkgs_profile)<10: | ||
34 | + print "-- profile<10:",user.get_data() | ||
35 | + profiles_size.append(len(pkgs_profile)) | ||
36 | + max_profile = max(profiles_size) | ||
37 | + population_profile = [(n,profiles_size.count(n)) | ||
38 | + for n in range(max_profile+1) | ||
39 | + if profiles_size.count(n)>0 ] | ||
40 | + return population_profile,max_profile | ||
41 | + | ||
42 | +def get_profile_ranges(population_profile,max_profile,popcon_size): | ||
43 | + ranges = range(0,251,50) | ||
44 | + ranges.append(max_profile) | ||
45 | + ranges_population = [] | ||
46 | + ranges_percentage = [] | ||
47 | + for maximum in ranges[1:]: | ||
48 | + minimum = ranges[ranges.index(maximum)-1] | ||
49 | + valid = [x[1] for x in population_profile | ||
50 | + if x[0]>minimum and x[0]<=maximum] | ||
51 | + ranges_population.append((maximum,sum(valid))) | ||
52 | + ranges_percentage.append((maximum,sum(valid)/float(popcon_size))) | ||
53 | + return ranges_population,ranges_percentage | ||
54 | + | ||
55 | +def plot(data,xlabel,ylabel,output): | ||
56 | + g = Gnuplot.Gnuplot() | ||
57 | + g('set style data points') | ||
58 | + g.xlabel(xlabel) | ||
59 | + g.ylabel(ylabel) | ||
60 | + g.plot(data) | ||
61 | + g.hardcopy(output+".png", terminal="png") | ||
62 | + g.hardcopy(output+".ps", terminal="postscript", enhanced=1, color=1) | ||
63 | + | ||
64 | +if __name__ == '__main__': | ||
65 | + popcon = xapian.Database(os.path.expanduser("~/.app-recommender/popcon_desktopapps")) | ||
66 | + print ("Popcon repository size: %d" % popcon.get_doccount()) | ||
67 | + | ||
68 | + profile_population,max_profile = get_population_profile(popcon) | ||
69 | + ranges_population,ranges_percentage = get_profile_ranges(profile_population, | ||
70 | + max_profile,popcon.get_doccount()) | ||
71 | + print "Population per profile range (up to index)" | ||
72 | + print ranges_population | ||
73 | + plot(profile_population,"Desktop profile size","Population size", | ||
74 | + "results/misc-popcon/profile_population") |
@@ -0,0 +1,328 @@ | @@ -0,0 +1,328 @@ | ||
1 | +#!/usr/bin/env python | ||
2 | +""" | ||
3 | + recommender suite - recommender experiments suite | ||
4 | +""" | ||
5 | +__author__ = "Tassia Camoes Araujo <tassia@gmail.com>" | ||
6 | +__copyright__ = "Copyright (C) 2011 Tassia Camoes Araujo" | ||
7 | +__license__ = """ | ||
8 | + This program is free software: you can redistribute it and/or modify | ||
9 | + it under the terms of the GNU General Public License as published by | ||
10 | + the Free Software Foundation, either version 3 of the License, or | ||
11 | + (at your option) any later version. | ||
12 | + | ||
13 | + This program is distributed in the hope that it will be useful, | ||
14 | + but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
15 | + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
16 | + GNU General Public License for more details. | ||
17 | + | ||
18 | + You should have received a copy of the GNU General Public License | ||
19 | + along with this program. If not, see <http://www.gnu.org/licenses/>. | ||
20 | +""" | ||
21 | + | ||
22 | +import sys | ||
23 | +sys.path.insert(0,'../') | ||
24 | +from config import Config | ||
25 | +from data import PopconXapianIndex, PopconSubmission | ||
26 | +from recommender import Recommender | ||
