Commit 68b4d2a50b1f8592f2665de8519db3a8105b76d0
1 parent
f01fc134
Exists in
master
and in
29 other branches
Image Reorientation (#36)
Image reorientation * Added the code to reorient image and numpy styles * Starting to show reoriented image * Styles * Showing the cross * Dragging the center of rotation * Improvements * It's already rotating * Improvements * Rotating using quaternion * Updating all orientations only when the user release the mouse button * Updated the setup.py to compile in mac * Showing angles in a dialog * Almost done * Improvements * Cythonize in windows * Avoiding zero division in vector normalize * Avoiding zero division in vector normalize * Showing and hidding mask when using reorient image * Closing reorient image dialog when out of reorient style * Added __init__
Showing
16 changed files
with
2896 additions
and
77 deletions
Show diff stats
| ... | ... | @@ -0,0 +1,18 @@ |
| 1 | +#-------------------------------------------------------------------------- | |
| 2 | +# Software: InVesalius - Software de Reconstrucao 3D de Imagens Medicas | |
| 3 | +# Copyright: (C) 2001 Centro de Pesquisas Renato Archer | |
| 4 | +# Homepage: http://www.softwarepublico.gov.br | |
| 5 | +# Contact: invesalius@cti.gov.br | |
| 6 | +# License: GNU - GPL 2 (LICENSE.txt/LICENCA.txt) | |
| 7 | +#-------------------------------------------------------------------------- | |
| 8 | +# Este programa e software livre; voce pode redistribui-lo e/ou | |
| 9 | +# modifica-lo sob os termos da Licenca Publica Geral GNU, conforme | |
| 10 | +# publicada pela Free Software Foundation; de acordo com a versao 2 | |
| 11 | +# da Licenca. | |
| 12 | +# | |
| 13 | +# Este programa eh distribuido na expectativa de ser util, mas SEM | |
| 14 | +# QUALQUER GARANTIA; sem mesmo a garantia implicita de | |
| 15 | +# COMERCIALIZACAO ou de ADEQUACAO A QUALQUER PROPOSITO EM | |
| 16 | +# PARTICULAR. Consulte a Licenca Publica Geral GNU para obter mais | |
| 17 | +# detalhes. | |
| 18 | +#-------------------------------------------------------------------------- | ... | ... |
invesalius/constants.py
| ... | ... | @@ -479,6 +479,8 @@ ID_SWAP_YZ = wx.NewId() |
| 479 | 479 | ID_BOOLEAN_MASK = wx.NewId() |
| 480 | 480 | ID_CLEAN_MASK = wx.NewId() |
| 481 | 481 | |
| 482 | +ID_REORIENT_IMG = wx.NewId() | |
| 483 | + | |
| 482 | 484 | #--------------------------------------------------------- |
| 483 | 485 | STATE_DEFAULT = 1000 |
| 484 | 486 | STATE_WL = 1001 |
| ... | ... | @@ -494,16 +496,18 @@ SLICE_STATE_CROSS = 3006 |
| 494 | 496 | SLICE_STATE_SCROLL = 3007 |
| 495 | 497 | SLICE_STATE_EDITOR = 3008 |
| 496 | 498 | SLICE_STATE_WATERSHED = 3009 |
| 499 | +SLICE_STATE_REORIENT = 3010 | |
| 497 | 500 | |
| 498 | 501 | VOLUME_STATE_SEED = 2001 |
| 499 | -#STATE_LINEAR_MEASURE = 3001 | |
| 500 | -#STATE_ANGULAR_MEASURE = 3002 | |
| 502 | +# STATE_LINEAR_MEASURE = 3001 | |
| 503 | +# STATE_ANGULAR_MEASURE = 3002 | |
| 501 | 504 | |
| 502 | 505 | TOOL_STATES = [STATE_WL, STATE_SPIN, STATE_ZOOM, |
| 503 | 506 | STATE_ZOOM_SL, STATE_PAN, STATE_MEASURE_DISTANCE, |
| 504 | - STATE_MEASURE_ANGLE]#, STATE_ANNOTATE] | |
| 507 | + STATE_MEASURE_ANGLE] #, STATE_ANNOTATE] | |
| 505 | 508 | |
| 506 | -TOOL_SLICE_STATES = [SLICE_STATE_CROSS, SLICE_STATE_SCROLL] | |
| 509 | +TOOL_SLICE_STATES = [SLICE_STATE_CROSS, SLICE_STATE_SCROLL, | |
| 510 | + SLICE_STATE_REORIENT] | |
| 507 | 511 | |
| 508 | 512 | |
| 509 | 513 | SLICE_STYLES = TOOL_STATES + TOOL_SLICE_STATES |
| ... | ... | @@ -520,6 +524,7 @@ STYLE_LEVEL = {SLICE_STATE_EDITOR: 1, |
| 520 | 524 | SLICE_STATE_WATERSHED: 1, |
| 521 | 525 | SLICE_STATE_CROSS: 2, |
| 522 | 526 | SLICE_STATE_SCROLL: 2, |
| 527 | + SLICE_STATE_REORIENT: 2, | |
| 523 | 528 | STATE_ANNOTATE: 2, |
| 524 | 529 | STATE_DEFAULT: 0, |
| 525 | 530 | STATE_MEASURE_ANGLE: 2, | ... | ... |
invesalius/control.py
| ... | ... | @@ -84,6 +84,8 @@ class Controller(): |
| 84 | 84 | |
| 85 | 85 | Publisher.subscribe(self.ShowBooleanOpDialog, 'Show boolean dialog') |
| 86 | 86 | |
| 87 | + Publisher.subscribe(self.ApplyReorientation, 'Apply reorientation') | |
| 88 | + | |
| 87 | 89 | |
| 88 | 90 | def OnCancelImport(self, pubsub_evt): |
| 89 | 91 | #self.cancel_import = True |
| ... | ... | @@ -631,3 +633,6 @@ class Controller(): |
| 631 | 633 | def ShowBooleanOpDialog(self, pubsub_evt): |
| 632 | 634 | dlg = dialogs.MaskBooleanDialog(prj.Project().mask_dict) |
| 633 | 635 | dlg.Show() |
| 636 | + | |
| 637 | + def ApplyReorientation(self, pubsub_evt): | |
| 638 | + self.Slice.apply_reorientation() | ... | ... |
| ... | ... | @@ -0,0 +1,5 @@ |
| 1 | +from .cy_my_types cimport image_t | |
| 2 | + | |
| 3 | +cdef inline double interpolate(image_t[:, :, :], double, double, double) nogil | |
| 4 | +cdef inline double tricub_interpolate(image_t[:, :, :], double, double, double) nogil | |
| 5 | +cdef inline double tricubicInterpolate (image_t[:, :, :], double, double, double) nogil | ... | ... |
| ... | ... | @@ -0,0 +1,314 @@ |
| 1 | +# from interpolation cimport interpolate | |
| 2 | + | |
| 3 | +import numpy as np | |
| 4 | +cimport numpy as np | |
| 5 | +cimport cython | |
| 6 | + | |
| 7 | +from libc.math cimport floor, ceil, sqrt, fabs, round | |
| 8 | +from cython.parallel import prange | |
| 9 | + | |
| 10 | +cdef double[64][64] temp = [ | |
| 11 | + [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
| 12 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
| 13 | + [-3, 3, 0, 0, 0, 0, 0, 0,-2,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
| 14 | + [ 2, -2, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
| 15 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
| 16 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
| 17 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
| 18 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
| 19 | + [-3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
| 20 | + [ 0, 0, 0, 0, 0, 0, 0, 0,-3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
| 21 | + [ 9, -9,-9, 9, 0, 0, 0, 0, 6, 3,-6,-3, 0, 0, 0, 0, 6,-6, 3,-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
| 22 | + [-6, 6, 6,-6, 0, 0, 0, 0,-3,-3, 3, 3, 0, 0, 0, 0,-4, 4,-2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2,-2,-1,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
| 23 | + [ 2, 0,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
| 24 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 2, 0,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
| 25 | + [-6, 6, 6,-6, 0, 0, 0, 0,-4,-2, 4, 2, 0, 0, 0, 0,-3, 3,-3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2,-1,-2,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
| 26 | + [ 4, -4,-4, 4, 0, 0, 0, 0, 2, 2,-2,-2, 0, 0, 0, 0, 2,-2, 2,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
| 27 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
| 28 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
| 29 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
| 30 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
| 31 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
| 32 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], | |
| 33 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 3, 0, 0, 0, 0, 0, 0,-2,-1, 0, 0, 0, 0, 0, 0], | |
| 34 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2,-2, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0], | |
| 35 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
| 36 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0,-1, 0, 0, 0, 0, 0], | |
| 37 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9,-9,-9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 3,-6,-3, 0, 0, 0, 0, 6,-6, 3,-3, 0, 0, 0, 0, 4, 2, 2, 1, 0, 0, 0, 0], | |
| 38 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-6, 6, 6,-6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3,-3, 3, 3, 0, 0, 0, 0,-4, 4,-2, 2, 0, 0, 0, 0,-2,-2,-1,-1, 0, 0, 0, 0], | |
| 39 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
| 40 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0], | |
| 41 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-6, 6, 6,-6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-4,-2, 4, 2, 0, 0, 0, 0,-3, 3,-3, 3, 0, 0, 0, 0,-2,-1,-2,-1, 0, 0, 0, 0], | |
| 42 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4,-4,-4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2,-2,-2, 0, 0, 0, 0, 2,-2, 2,-2, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0], | |
| 43 | + [-3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0, 0, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
| 44 | + [ 0, 0, 0, 0, 0, 0, 0, 0,-3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0, 0, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
| 45 | + [ 9, -9, 0, 0,-9, 9, 0, 0, 6, 3, 0, 0,-6,-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6,-6, 0, 0, 3,-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 2, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
| 46 | + [-6, 6, 0, 0, 6,-6, 0, 0,-3,-3, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-4, 4, 0, 0,-2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2,-2, 0, 0,-1,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
| 47 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0, 0, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
| 48 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0, 0, 0,-1, 0, 0, 0], | |
| 49 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9,-9, 0, 0,-9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 3, 0, 0,-6,-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6,-6, 0, 0, 3,-3, 0, 0, 4, 2, 0, 0, 2, 1, 0, 0], | |
| 50 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-6, 6, 0, 0, 6,-6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3,-3, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-4, 4, 0, 0,-2, 2, 0, 0,-2,-2, 0, 0,-1,-1, 0, 0], | |
| 51 | + [ 9, 0,-9, 0,-9, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 3, 0,-6, 0,-3, 0, 6, 0,-6, 0, 3, 0,-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 2, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
| 52 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 9, 0,-9, 0,-9, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 3, 0,-6, 0,-3, 0, 6, 0,-6, 0, 3, 0,-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 2, 0, 2, 0, 1, 0], | |
| 53 | + [-27, 27,27,-27,27,-27,-27,27,-18,-9,18, 9,18, 9,-18,-9,-18,18,-9, 9,18,-18, 9,-9,-18,18,18,-18,-9, 9, 9,-9,-12,-6,-6,-3,12, 6, 6, 3,-12,-6,12, 6,-6,-3, 6, 3,-12,12,-6, 6,-6, 6,-3, 3,-8,-4,-4,-2,-4,-2,-2,-1], | |
| 54 | + [18, -18,-18,18,-18,18,18,-18, 9, 9,-9,-9,-9,-9, 9, 9,12,-12, 6,-6,-12,12,-6, 6,12,-12,-12,12, 6,-6,-6, 6, 6, 6, 3, 3,-6,-6,-3,-3, 6, 6,-6,-6, 3, 3,-3,-3, 8,-8, 4,-4, 4,-4, 2,-2, 4, 4, 2, 2, 2, 2, 1, 1], | |
| 55 | + [-6, 0, 6, 0, 6, 0,-6, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 0,-3, 0, 3, 0, 3, 0,-4, 0, 4, 0,-2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0,-2, 0,-1, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
| 56 | + [ 0, 0, 0, 0, 0, 0, 0, 0,-6, 0, 6, 0, 6, 0,-6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 0,-3, 0, 3, 0, 3, 0,-4, 0, 4, 0,-2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0,-2, 0,-1, 0,-1, 0], | |
| 57 | + [18, -18,-18,18,-18,18,18,-18,12, 6,-12,-6,-12,-6,12, 6, 9,-9, 9,-9,-9, 9,-9, 9,12,-12,-12,12, 6,-6,-6, 6, 6, 3, 6, 3,-6,-3,-6,-3, 8, 4,-8,-4, 4, 2,-4,-2, 6,-6, 6,-6, 3,-3, 3,-3, 4, 2, 4, 2, 2, 1, 2, 1], | |
| 58 | + [-12, 12,12,-12,12,-12,-12,12,-6,-6, 6, 6, 6, 6,-6,-6,-6, 6,-6, 6, 6,-6, 6,-6,-8, 8, 8,-8,-4, 4, 4,-4,-3,-3,-3,-3, 3, 3, 3, 3,-4,-4, 4, 4,-2,-2, 2, 2,-4, 4,-4, 4,-2, 2,-2, 2,-2,-2,-2,-2,-1,-1,-1,-1], | |
| 59 | + [ 2, 0, 0, 0,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
| 60 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
| 61 | + [-6, 6, 0, 0, 6,-6, 0, 0,-4,-2, 0, 0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 3, 0, 0,-3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2,-1, 0, 0,-2,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