27 | +from user import LocalSystem, User | ||
28 | +from evaluation import * | ||
29 | +import logging | ||
30 | +import random | ||
31 | +import Gnuplot | ||
32 | +import numpy | ||
33 | + | ||
34 | +#iterations = 3 | ||
35 | +#sample_proportions = [0.9] | ||
36 | +#weighting = [('bm25',1.2)] | ||
37 | +#collaborative = ['knn_eset'] | ||
38 | +#content_based = ['cb'] | ||
39 | +#hybrid = ['knnco'] | ||
40 | +#profile_size = [50,100] | ||
41 | +#popcon_size = ["1000"] | ||
42 | +#neighbors = [50] | ||
43 | + | ||
44 | +iterations = 30 | ||
45 | +sample_proportions = [0.9] | ||
46 | +weighting = [('bm25',1.0),('bm25',1.2),('bm25',2.0),('trad',0)] | ||
47 | +content_based = ['cb','cbt','cbd','cbh','cb_eset','cbt_eset','cbd_eset','cbh_eset'] | ||
48 | +collaborative = ['knn_eset','knn','knn_plus'] | ||
49 | +hybrid = ['knnco','knnco_eset'] | ||
50 | +profile_size = range(20,200,20) | ||
51 | +neighbors = range(10,510,50) | ||
52 | + | ||
53 | +def write_recall_log(label,n,sample,recommendation,profile_size,repo_size,log_file): | ||
54 | + # Write recall log | ||
55 | + output = open(("%s-%.2d" % (log_file,n)),'w') | ||
56 | + output.write("# %s-n\n" % label["description"]) | ||
57 | + output.write("# %s-%.2d\n" % (label["values"],n)) | ||
58 | + output.write("\n# repository profile sample\n%d %d %d\n" % \ | ||
59 | + (repo_size,profile_size,len(sample))) | ||
60 | + if hasattr(recommendation,"ranking"): | ||
61 | + notfound = [] | ||
62 | + ranks = [] | ||
63 | + for pkg in sample.keys(): | ||
64 | + if pkg in recommendation.ranking: | ||
65 | + ranks.append(recommendation.ranking.index(pkg)) | ||
66 | + else: | ||
67 | + notfound.append(pkg) | ||
68 | + for r in sorted(ranks): | ||
69 | + output.write(str(r)+"\n") | ||
70 | + if notfound: | ||
71 | + output.write("# out of recommendation:\n") | ||
72 | + for pkg in notfound: | ||
73 | + output.write(pkg+"\n") | ||
74 | + output.close() | ||
75 | + | ||
76 | +def plot_roc(roc_points,auc,eauc,c,p,log_file): | ||
77 | + g = Gnuplot.Gnuplot() | ||
78 | + g('set style data lines') | ||
79 | + g.xlabel('False Positive Rate') | ||
80 | + g.ylabel('True Positive Rate') | ||
81 | + g('set xrange [0:1.0]') | ||
82 | + g('set yrange [0:1.0]') | ||
83 | + g.title("Setup: %s" % log_file.split("/")[-1]) | ||
84 | + g('set label "C %.2f" at 0.8,0.25' % c) | ||
85 | + g('set label "P(20) %.2f" at 0.8,0.2' % p) | ||
86 | + g('set label "AUC %.4f" at 0.8,0.15' % auc) | ||
87 | + g('set label "EAUC %.4f" at 0.8,0.1' % eauc) | ||
88 | + g.plot(Gnuplot.Data(roc_points,title="ROC"), | ||
89 | + Gnuplot.Data([[0,0],[1,1]],with_="lines lt 7"), | ||
90 | + Gnuplot.Data([roc_points[-1],[1,1]],with_="lines lt 6")) | ||
91 | + g.hardcopy(log_file+"-roc.png",terminal="png") | ||
92 | + g.hardcopy(log_file+"-roc.ps",terminal="postscript",enhanced=1,color=1) | ||
93 | + | ||
94 | +def plot_summary(precision,recall,f1,f05,accuracy,log_file): | ||
95 | + # Plot metrics summary | ||
96 | + g = Gnuplot.Gnuplot() | ||
97 | + g('set style data lines') | ||
98 | + g.xlabel('Recommendation size') | ||
99 | + g.title("Setup: %s" % log_file.split("/")[-1]) | ||
100 | + g.plot(Gnuplot.Data(accuracy,title="Accuracy"), | ||
101 | + Gnuplot.Data(precision,title="Precision"), | ||
102 | + Gnuplot.Data(recall,title="Recall"), | ||