| 62 | + [ 4, -4, 0, 0,-4, 4, 0, 0, 2, 2, 0, 0,-2,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2,-2, 0, 0, 2,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
| 63 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
| 64 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0], | |
| 65 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-6, 6, 0, 0, 6,-6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-4,-2, 0, 0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 3, 0, 0,-3, 3, 0, 0,-2,-1, 0, 0,-2,-1, 0, 0], | |
| 66 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4,-4, 0, 0,-4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0,-2,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2,-2, 0, 0, 2,-2, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0], | |
| 67 | + [-6, 0, 6, 0, 6, 0,-6, 0, 0, 0, 0, 0, 0, 0, 0, 0,-4, 0,-2, 0, 4, 0, 2, 0,-3, 0, 3, 0,-3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0,-1, 0,-2, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
| 68 | + [ 0, 0, 0, 0, 0, 0, 0, 0,-6, 0, 6, 0, 6, 0,-6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-4, 0,-2, 0, 4, 0, 2, 0,-3, 0, 3, 0,-3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0,-1, 0,-2, 0,-1, 0], | |
| 69 | + [18, -18,-18,18,-18,18,18,-18,12, 6,-12,-6,-12,-6,12, 6,12,-12, 6,-6,-12,12,-6, 6, 9,-9,-9, 9, 9,-9,-9, 9, 8, 4, 4, 2,-8,-4,-4,-2, 6, 3,-6,-3, 6, 3,-6,-3, 6,-6, 3,-3, 6,-6, 3,-3, 4, 2, 2, 1, 4, 2, 2, 1], | |
| 70 | + [-12, 12,12,-12,12,-12,-12,12,-6,-6, 6, 6, 6, 6,-6,-6,-8, 8,-4, 4, 8,-8, 4,-4,-6, 6, 6,-6,-6, 6, 6,-6,-4,-4,-2,-2, 4, 4, 2, 2,-3,-3, 3, 3,-3,-3, 3, 3,-4, 4,-2, 2,-4, 4,-2, 2,-2,-2,-1,-1,-2,-2,-1,-1], | |
| 71 | + [ 4, 0,-4, 0,-4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0,-2, 0,-2, 0, 2, 0,-2, 0, 2, 0,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
| 72 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 4, 0,-4, 0,-4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0,-2, 0,-2, 0, 2, 0,-2, 0, 2, 0,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0], | |
| 73 | + [-12, 12,12,-12,12,-12,-12,12,-8,-4, 8, 4, 8, 4,-8,-4,-6, 6,-6, 6, 6,-6, 6,-6,-6, 6, 6,-6,-6, 6, 6,-6,-4,-2,-4,-2, 4, 2, 4, 2,-4,-2, 4, 2,-4,-2, 4, 2,-3, 3,-3, 3,-3, 3,-3, 3,-2,-1,-2,-1,-2,-1,-2,-1], | |
| 74 | + [ 8, -8,-8, 8,-8, 8, 8,-8, 4, 4,-4,-4,-4,-4, 4, 4, 4,-4, 4,-4,-4, 4,-4, 4, 4,-4,-4, 4, 4,-4,-4, 4, 2, 2, 2, 2,-2,-2,-2,-2, 2, 2,-2,-2, 2, 2,-2,-2, 2,-2, 2,-2, 2,-2, 2,-2, 1, 1, 1, 1, 1, 1, 1, 1] | |
| 75 | +] | |
| 76 | + | |
| 77 | +@cython.boundscheck(False) # turn of bounds-checking for entire function | |
| 78 | +@cython.cdivision(True) | |
| 79 | +@cython.wraparound(False) | |
| 80 | +cdef inline double interpolate(image_t[:, :, :] V, double x, double y, double z) nogil: | |
| 81 | + cdef double xd, yd, zd | |
| 82 | + cdef double c00, c10, c01, c11 | |
| 83 | + cdef double c0, c1 | |
| 84 | + cdef double c | |
| 85 | + | |
| 86 | + cdef int x0 = <int>floor(x) | |
| 87 | + cdef int x1 = x0 + 1 | |
| 88 | + | |
| 89 | + cdef int y0 = <int>floor(y) | |
| 90 | + cdef int y1 = y0 + 1 | |
| 91 | + | |
| 92 | + cdef int z0 = <int>floor(z) | |
| 93 | + cdef int z1 = z0 + 1 | |
| 94 | + | |
| 95 | + if x0 == x1: | |
| 96 | + xd = 1.0 | |
| 97 | + else: | |
| 98 | + xd = (x - x0) / (x1 - x0) | |
| 99 | + | |
| 100 | + if y0 == y1: | |
| 101 | + yd = 1.0 | |
| 102 | + else: | |
| 103 | + yd = (y - y0) / (y1 - y0) | |
| 104 | + | |
| 105 | + if z0 == z1: | |
| 106 | + zd = 1.0 | |
| 107 | + else: | |
| 108 | + zd = (z - z0) / (z1 - z0) | |
| 109 | + | |
| 110 | + c00 = _G(V, x0, y0, z0)*(1 - xd) + _G(V, x1, y0, z0)*xd | |
| 111 | + c10 = _G(V, x0, y1, z0)*(1 - xd) + _G(V, x1, y1, z0)*xd | |
| 112 | + c01 = _G(V, x0, y0, z1)*(1 - xd) + _G(V, x1, y0, z1)*xd | |
| 113 | + c11 = _G(V, x0, y1, z1)*(1 - xd) + _G(V, x1, y1, z1)*xd | |
| 114 | + | |
| 115 | + c0 = c00*(1 - yd) + c10*yd | |
| 116 | + c1 = c01*(1 - yd) + c11*yd | |
| 117 | + | |
| 118 | + c = c0*(1 - zd) + c1*zd | |
| 119 | + | |
| 120 | + return c | |
| 121 | + | |
| 122 | + | |
| 123 | +@cython.boundscheck(False) # turn of bounds-checking for entire function | |
| 124 | +@cython.cdivision(True) | |
| 125 | +@cython.wraparound(False) | |
| 126 | +cdef inline image_t _G(image_t[:, :, :] V, int x, int y, int z) nogil: | |
| 127 | + cdef int dz, dy, dx | |
| 128 | + dz = V.shape[0] - 1 | |
| 129 | + dy = V.shape[1] - 1 | |
| 130 | + dx = V.shape[2] - 1 | |
| 131 | + | |
| 132 | + if x < 0: | |
| 133 | + x = dx + x + 1 | |
| 134 | + elif x > dx: | |
| 135 | + x = x - dx - 1 | |
| 136 | + | |
| 137 | + if y < 0: | |
| 138 | + y = dy + y + 1 | |
| 139 | + elif y > dy: | |
| 140 | + y = y - dy - 1 | |
| 141 | + | |
| 142 | + if z < 0: | |
| 143 | + z = dz + z + 1 | |
| 144 | + elif z > dz: | |
| 145 | + z = z - dz - 1 | |
| 146 | + | |
| 147 | + return V[z, y, x] | |
| 148 | + | |
| 149 | + | |
| 150 | +@cython.boundscheck(False) # turn of bounds-checking for entire function | |
| 151 | +@cython.cdivision(True) | |
| 152 | +@cython.wraparound(False) | |
| 153 | +cdef void calc_coef_tricub(image_t[:, :, :] V, double x, double y, double z, double [64] coef) nogil: | |
| 154 | + cdef int xi = <int>floor(x) | |
| 155 | + cdef int yi = <int>floor(y) | |
| 156 | + cdef int zi = <int>floor(z) | |
| 157 | + | |
| 158 | + cdef double[64] _x | |
| 159 | + | |
| 160 | + cdef int i, j | |
| 161 | + | |
| 162 | + _x[0] = _G(V, xi, yi, zi) | |
| 163 | + _x[1] = _G(V, xi + 1, yi, zi) | |
| 164 | + _x[2] = _G(V, xi, yi + 1, zi) | |
| 165 | + _x[3] = _G(V, xi + 1, yi + 1, zi) | |
| 166 | + _x[4] = _G(V, xi, yi, zi + 1) | |
| 167 | + _x[5] = _G(V, xi + 1, yi, zi + 1) | |
| 168 | + _x[6] = _G(V, xi, yi + 1, zi + 1) | |
| 169 | + _x[7] = _G(V, xi + 1, yi + 1, zi + 1) | |
| 170 | + | |
| 171 | + _x[8] = 0.5*(_G(V, xi+1,yi,zi) - _G(V, xi-1, yi, zi)) | |
| 172 | + _x[9] = 0.5*(_G(V, xi+2,yi,zi) - _G(V, xi, yi, zi)) | |
| 173 | + _x[10] = 0.5*(_G(V, xi+1, yi+1,zi) - _G(V, xi-1, yi+1, zi)) | |
| 174 | + _x[11] = 0.5*(_G(V, xi+2, yi+1,zi) - _G(V, xi, yi+1, zi)) | |
| 175 | + _x[12] = 0.5*(_G(V, xi+1, yi,zi+1) - _G(V, xi-1, yi, zi+1)) | |