103 | + Gnuplot.Data(f1,title="F_1"), | ||
104 | + Gnuplot.Data(f05,title="F_0.5")) | ||
105 | + g.hardcopy(log_file+".png",terminal="png") | ||
106 | + g.hardcopy(log_file+".ps",terminal="postscript",enhanced=1,color=1) | ||
107 | + g('set logscale x') | ||
108 | + g('replot') | ||
109 | + g.hardcopy(log_file+"-logscale.png",terminal="png") | ||
110 | + g.hardcopy(log_file+"-logscale.ps",terminal="postscript",enhanced=1,color=1) | ||
111 | + | ||
112 | +def get_label(cfg,sample_proportion): | ||
113 | + label = {} | ||
114 | + if cfg.strategy in content_based: | ||
115 | + label["description"] = "strategy-filter-profile-k1_bm25" | ||
116 | + label["values"] = ("%s-profile%.3d-%s-kbm%.1f" % | ||
117 | + (cfg.strategy,cfg.profile_size, | ||
118 | + cfg.pkgs_filter.split("/")[-1], | ||
119 | + cfg.bm25_k1)) | ||
120 | + elif cfg.strategy in collaborative: | ||
121 | + label["description"] = "strategy-knn-filter-k1_bm25" | ||
122 | + label["values"] = ("%s-k%.3d-%s-kbm%.1f" % | ||
123 | + (cfg.strategy,cfg.k_neighbors, | ||
124 | + cfg.pkgs_filter.split("/")[-1], | ||
125 | + cfg.bm25_k1)) | ||
126 | + elif cfg.strategy in hybrid: | ||
127 | + label["description"] = "strategy-knn-filter-profile-k1_bm25" | ||
128 | + label["values"] = ("%s-k%.3d-profile%.3d-%s-kbm%.1f" % | ||
129 | + (cfg.strategy,cfg.k_neighbors,cfg.profile_size, | ||
130 | + cfg.pkgs_filter.split("/")[-1], | ||
131 | + cfg.bm25_k1)) | ||
132 | + else: | ||
133 | + print "Unknown strategy" | ||
134 | + return label | ||
135 | + | ||
136 | +class ExperimentResults: | ||
137 | + def __init__(self,repo_size): | ||
138 | + self.repository_size = repo_size | ||
139 | + self.accuracy = {} | ||
140 | + self.precision = {} | ||
141 | + self.recall = {} | ||
142 | + self.f1 = {} | ||
143 | + self.f05 = {} | ||
144 | + self.fpr = {} | ||
145 | + #points = [1]+range(10,200,10)+range(200,self.repository_size,100) | ||
146 | + points = [1]+range(10,self.repository_size,10) | ||
147 | + self.recommended = set() | ||
148 | + for size in points: | ||
149 | + self.accuracy[size] = [] | ||
150 | + self.precision[size] = [] | ||
151 | + self.recall[size] = [] | ||
152 | + self.f1[size] = [] | ||
153 | + self.f05[size] = [] | ||
154 | + self.fpr[size] = [] | ||
155 | + | ||
156 | + def add_result(self,ranking,sample): | ||
157 | + print "len_recommended", len(self.recommended) | ||
158 | + print "len_rank", len(ranking) | ||
159 | + self.recommended = self.recommended.union(ranking) | ||
160 | + print "len_recommended", len(self.recommended) | ||
161 | + # get data only for point | ||
162 | + for size in self.accuracy.keys(): | ||
163 | + predicted = RecommendationResult(dict.fromkeys(ranking[:size],1)) | ||
164 | + real = RecommendationResult(sample) | ||
165 | + evaluation = Evaluation(predicted,real,self.repository_size) | ||
166 | + #self.accuracy[size].append(evaluation.run(Accuracy())) | ||
167 | + self.precision[size].append(evaluation.run(Precision())) | ||
168 | + self.recall[size].append(evaluation.run(Recall())) | ||
169 | + #self.f1[size].append(evaluation.run(F_score(1))) | ||
170 | + #self.f05[size].append(evaluation.run(F_score(0.5))) | ||
171 | + self.fpr[size].append(evaluation.run(FPR())) | ||
172 | + | ||
173 | + # Average ROC by threshold (whici is the size) | ||