| 176 | + _x[13] = 0.5*(_G(V, xi+2, yi,zi+1) - _G(V, xi, yi, zi+1)) | |
| 177 | + _x[14] = 0.5*(_G(V, xi+1, yi+1,zi+1) - _G(V, xi-1, yi+1, zi+1)) | |
| 178 | + _x[15] = 0.5*(_G(V, xi+2, yi+1,zi+1) - _G(V, xi, yi+1, zi+1)) | |
| 179 | + _x[16] = 0.5*(_G(V, xi, yi+1,zi) - _G(V, xi, yi-1, zi)) | |
| 180 | + _x[17] = 0.5*(_G(V, xi+1, yi+1,zi) - _G(V, xi+1, yi-1, zi)) | |
| 181 | + _x[18] = 0.5*(_G(V, xi, yi+2,zi) - _G(V, xi, yi, zi)) | |
| 182 | + _x[19] = 0.5*(_G(V, xi+1, yi+2,zi) - _G(V, xi+1, yi, zi)) | |
| 183 | + _x[20] = 0.5*(_G(V, xi, yi+1,zi+1) - _G(V, xi, yi-1, zi+1)) | |
| 184 | + _x[21] = 0.5*(_G(V, xi+1, yi+1,zi+1) - _G(V, xi+1, yi-1, zi+1)) | |
| 185 | + _x[22] = 0.5*(_G(V, xi, yi+2,zi+1) - _G(V, xi, yi, zi+1)) | |
| 186 | + _x[23] = 0.5*(_G(V, xi+1, yi+2,zi+1) - _G(V, xi+1, yi, zi+1)) | |
| 187 | + _x[24] = 0.5*(_G(V, xi, yi,zi+1) - _G(V, xi, yi, zi-1)) | |
| 188 | + _x[25] = 0.5*(_G(V, xi+1, yi,zi+1) - _G(V, xi+1, yi, zi-1)) | |
| 189 | + _x[26] = 0.5*(_G(V, xi, yi+1,zi+1) - _G(V, xi, yi+1, zi-1)) | |
| 190 | + _x[27] = 0.5*(_G(V, xi+1, yi+1,zi+1) - _G(V, xi+1, yi+1, zi-1)) | |
| 191 | + _x[28] = 0.5*(_G(V, xi, yi,zi+2) - _G(V, xi, yi, zi)) | |
| 192 | + _x[29] = 0.5*(_G(V, xi+1, yi,zi+2) - _G(V, xi+1, yi, zi)) | |
| 193 | + _x[30] = 0.5*(_G(V, xi, yi+1,zi+2) - _G(V, xi, yi+1, zi)) | |
| 194 | + _x[31] = 0.5*(_G(V, xi+1, yi+1,zi+2) - _G(V, xi+1, yi+1, zi)) | |
| 195 | + | |
| 196 | + _x [32] = 0.25*(_G(V, xi+1, yi+1, zi) - _G(V, xi-1, yi+1, zi) - _G(V, xi+1, yi-1, zi) + _G(V, xi-1, yi-1, zi)) | |
| 197 | + _x [33] = 0.25*(_G(V, xi+2, yi+1, zi) - _G(V, xi, yi+1, zi) - _G(V, xi+2, yi-1, zi) + _G(V, xi, yi-1, zi)) | |
| 198 | + _x [34] = 0.25*(_G(V, xi+1, yi+2, zi) - _G(V, xi-1, yi+2, zi) - _G(V, xi+1, yi, zi) + _G(V, xi-1, yi, zi)) | |
| 199 | + _x [35] = 0.25*(_G(V, xi+2, yi+2, zi) - _G(V, xi, yi+2, zi) - _G(V, xi+2, yi, zi) + _G(V, xi, yi, zi)) | |
| 200 | + _x [36] = 0.25*(_G(V, xi+1, yi+1, zi+1) - _G(V, xi-1, yi+1, zi+1) - _G(V, xi+1, yi-1, zi+1) + _G(V, xi-1, yi-1, zi+1)) | |
| 201 | + _x [37] = 0.25*(_G(V, xi+2, yi+1, zi+1) - _G(V, xi, yi+1, zi+1) - _G(V, xi+2, yi-1, zi+1) + _G(V, xi, yi-1, zi+1)) | |
| 202 | + _x [38] = 0.25*(_G(V, xi+1, yi+2, zi+1) - _G(V, xi-1, yi+2, zi+1) - _G(V, xi+1, yi, zi+1) + _G(V, xi-1, yi, zi+1)) | |
| 203 | + _x [39] = 0.25*(_G(V, xi+2, yi+2, zi+1) - _G(V, xi, yi+2, zi+1) - _G(V, xi+2, yi, zi+1) + _G(V, xi, yi, zi+1)) | |
| 204 | + _x [40] = 0.25*(_G(V, xi+1, yi, zi+1) - _G(V, xi-1, yi, zi+1) - _G(V, xi+1, yi, zi-1) + _G(V, xi-1, yi, zi-1)) | |
| 205 | + _x [41] = 0.25*(_G(V, xi+2, yi, zi+1) - _G(V, xi, yi, zi+1) - _G(V, xi+2, yi, zi-1) + _G(V, xi, yi, zi-1)) | |
| 206 | + _x [42] = 0.25*(_G(V, xi+1, yi+1, zi+1) - _G(V, xi-1, yi+1, zi+1) - _G(V, xi+1, yi+1, zi-1) + _G(V, xi-1, yi+1, zi-1)) | |
| 207 | + _x [43] = 0.25*(_G(V, xi+2, yi+1, zi+1) - _G(V, xi, yi+1, zi+1) - _G(V, xi+2, yi+1, zi-1) + _G(V, xi, yi+1, zi-1)) | |
| 208 | + _x [44] = 0.25*(_G(V, xi+1, yi, zi+2) - _G(V, xi-1, yi, zi+2) - _G(V, xi+1, yi, zi) + _G(V, xi-1, yi, zi)) | |
| 209 | + _x [45] = 0.25*(_G(V, xi+2, yi, zi+2) - _G(V, xi, yi, zi+2) - _G(V, xi+2, yi, zi) + _G(V, xi, yi, zi)) | |
| 210 | + _x [46] = 0.25*(_G(V, xi+1, yi+1, zi+2) - _G(V, xi-1, yi+1, zi+2) - _G(V, xi+1, yi+1, zi) + _G(V, xi-1, yi+1, zi)) | |
| 211 | + _x [47] = 0.25*(_G(V, xi+2, yi+1, zi+2) - _G(V, xi, yi+1, zi+2) - _G(V, xi+2, yi+1, zi) + _G(V, xi, yi+1, zi)) | |
| 212 | + _x [48] = 0.25*(_G(V, xi, yi+1, zi+1) - _G(V, xi, yi-1, zi+1) - _G(V, xi, yi+1, zi-1) + _G(V, xi, yi-1, zi-1)) | |
| 213 | + _x [49] = 0.25*(_G(V, xi+1, yi+1, zi+1) - _G(V, xi+1, yi-1, zi+1) - _G(V, xi+1, yi+1, zi-1) + _G(V, xi+1, yi-1, zi-1)) | |
| 214 | + _x [50] = 0.25*(_G(V, xi, yi+2, zi+1) - _G(V, xi, yi, zi+1) - _G(V, xi, yi+2, zi-1) + _G(V, xi, yi, zi-1)) | |
| 215 | + _x [51] = 0.25*(_G(V, xi+1, yi+2, zi+1) - _G(V, xi+1, yi, zi+1) - _G(V, xi+1, yi+2, zi-1) + _G(V, xi+1, yi, zi-1)) | |
| 216 | + _x [52] = 0.25*(_G(V, xi, yi+1, zi+2) - _G(V, xi, yi-1, zi+2) - _G(V, xi, yi+1, zi) + _G(V, xi, yi-1, zi)) | |
| 217 | + _x [53] = 0.25*(_G(V, xi+1, yi+1, zi+2) - _G(V, xi+1, yi-1, zi+2) - _G(V, xi+1, yi+1, zi) + _G(V, xi+1, yi-1, zi)) | |
| 218 | + _x [54] = 0.25*(_G(V, xi, yi+2, zi+2) - _G(V, xi, yi, zi+2) - _G(V, xi, yi+2, zi) + _G(V, xi, yi, zi)) | |
| 219 | + _x [55] = 0.25*(_G(V, xi+1, yi+2, zi+2) - _G(V, xi+1, yi, zi+2) - _G(V, xi+1, yi+2, zi) + _G(V, xi+1, yi, zi)) | |
| 220 | + | |
| 221 | + _x[56] = 0.125*(_G(V, xi+1, yi+1, zi+1) - _G(V, xi-1, yi+1, zi+1) - _G(V, xi+1, yi-1, zi+1) + _G(V, xi-1, yi-1, zi+1) - _G(V, xi+1, yi+1, zi-1) + _G(V, xi-1,yi+1,zi-1)+_G(V, xi+1,yi-1,zi-1)-_G(V, xi-1,yi-1,zi-1)) | |
| 222 | + _x[57] = 0.125*(_G(V, xi+2, yi+1, zi+1) - _G(V, xi, yi+1, zi+1) - _G(V, xi+2, yi-1, zi+1) + _G(V, xi, yi-1, zi+1) - _G(V, xi+2, yi+1, zi-1) + _G(V, xi,yi+1,zi-1)+_G(V, xi+2,yi-1,zi-1)-_G(V, xi,yi-1,zi-1)) | |
| 223 | + _x[58] = 0.125*(_G(V, xi+1, yi+2, zi+1) - _G(V, xi-1, yi+2, zi+1) - _G(V, xi+1, yi, zi+1) + _G(V, xi-1, yi, zi+1) - _G(V, xi+1, yi+2, zi-1) + _G(V, xi-1,yi+2,zi-1)+_G(V, xi+1,yi,zi-1)-_G(V, xi-1,yi,zi-1)) | |
| 224 | + _x[59] = 0.125*(_G(V, xi+2, yi+2, zi+1) - _G(V, xi, yi+2, zi+1) - _G(V, xi+2, yi, zi+1) + _G(V, xi, yi, zi+1) - _G(V, xi+2, yi+2, zi-1) + _G(V, xi,yi+2,zi-1)+_G(V, xi+2,yi,zi-1)-_G(V, xi,yi,zi-1)) | |
| 225 | + _x[60] = 0.125*(_G(V, xi+1, yi+1, zi+2) - _G(V, xi-1, yi+1, zi+2) - _G(V, xi+1, yi-1, zi+2) + _G(V, xi-1, yi-1, zi+2) - _G(V, xi+1, yi+1, zi) + _G(V, xi-1,yi+1,zi)+_G(V, xi+1,yi-1,zi)-_G(V, xi-1,yi-1,zi)) | |
| 226 | + _x[61] = 0.125*(_G(V, xi+2, yi+1, zi+2) - _G(V, xi, yi+1, zi+2) - _G(V, xi+2, yi-1, zi+2) + _G(V, xi, yi-1, zi+2) - _G(V, xi+2, yi+1, zi) + _G(V, xi,yi+1,zi)+_G(V, xi+2,yi-1,zi)-_G(V, xi,yi-1,zi)) | |
| 227 | + _x[62] = 0.125*(_G(V, xi+1, yi+2, zi+2) - _G(V, xi-1, yi+2, zi+2) - _G(V, xi+1, yi, zi+2) + _G(V, xi-1, yi, zi+2) - _G(V, xi+1, yi+2, zi) + _G(V, xi-1,yi+2,zi)+_G(V, xi+1,yi,zi)-_G(V, xi-1,yi,zi)) | |
| 228 | + _x[63] = 0.125*(_G(V, xi+2, yi+2, zi+2) - _G(V, xi, yi+2, zi+2) - _G(V, xi+2, yi, zi+2) + _G(V, xi, yi, zi+2) - _G(V, xi+2, yi+2, zi) + _G(V, xi,yi+2,zi)+_G(V, xi+2,yi,zi)-_G(V, xi,yi,zi)) | |
| 229 | + | |
| 230 | + for j in prange(64): | |
| 231 | + coef[j] = 0.0 | |
| 232 | + for i in xrange(64): | |
| 233 | + coef[j] += (temp[j][i] * _x[i]) | |
| 234 | + | |
| 235 | + | |
| 236 | +@cython.boundscheck(False) # turn of bounds-checking for entire function | |
| 237 | +@cython.cdivision(True) | |
| 238 | +@cython.wraparound(False) | |
| 239 | +cdef inline double tricub_interpolate(image_t[:, :, :] V, double x, double y, double z) nogil: | |
| 240 | + # From: Tricubic interpolation in three dimensions. Lekien and Marsden | |
| 241 | + cdef double[64] coef | |
| 242 | + cdef double result = 0.0 | |
| 243 | + calc_coef_tricub(V, x, y, z, coef) | |
| 244 | + | |
| 245 | + cdef int i, j, k | |
| 246 | + | |
| 247 | + cdef int xi = <int>floor(x) | |
| 248 | + cdef int yi = <int>floor(y) | |
| 249 | + cdef int zi = <int>floor(z) | |
| 250 | + | |
| 251 | + for i in xrange(4): | |
| 252 | + for j in xrange(4): | |
| 253 | + for k in xrange(4): | |
| 254 | + result += (coef[i+4*j+16*k] * ((x-xi)**i) * ((y-yi)**j) * ((z-zi)**k)) | |
| 255 | + # return V[<int>z, <int>y, <int>x] | |
| 256 | + # with gil: | |
| 257 | + # print result | |
| 258 | + return result | |
| 259 | + | |
| 260 | + | |
| 261 | +@cython.boundscheck(False) # turn of bounds-checking for entire function | |
| 262 | +@cython.cdivision(True) | |
| 263 | +@cython.wraparound(False) | |
| 264 | +cdef inline double cubicInterpolate(double p[4], double x) nogil: | |
| 265 | + return p[1] + 0.5 * x*(p[2] - p[0] + x*(2.0*p[0] - 5.0*p[1] + 4.0*p[2] - p[3] + x*(3.0*(p[1] - p[2]) + p[3] - p[0]))) | |
| 266 | + | |
| 267 | + | |
| 268 | +@cython.boundscheck(False) # turn of bounds-checking for entire function | |
| 269 | +@cython.cdivision(True) | |
| 270 | +@cython.wraparound(False) | |
| 271 | +cdef inline double bicubicInterpolate (double p[4][4], double x, double y) nogil: | |
| 272 | + cdef double arr[4] | |
| 273 | + arr[0] = cubicInterpolate(p[0], y) | |
| 274 | + arr[1] = cubicInterpolate(p[1], y) | |
| 275 | + arr[2] = cubicInterpolate(p[2], y) | |
| 276 | + arr[3] = cubicInterpolate(p[3], y) | |
| 277 | + return cubicInterpolate(arr, x) | |
| 278 | + | |
| 279 | + | |
| 280 | +@cython.boundscheck(False) # turn of bounds-checking for entire function | |
| 281 | +@cython.cdivision(True) | |
| 282 | +@cython.wraparound(False) | |
| 283 | +cdef inline double tricubicInterpolate(image_t[:, :, :] V, double x, double y, double z) nogil: | |
| 284 | + # From http://www.paulinternet.nl/?page=bicubic | |
| 285 | + cdef double p[4][4][4] | |
| 286 | + | |
| 287 | + cdef int xi = <int>floor(x) | |
| 288 | + cdef int yi = <int>floor(y) | |
| 289 | + cdef int zi = <int>floor(z) | |
| 290 | + | |
| 291 | + cdef int i, j, k | |
| 292 | + | |
| 293 | + for i in xrange(4): | |
| 294 | + for j in xrange(4): | |
| 295 | + for k in xrange(4): | |
| 296 | + p[i][j][k] = _G(V, xi + i -1, yi + j -1, zi + k - 1) | |
| 297 | + | |
| 298 | + cdef double arr[4] | |
| 299 | + arr[0] = bicubicInterpolate(p[0], y-yi, z-zi) | |
| 300 | + arr[1] = bicubicInterpolate(p[1], y-yi, z-zi) | |
| 301 | + arr[2] = bicubicInterpolate(p[2], y-yi, z-zi) | |
| 302 | + arr[3] = bicubicInterpolate(p[3], y-yi, z-zi) | |
| 303 | + return cubicInterpolate(arr, x-xi) | |
| 304 | + | |
| 305 | + | |
| 306 | +def tricub_interpolate_py(image_t[:, :, :] V, double x, double y, double z): | |
| 307 | + return tricub_interpolate(V, x, y, z) | |
| 308 | + | |
| 309 | +def tricub_interpolate2_py(image_t[:, :, :] V, double x, double y, double z): | |
| 310 | + return tricubicInterpolate(V, x, y, z) | |
| 311 | + | |
| 312 | +def trilin_interpolate_py(image_t[:, :, :] V, double x, double y, double z): | |
| 313 | + return interpolate(V, x, y, z) | |
| 314 | + | ... | ... |
invesalius/data/slice_.py
| ... | ... | @@ -19,7 +19,7 @@ |
| 19 | 19 | import os |
| 20 | 20 | import tempfile |
| 21 | 21 | |
| 22 | -import numpy | |
| 22 | +import numpy as np | |
| 23 | 23 | import vtk |
| 24 | 24 | from wx.lib.pubsub import pub as Publisher |
| 25 | 25 | |
| ... | ... | @@ -34,6 +34,9 @@ from mask import Mask |
| 34 | 34 | from project import Project |
| 35 | 35 | from data import mips |
| 36 | 36 | |
| 37 | +from data import transforms | |
| 38 | +import transformations | |
| 39 | + | |
| 37 | 40 | OTHER=0 |
| 38 | 41 | PLIST=1 |
| 39 | 42 | WIDGET=2 |
| ... | ... | @@ -90,7 +93,10 @@ class Slice(object): |
| 90 | 93 | self._type_projection = const.PROJECTION_NORMAL |
| 91 | 94 | self.n_border = const.PROJECTION_BORDER_SIZE |
| 92 | 95 | |
| 93 | - self.spacing = (1.0, 1.0, 1.0) | |
| 96 | + self._spacing = (1.0, 1.0, 1.0) | |
| 97 | + self.center = [0, 0, 0] | |
| 98 | + | |
| 99 | + self.q_orientation = np.array((1, 0, 0, 0)) | |
| 94 | 100 | |
| 95 | 101 | self.number_of_colours = 256 |
| 96 | 102 | self.saturation_range = (0, 0) |
| ... | ... | @@ -120,7 +126,17 @@ class Slice(object): |
| 120 | 126 | self._matrix = value |
| 121 | 127 | i, e = value.min(), value.max() |
| 122 | 128 | r = int(e) - int(i) |
| 123 | - self.histogram = numpy.histogram(self._matrix, r, (i, e))[0] | |
| 129 | + self.histogram = np.histogram(self._matrix, r, (i, e))[0] | |
| 130 | + self.center = [(s * d/2.0) for (d, s) in zip(self.matrix.shape[::-1], self.spacing)] | |
| 131 | + | |
| 132 | + @property | |
| 133 | + def spacing(self): | |
| 134 | + return self._spacing | |
| 135 | + | |
| 136 | + @spacing.setter | |
| 137 | + def spacing(self, value): | |
| 138 | + self._spacing = value | |
| 139 | + self.center = [(s * d/2.0) for (d, s) in zip(self.matrix.shape[::-1], self.spacing)] | |
| 124 | 140 | |
| 125 | 141 | def __bind_events(self): |
| 126 | 142 | # General slice control |
| ... | ... | @@ -142,6 +158,7 @@ class Slice(object): |
| 142 | 158 | Publisher.subscribe(self.__set_mask_name, 'Change mask name') |
| 143 | 159 | Publisher.subscribe(self.__show_mask, 'Show mask') |
| 144 | 160 | Publisher.subscribe(self.__hide_current_mask, 'Hide current mask') |