174 | + def get_roc_points(self): | ||
175 | + points = [] | ||
176 | + for size in self.recall.keys(): | ||
177 | + tpr = self.recall[size] | ||
178 | + fpr = self.fpr[size] | ||
179 | + points.append([sum(fpr)/len(fpr),sum(tpr)/len(tpr)]) | ||
180 | + return sorted(points) | ||
181 | + | ||
182 | + def get_precision_summary(self): | ||
183 | + summary = [[size,sum(values)/len(values)] for size,values in self.precision.items()] | ||
184 | + return sorted(summary) | ||
185 | + | ||
186 | + def get_recall_summary(self): | ||
187 | + summary = [[size,sum(values)/len(values)] for size,values in self.recall.items()] | ||
188 | + return sorted(summary) | ||
189 | + | ||
190 | + def get_f1_summary(self): | ||
191 | + summary = [[size,sum(values)/len(values)] for size,values in self.f1.items()] | ||
192 | + return sorted(summary) | ||
193 | + | ||
194 | + def get_f05_summary(self): | ||
195 | + summary = [[size,sum(values)/len(values)] for size,values in self.f05.items()] | ||
196 | + return sorted(summary) | ||
197 | + | ||
198 | + def get_accuracy_summary(self): | ||
199 | + summary = [[size,sum(values)/len(values)] for size,values in self.accuracy.items()] | ||
200 | + return sorted(summary) | ||
201 | + | ||
202 | + def best_precision(self): | ||
203 | + size = max(self.precision, key = lambda x: max(self.precision[x]) and x>10) | ||
204 | + return (size,max(self.precision[size])) | ||
205 | + | ||
206 | + def best_f1(self): | ||
207 | + size = max(self.f1, key = lambda x: max(self.f1[x])) | ||
208 | + return (size,max(self.f1[size])) | ||
209 | + | ||
210 | + def best_f05(self): | ||
211 | + size = max(self.f05, key = lambda x: max(self.f05[x])) | ||
212 | + return (size,max(self.f05[size])) | ||
213 | + | ||
214 | +def run_strategy(cfg,user): | ||
215 | + for weight in weighting: | ||
216 | + cfg.weight = weight[0] | ||
217 | + cfg.bm25_k1 = weight[1] | ||
218 | + rec = Recommender(cfg) | ||
219 | + repo_size = rec.items_repository.get_doccount() | ||
220 | + for proportion in sample_proportions: | ||
221 | + results = ExperimentResults(repo_size) | ||
222 | + label = get_label(cfg,proportion) | ||
223 | + #log_file = "results/20110906/4a67a295/"+label["values"] | ||
224 | + log_file = "results/"+label["values"] | ||
225 | + for n in range(iterations): | ||
226 | + # Fill sample profile | ||
227 | + profile_size = len(user.pkg_profile) | ||
228 | + item_score = {} | ||
229 | + for pkg in user.pkg_profile: | ||
230 | + item_score[pkg] = user.item_score[pkg] | ||
231 | + sample = {} | ||
232 | + sample_size = int(profile_size*proportion) | ||
233 | + for i in range(sample_size): | ||
234 | + key = random.choice(item_score.keys()) | ||
235 | + sample[key] = item_score.pop(key) | ||
236 | + iteration_user = User(item_score) | ||
237 | + recommendation = rec.get_recommendation(iteration_user,repo_size) | ||
238 | + #write_recall_log(label,n,sample,recommendation,profile_size,repo_size,log_file) | ||
239 | + if hasattr(recommendation,"ranking"): | ||
240 | + results.add_result(recommendation.ranking,sample) | ||
241 | + with open(log_file,'w') as f: | ||
242 | + roc_points = results.get_roc_points() | ||
243 | + x_coord = [p[0] for p in roc_points] | ||
244 | + y_coord = [p[1] for p in roc_points] | ||
245 | + auc = numpy.trapz(y=y_coord, x=x_coord) | ||