| 161 | + Publisher.subscribe(self.__show_current_mask, 'Show current mask') | |
| 145 | 162 | Publisher.subscribe(self.__clean_current_mask, 'Clean current mask') |
| 146 | 163 | |
| 147 | 164 | Publisher.subscribe(self.__set_current_mask_threshold_limits, |
| ... | ... | @@ -386,6 +403,12 @@ class Slice(object): |
| 386 | 403 | value = False |
| 387 | 404 | Publisher.sendMessage('Show mask', (index, value)) |
| 388 | 405 | |
| 406 | + def __show_current_mask(self, pubsub_evt): | |
| 407 | + if self.current_mask: | |
| 408 | + index = self.current_mask.index | |
| 409 | + value = True | |
| 410 | + Publisher.sendMessage('Show mask', (index, value)) | |
| 411 | + | |
| 389 | 412 | def __clean_current_mask(self, pubsub_evt): |
| 390 | 413 | if self.current_mask: |
| 391 | 414 | self.current_mask.clean() |
| ... | ... | @@ -402,7 +425,7 @@ class Slice(object): |
| 402 | 425 | def create_temp_mask(self): |
| 403 | 426 | temp_file = tempfile.mktemp() |
| 404 | 427 | shape = self.matrix.shape |
| 405 | - matrix = numpy.memmap(temp_file, mode='w+', dtype='uint8', shape=shape) | |
| 428 | + matrix = np.memmap(temp_file, mode='w+', dtype='uint8', shape=shape) | |
| 406 | 429 | return temp_file, matrix |
| 407 | 430 | |
| 408 | 431 | def edit_mask_pixel(self, operation, index, position, radius, orientation): |
| ... | ... | @@ -560,145 +583,167 @@ class Slice(object): |
| 560 | 583 | and self.buffer_slices[orientation].image is not None: |
| 561 | 584 | n_image = self.buffer_slices[orientation].image |
| 562 | 585 | else: |
| 586 | + if self._type_projection == const.PROJECTION_NORMAL: | |
| 587 | + number_slices = 1 | |
| 588 | + | |
| 589 | + if np.any(self.q_orientation[1::]): | |
| 590 | + cx, cy, cz = self.center | |
| 591 | + T0 = transformations.translation_matrix((-cz, -cy, -cx)) | |
| 592 | + # Rx = transformations.rotation_matrix(rx, (0, 0, 1)) | |
| 593 | + # Ry = transformations.rotation_matrix(ry, (0, 1, 0)) | |
| 594 | + # Rz = transformations.rotation_matrix(rz, (1, 0, 0)) | |
| 595 | + # # R = transformations.euler_matrix(rz, ry, rx, 'rzyx') | |
| 596 | + # R = transformations.concatenate_matrices(Rx, Ry, Rz) | |
| 597 | + R = transformations.quaternion_matrix(self.q_orientation) | |
| 598 | + T1 = transformations.translation_matrix((cz, cy, cx)) | |
| 599 | + M = transformations.concatenate_matrices(T1, R.T, T0) | |
| 600 | + | |
| 563 | 601 | |
| 564 | 602 | if orientation == 'AXIAL': |
| 603 | + tmp_array = np.array(self.matrix[slice_number:slice_number + number_slices]) | |
| 604 | + if np.any(self.q_orientation[1::]): | |
| 605 | + transforms.apply_view_matrix_transform(self.matrix, self.spacing, M, slice_number, orientation, 2, self.matrix.min(), tmp_array) | |
| 565 | 606 | if self._type_projection == const.PROJECTION_NORMAL: |
| 566 | - n_image = numpy.array(self.matrix[slice_number]) | |
| 607 | + n_image = tmp_array.squeeze() | |
| 567 | 608 | else: |
| 568 | - tmp_array = numpy.array(self.matrix[slice_number: | |
| 569 | - slice_number + number_slices]) | |
| 570 | 609 | if inverted: |
| 571 | 610 | tmp_array = tmp_array[::-1] |
| 572 | 611 | |
| 573 | 612 | if self._type_projection == const.PROJECTION_MaxIP: |
| 574 | - n_image = numpy.array(tmp_array).max(0) | |
| 613 | + n_image = np.array(tmp_array).max(0) | |
| 575 | 614 | elif self._type_projection == const.PROJECTION_MinIP: |
| 576 | - n_image = numpy.array(tmp_array).min(0) | |
| 615 | + n_image = np.array(tmp_array).min(0) | |
| 577 | 616 | elif self._type_projection == const.PROJECTION_MeanIP: |
| 578 | - n_image = numpy.array(tmp_array).mean(0) | |
| 617 | + n_image = np.array(tmp_array).mean(0) | |
| 579 | 618 | elif self._type_projection == const.PROJECTION_LMIP: |
| 580 | - n_image = numpy.empty(shape=(tmp_array.shape[1], | |
| 619 | + n_image = np.empty(shape=(tmp_array.shape[1], | |
| 581 | 620 | tmp_array.shape[2]), |
| 582 | 621 | dtype=tmp_array.dtype) |
| 583 | 622 | mips.lmip(tmp_array, 0, self.window_level, self.window_level, n_image) |
| 584 | 623 | elif self._type_projection == const.PROJECTION_MIDA: |
| 585 | - n_image = numpy.empty(shape=(tmp_array.shape[1], | |
| 624 | + n_image = np.empty(shape=(tmp_array.shape[1], | |
| 586 | 625 | tmp_array.shape[2]), |
| 587 | 626 | dtype=tmp_array.dtype) |
| 588 | 627 | mips.mida(tmp_array, 0, self.window_level, self.window_level, n_image) |
| 589 | 628 | elif self._type_projection == const.PROJECTION_CONTOUR_MIP: |
| 590 | - n_image = numpy.empty(shape=(tmp_array.shape[1], | |
| 629 | + n_image = np.empty(shape=(tmp_array.shape[1], | |
| 591 | 630 | tmp_array.shape[2]), |
| 592 | 631 | dtype=tmp_array.dtype) |
| 593 | 632 | mips.fast_countour_mip(tmp_array, border_size, 0, self.window_level, |
| 594 | 633 | self.window_level, 0, n_image) |
| 595 | 634 | elif self._type_projection == const.PROJECTION_CONTOUR_LMIP: |
| 596 | - n_image = numpy.empty(shape=(tmp_array.shape[1], | |
| 635 | + n_image = np.empty(shape=(tmp_array.shape[1], | |
| 597 | 636 | tmp_array.shape[2]), |
| 598 | 637 | dtype=tmp_array.dtype) |
| 599 | 638 | mips.fast_countour_mip(tmp_array, border_size, 0, self.window_level, |
| 600 | 639 | self.window_level, 1, n_image) |
| 601 | 640 | elif self._type_projection == const.PROJECTION_CONTOUR_MIDA: |
| 602 | - n_image = numpy.empty(shape=(tmp_array.shape[1], | |
| 641 | + n_image = np.empty(shape=(tmp_array.shape[1], | |
| 603 | 642 | tmp_array.shape[2]), |
| 604 | 643 | dtype=tmp_array.dtype) |
| 605 | 644 | mips.fast_countour_mip(tmp_array, border_size, 0, self.window_level, |
| 606 | 645 | self.window_level, 2, n_image) |
| 607 | 646 | else: |
| 608 | - n_image = numpy.array(self.matrix[slice_number]) | |
| 647 | + n_image = np.array(self.matrix[slice_number]) | |
| 609 | 648 | |
| 610 | 649 | elif orientation == 'CORONAL': |
| 650 | + tmp_array = np.array(self.matrix[:, slice_number: slice_number + number_slices, :]) | |
| 651 | + if np.any(self.q_orientation[1::]): | |
| 652 | + transforms.apply_view_matrix_transform(self.matrix, self.spacing, M, slice_number, orientation, 1, self.matrix.min(), tmp_array) | |
| 653 | + | |
| 611 | 654 | if self._type_projection == const.PROJECTION_NORMAL: |
| 612 | - n_image = numpy.array(self.matrix[..., slice_number, ...]) | |
| 655 | + n_image = tmp_array.squeeze() | |
| 613 | 656 | else: |
| 614 | 657 | #if slice_number == 0: |
| 615 | 658 | #slice_number = 1 |
| 616 | 659 | #if slice_number - number_slices < 0: |
| 617 | 660 | #number_slices = slice_number |
| 618 | - tmp_array = numpy.array(self.matrix[..., slice_number: slice_number + number_slices, ...]) | |
| 619 | 661 | if inverted: |
| 620 | - tmp_array = tmp_array[..., ::-1, ...] | |
| 662 | + tmp_array = tmp_array[:, ::-1, :] | |
| 621 | 663 | if self._type_projection == const.PROJECTION_MaxIP: |
| 622 | - n_image = numpy.array(tmp_array).max(1) | |
| 664 | + n_image = np.array(tmp_array).max(1) | |
| 623 | 665 | elif self._type_projection == const.PROJECTION_MinIP: |
| 624 | - n_image = numpy.array(tmp_array).min(1) | |
| 666 | + n_image = np.array(tmp_array).min(1) | |
| 625 | 667 | elif self._type_projection == const.PROJECTION_MeanIP: |
| 626 | - n_image = numpy.array(tmp_array).mean(1) | |
| 668 | + n_image = np.array(tmp_array).mean(1) | |
| 627 | 669 | elif self._type_projection == const.PROJECTION_LMIP: |
| 628 | - n_image = numpy.empty(shape=(tmp_array.shape[0], | |
| 670 | + n_image = np.empty(shape=(tmp_array.shape[0], | |
| 629 | 671 | tmp_array.shape[2]), |
| 630 | 672 | dtype=tmp_array.dtype) |
| 631 | 673 | mips.lmip(tmp_array, 1, self.window_level, self.window_level, n_image) |
| 632 | 674 | elif self._type_projection == const.PROJECTION_MIDA: |
| 633 | - n_image = numpy.empty(shape=(tmp_array.shape[0], | |
| 675 | + n_image = np.empty(shape=(tmp_array.shape[0], | |
| 634 | 676 | tmp_array.shape[2]), |
| 635 | 677 | dtype=tmp_array.dtype) |
| 636 | 678 | mips.mida(tmp_array, 1, self.window_level, self.window_level, n_image) |
| 637 | 679 | elif self._type_projection == const.PROJECTION_CONTOUR_MIP: |
| 638 | - n_image = numpy.empty(shape=(tmp_array.shape[0], | |
| 680 | + n_image = np.empty(shape=(tmp_array.shape[0], | |
| 639 | 681 | tmp_array.shape[2]), |
| 640 | 682 | dtype=tmp_array.dtype) |
| 641 | 683 | mips.fast_countour_mip(tmp_array, border_size, 1, self.window_level, |
| 642 | 684 | self.window_level, 0, n_image) |
| 643 | 685 | elif self._type_projection == const.PROJECTION_CONTOUR_LMIP: |
| 644 | - n_image = numpy.empty(shape=(tmp_array.shape[0], | |
| 686 | + n_image = np.empty(shape=(tmp_array.shape[0], | |
| 645 | 687 | tmp_array.shape[2]), |
| 646 | 688 | dtype=tmp_array.dtype) |
| 647 | 689 | mips.fast_countour_mip(tmp_array, border_size, 1, self.window_level, |
| 648 | 690 | self.window_level, 1, n_image) |
| 649 | 691 | elif self._type_projection == const.PROJECTION_CONTOUR_MIDA: |
| 650 | - n_image = numpy.empty(shape=(tmp_array.shape[0], | |
| 692 | + n_image = np.empty(shape=(tmp_array.shape[0], | |
| 651 | 693 | tmp_array.shape[2]), |
| 652 | 694 | dtype=tmp_array.dtype) |
| 653 | 695 | mips.fast_countour_mip(tmp_array, border_size, 1, self.window_level, |
| 654 | 696 | self.window_level, 2, n_image) |
| 655 | 697 | else: |
| 656 | - n_image = numpy.array(self.matrix[..., slice_number, ...]) | |
| 698 | + n_image = np.array(self.matrix[:, slice_number, :]) | |
| 657 | 699 | elif orientation == 'SAGITAL': |
| 700 | + tmp_array = np.array(self.matrix[:, :, slice_number: slice_number + number_slices]) | |
| 701 | + if np.any(self.q_orientation[1::]): | |
| 702 | + transforms.apply_view_matrix_transform(self.matrix, self.spacing, M, slice_number, orientation, 1, self.matrix.min(), tmp_array) | |
| 703 | + | |
| 658 | 704 | if self._type_projection == const.PROJECTION_NORMAL: |
| 659 | - n_image = numpy.array(self.matrix[..., ..., slice_number]) | |
| 705 | + n_image = tmp_array.squeeze() | |
| 660 | 706 | else: |
| 661 | - tmp_array = numpy.array(self.matrix[..., ..., | |
| 662 | - slice_number: slice_number + number_slices]) | |
| 663 | 707 | if inverted: |
| 664 | - tmp_array = tmp_array[..., ..., ::-1] | |
| 708 | + tmp_array = tmp_array[:, :, ::-1] | |
| 665 | 709 | if self._type_projection == const.PROJECTION_MaxIP: |
| 666 | - n_image = numpy.array(tmp_array).max(2) | |
| 710 | + n_image = np.array(tmp_array).max(2) | |
| 667 | 711 | elif self._type_projection == const.PROJECTION_MinIP: |
| 668 | - n_image = numpy.array(tmp_array).min(2) | |
| 712 | + n_image = np.array(tmp_array).min(2) | |
| 669 | 713 | elif self._type_projection == const.PROJECTION_MeanIP: |
| 670 | - n_image = numpy.array(tmp_array).mean(2) | |
| 714 | + n_image = np.array(tmp_array).mean(2) | |
| 671 | 715 | elif self._type_projection == const.PROJECTION_LMIP: |
| 672 | - n_image = numpy.empty(shape=(tmp_array.shape[0], | |
| 716 | + n_image = np.empty(shape=(tmp_array.shape[0], | |
| 673 | 717 | tmp_array.shape[1]), |
| 674 | 718 | dtype=tmp_array.dtype) |
| 675 | 719 | mips.lmip(tmp_array, 2, self.window_level, self.window_level, n_image) |
| 676 | 720 | elif self._type_projection == const.PROJECTION_MIDA: |
| 677 | - n_image = numpy.empty(shape=(tmp_array.shape[0], | |
| 721 | + n_image = np.empty(shape=(tmp_array.shape[0], | |
| 678 | 722 | tmp_array.shape[1]), |
| 679 | 723 | dtype=tmp_array.dtype) |
| 680 | 724 | mips.mida(tmp_array, 2, self.window_level, self.window_level, n_image) |
| 681 | 725 | |
| 682 | 726 | elif self._type_projection == const.PROJECTION_CONTOUR_MIP: |
| 683 | - n_image = numpy.empty(shape=(tmp_array.shape[0], | |
| 727 | + n_image = np.empty(shape=(tmp_array.shape[0], | |
| 684 | 728 | tmp_array.shape[1]), |
| 685 | 729 | dtype=tmp_array.dtype) |
| 686 | 730 | mips.fast_countour_mip(tmp_array, border_size, 2, self.window_level, |
| 687 | 731 | self.window_level, 0, n_image) |
| 688 | 732 | elif self._type_projection == const.PROJECTION_CONTOUR_LMIP: |
| 689 | - n_image = numpy.empty(shape=(tmp_array.shape[0], | |
| 733 | + n_image = np.empty(shape=(tmp_array.shape[0], | |
| 690 | 734 | tmp_array.shape[1]), |
| 691 | 735 | dtype=tmp_array.dtype) |