246 | + eauc = (auc+ | ||
247 | + numpy.trapz(y=[0,roc_points[0][1]],x=[0,roc_points[0][0]])+ | ||
248 | + numpy.trapz(y=[roc_points[-1][1],1],x=[roc_points[-1][0],1])) | ||
249 | + precision_20 = sum(results.precision[10])/len(results.precision[10]) | ||
250 | + print results.recommended | ||
251 | + print "len",len(results.recommended) | ||
252 | + coverage = len(results.recommended)/float(repo_size) | ||
253 | + print "repo_size: ", float(repo_size) | ||
254 | + print coverage | ||
255 | + exit(1) | ||
256 | + #f1_10 = sum(results.f1[10])/len(results.f1[10]) | ||
257 | + #f05_10 = sum(results.f05[10])/len(results.f05[10]) | ||
258 | + f.write("# %s\n# %s\n\n" % | ||
259 | + (label["description"],label["values"])) | ||
260 | + f.write("# coverage \tp(20) \tauc \teauc\n\t%.2f \t%.2f \t%.4f \t%.4f\n\n" % | ||
261 | + (coverage,precision_20,auc,eauc)) | ||
262 | + #f.write("# best results (recommendation size; metric)\n") | ||
263 | + #f.write("precision (%d; %.2f)\nf1 (%d; %.2f)\nf05 (%d; %.2f)\n\n" % | ||
264 | + # (results.best_precision()[0],results.best_precision()[1], | ||
265 | + # results.best_f1()[0],results.best_f1()[1], | ||
266 | + # results.best_f05()[0],results.best_f05()[1])) | ||
267 | + #f.write("# recommendation size 10\nprecision (10; %.2f)\nf1 (10; %.2f)\nf05 (10; %.2f)" % | ||
268 | + # (precision_10,f1_10,f05_10)) | ||
269 | + #precision = results.get_precision_summary() | ||
270 | + #recall = results.get_recall_summary() | ||
271 | + #f1 = results.get_f1_summary() | ||
272 | + #f05 = results.get_f05_summary() | ||
273 | + #accuracy = results.get_accuracy_summary() | ||
274 | + #plot_summary(precision,recall,f1,f05,accuracy,log_file) | ||
275 | + plot_roc(roc_points,auc,eauc,coverage,precision_20,log_file) | ||
276 | + | ||
277 | +def run_content(user,cfg): | ||
278 | + for strategy in content_based: | ||
279 | + cfg.strategy = strategy | ||
280 | + for size in profile_size: | ||
281 | + cfg.profile_size = size | ||
282 | + run_strategy(cfg,user) | ||
283 | + | ||
284 | +def run_collaborative(user,cfg): | ||
285 | + popcon_desktopapps = cfg.popcon_desktopapps | ||
286 | + popcon_programs = cfg.popcon_programs | ||
287 | + for strategy in collaborative: | ||
288 | + cfg.strategy = strategy | ||
289 | + for k in neighbors: | ||
290 | + cfg.k_neighbors = k | ||
291 | + #for size in popcon_size: | ||
292 | + # if size: | ||
293 | + # cfg.popcon_desktopapps = popcon_desktopapps+"_"+size | ||
294 | + # cfg.popcon_programs = popcon_programs+"_"+size | ||
295 | + run_strategy(cfg,user) | ||
296 | + | ||
297 | +def run_hybrid(user,cfg): | ||
298 | + popcon_desktopapps = cfg.popcon_desktopapps | ||
299 | + popcon_programs = cfg.popcon_programs | ||
300 | + for strategy in hybrid: | ||
301 | + cfg.strategy = strategy | ||
302 | + for k in neighbors: | ||
303 | + cfg.k_neighbors = k | ||
304 | + #for size in popcon_size: | ||
305 | + # if size: | ||
306 | + # cfg.popcon_desktopapps = popcon_desktopapps+"_"+size | ||
307 | + # cfg.popcon_programs = popcon_programs+"_"+size | ||
308 | + for size in profile_size: | ||
309 | + cfg.profile_size = size | ||
310 | + run_strategy(cfg,user) | ||
311 | + | ||
312 | +if __name__ == '__main__': | ||
313 | + #user = LocalSystem() | ||
314 | + #user = RandomPopcon(cfg.popcon_dir,os.path.join(cfg.filters_dir,"desktopapps")) | ||
315 | + | ||
316 | + cfg = Config() | ||
317 | + #user = PopconSystem("/root/.app-recommender/popcon-entries/8b/8b44fcdbcf676e711a153d5db09979d7") | ||
318 | + user = PopconSystem("/root/.app-recommender/popcon-entries/4a/4a67a295ec14826db2aa1d90be2f1623") | ||
319 | + #user = PopconSystem("/root/.app-recommender/popcon-entries/4a/4a5834eb2aba6b6f17312239e0761c70") | ||
320 | + user.filter_pkg_profile(cfg.pkgs_filter) | ||
321 | + user.maximal_pkg_profile() | ||
322 | + | ||
323 | + if "content" in sys.argv or len(sys.argv)<2: | ||
324 | + run_content(user,cfg) | ||
325 | + if "collaborative" in sys.argv or len(sys.argv)<2: | ||
326 | + run_collaborative(user,cfg) | ||
327 | + if "hybrid" in sys.argv or len(sys.argv)<2: | ||
328 | + run_hybrid(user,cfg) |
@@ -0,0 +1,53 @@ | @@ -0,0 +1,53 @@ | ||
1 | +#! /usr/bin/env python | ||
2 | +""" | ||
3 | + sample-popcon - extract a sample from popcon population | ||
4 | +""" | ||
5 | +__author__ = "Tassia Camoes Araujo <tassia@gmail.com>" | ||
6 | +__copyright__ = "Copyright (C) 2011 Tassia Camoes Araujo" | ||
7 | +__license__ = """ | ||
8 | + This program is free software: you can redistribute it and/or modify | ||
9 | + it under the terms of the GNU General Public License as published by | ||
10 | + the Free Software Foundation, either version 3 of the License, or | ||
11 | + (at your option) any later version. | ||
12 | + | ||
13 | + This program is distributed in the hope that it will be useful, | ||
14 | + but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
15 | + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
16 | + GNU General Public License for more details. | ||
17 | + | ||
18 | + You should have received a copy of the GNU General Public License | ||
19 | + along with this program. If not, see <http://www.gnu.org/licenses/>. | ||
20 | +""" | ||
21 | + | ||
22 | +import xapian | ||
23 | +import os | ||
24 | +import random | ||
25 | +import sys | ||
26 | + | ||
27 | +def extract_sample(size,popcon,min_profile,max_profile,output): | ||
28 | + sample = [] | ||
29 | + for n in range(1,popcon.get_doccount()+1): | ||
30 | + user = popcon.get_document(n) | ||
31 | + pkgs_profile = [t.term for t in user.termlist() if t.term.startswith("XP")] | ||
32 | + print len(pkgs_profile) | ||
33 | + if len(pkgs_profile)>min_profile and len(pkgs_profile)<=max_profile: | ||
34 | + sample.append(user.get_data()) | ||
35 | + print n,len(sample) | ||
36 | + if len(sample)==size: | ||
37 | + break | ||
38 | + with open(("%s-%d-%d"%(output,min_profile,max_profile)),'w') as f: | ||
39 | + for s in sample: | ||
40 | + f.write(s+'\n') | ||
41 | + | ||
42 | +if __name__ == '__main__': | ||
43 | + popcon = xapian.Database(os.path.expanduser("~/.app-recommender/popcon_desktopapps")) | ||
44 | + print ("Popcon repository size: %d" % popcon.get_doccount()) | ||
45 | + try: | ||
46 | + min_profile = int(sys.argv[1]) | ||
47 | + max_profile = int(sys.argv[2]) | ||
48 | + size = int(sys.argv[3]) | ||
49 | + except: | ||
50 | + print "Usage: sample-popcon min_profile max_profile sample_size" | ||
51 | + exit(1) | ||
52 | + sample_file = "results/misc-popcon/sample" | ||
53 | + extract_sample(size,popcon,min_profile,max_profile,sample_file) |