| 692 | 736 | mips.fast_countour_mip(tmp_array, border_size, 2, self.window_level, |
| 693 | 737 | self.window_level, 1, n_image) |
| 694 | 738 | elif self._type_projection == const.PROJECTION_CONTOUR_MIDA: |
| 695 | - n_image = numpy.empty(shape=(tmp_array.shape[0], | |
| 739 | + n_image = np.empty(shape=(tmp_array.shape[0], | |
| 696 | 740 | tmp_array.shape[1]), |
| 697 | 741 | dtype=tmp_array.dtype) |
| 698 | 742 | mips.fast_countour_mip(tmp_array, border_size, 2, self.window_level, |
| 699 | 743 | self.window_level, 2, n_image) |
| 700 | 744 | else: |
| 701 | - n_image = numpy.array(self.matrix[..., ..., slice_number]) | |
| 745 | + n_image = np.array(self.matrix[:, :, slice_number]) | |
| 746 | + | |
| 702 | 747 | return n_image |
| 703 | 748 | |
| 704 | 749 | def get_mask_slice(self, orientation, slice_number): |
| ... | ... | @@ -719,7 +764,7 @@ class Slice(object): |
| 719 | 764 | slice_number), |
| 720 | 765 | mask) |
| 721 | 766 | self.current_mask.matrix[n, 0, 0] = 1 |
| 722 | - n_mask = numpy.array(self.current_mask.matrix[n, 1:, 1:], | |
| 767 | + n_mask = np.array(self.current_mask.matrix[n, 1:, 1:], | |
| 723 | 768 | dtype=self.current_mask.matrix.dtype) |
| 724 | 769 | |
| 725 | 770 | elif orientation == 'CORONAL': |
| ... | ... | @@ -729,7 +774,7 @@ class Slice(object): |
| 729 | 774 | slice_number), |
| 730 | 775 | mask) |
| 731 | 776 | self.current_mask.matrix[0, n, 0] = 1 |
| 732 | - n_mask = numpy.array(self.current_mask.matrix[1:, n, 1:], | |
| 777 | + n_mask = np.array(self.current_mask.matrix[1:, n, 1:], | |
| 733 | 778 | dtype=self.current_mask.matrix.dtype) |
| 734 | 779 | |
| 735 | 780 | elif orientation == 'SAGITAL': |
| ... | ... | @@ -739,7 +784,7 @@ class Slice(object): |
| 739 | 784 | slice_number), |
| 740 | 785 | mask) |
| 741 | 786 | self.current_mask.matrix[0, 0, n] = 1 |
| 742 | - n_mask = numpy.array(self.current_mask.matrix[1:, 1:, n], | |
| 787 | + n_mask = np.array(self.current_mask.matrix[1:, 1:, n], | |
| 743 | 788 | dtype=self.current_mask.matrix.dtype) |
| 744 | 789 | |
| 745 | 790 | return n_mask |
| ... | ... | @@ -747,11 +792,11 @@ class Slice(object): |
| 747 | 792 | def get_aux_slice(self, name, orientation, n): |
| 748 | 793 | m = self.aux_matrices[name] |
| 749 | 794 | if orientation == 'AXIAL': |
| 750 | - return numpy.array(m[n]) | |
| 795 | + return np.array(m[n]) | |
| 751 | 796 | elif orientation == 'CORONAL': |
| 752 | - return numpy.array(m[:, n, :]) | |
| 797 | + return np.array(m[:, n, :]) | |
| 753 | 798 | elif orientation == 'SAGITAL': |
| 754 | - return numpy.array(m[:, :, n]) | |
| 799 | + return np.array(m[:, :, n]) | |
| 755 | 800 | |
| 756 | 801 | def GetNumberOfSlices(self, orientation): |
| 757 | 802 | if orientation == 'AXIAL': |
| ... | ... | @@ -809,7 +854,7 @@ class Slice(object): |
| 809 | 854 | # TODO: find out a better way to do threshold |
| 810 | 855 | if slice_number is None: |
| 811 | 856 | for n, slice_ in enumerate(self.matrix): |
| 812 | - m = numpy.ones(slice_.shape, self.current_mask.matrix.dtype) | |
| 857 | + m = np.ones(slice_.shape, self.current_mask.matrix.dtype) | |
| 813 | 858 | m[slice_ < thresh_min] = 0 |
| 814 | 859 | m[slice_ > thresh_max] = 0 |
| 815 | 860 | m[m == 1] = 255 |
| ... | ... | @@ -1271,7 +1316,7 @@ class Slice(object): |
| 1271 | 1316 | m[:] = ((m1 > 2) & (m2 > 2)) * 255 |
| 1272 | 1317 | |
| 1273 | 1318 | elif op == const.BOOLEAN_XOR: |
| 1274 | - m[:] = numpy.logical_xor((m1 > 2), (m2 > 2)) * 255 | |
| 1319 | + m[:] = np.logical_xor((m1 > 2), (m2 > 2)) * 255 | |
| 1275 | 1320 | |
| 1276 | 1321 | for o in self.buffer_slices: |
| 1277 | 1322 | self.buffer_slices[o].discard_mask() |
| ... | ... | @@ -1324,6 +1369,30 @@ class Slice(object): |
| 1324 | 1369 | self.buffer_slices[o].discard_vtk_mask() |
| 1325 | 1370 | Publisher.sendMessage('Reload actual slice') |
| 1326 | 1371 | |
| 1372 | + def apply_reorientation(self): | |
| 1373 | + temp_file = tempfile.mktemp() | |
| 1374 | + mcopy = np.memmap(temp_file, shape=self.matrix.shape, dtype=self.matrix.dtype, mode='w+') | |
| 1375 | + mcopy[:] = self.matrix | |
| 1376 | + | |
| 1377 | + cx, cy, cz = self.center | |
| 1378 | + T0 = transformations.translation_matrix((-cz, -cy, -cx)) | |
| 1379 | + R = transformations.quaternion_matrix(self.q_orientation) | |
| 1380 | + T1 = transformations.translation_matrix((cz, cy, cx)) | |
| 1381 | + M = transformations.concatenate_matrices(T1, R.T, T0) | |
| 1382 | + | |
| 1383 | + transforms.apply_view_matrix_transform(mcopy, self.spacing, M, 0, 'AXIAL', 2, mcopy.min(), self.matrix) | |
| 1384 | + | |
| 1385 | + del mcopy | |
| 1386 | + os.remove(temp_file) | |
| 1387 | + | |
| 1388 | + self.q_orientation = np.array((1, 0, 0, 0)) | |
| 1389 | + self.center = [(s * d/2.0) for (d, s) in zip(self.matrix.shape[::-1], self.spacing)] | |
| 1390 | + | |
| 1391 | + self.__clean_current_mask(None) | |
| 1392 | + self.current_mask.matrix[:] = 0 | |
| 1393 | + | |
| 1394 | + Publisher.sendMessage('Reload actual slice') | |
| 1395 | + | |
| 1327 | 1396 | def __undo_edition(self, pub_evt): |
| 1328 | 1397 | buffer_slices = self.buffer_slices |
| 1329 | 1398 | actual_slices = {"AXIAL": buffer_slices["AXIAL"].index, |
| ... | ... | @@ -1348,7 +1417,7 @@ class Slice(object): |
| 1348 | 1417 | |
| 1349 | 1418 | def _open_image_matrix(self, filename, shape, dtype): |
| 1350 | 1419 | self.matrix_filename = filename |
| 1351 | - self.matrix = numpy.memmap(filename, shape=shape, dtype=dtype, mode='r+') | |
| 1420 | + self.matrix = np.memmap(filename, shape=shape, dtype=dtype, mode='r+') | |
| 1352 | 1421 | |
| 1353 | 1422 | def OnFlipVolume(self, pubsub_evt): |
| 1354 | 1423 | axis = pubsub_evt.data | ... | ... |
invesalius/data/styles.py
| ... | ... | @@ -43,6 +43,7 @@ from skimage import filter |
| 43 | 43 | import watershed_process |
| 44 | 44 | |
| 45 | 45 | import utils |
| 46 | +import transformations | |
| 46 | 47 | |
| 47 | 48 | ORIENTATIONS = { |
| 48 | 49 | "AXIAL": const.AXIAL, |
| ... | ... | @@ -1405,19 +1406,259 @@ class WaterShedInteractorStyle(DefaultInteractorStyle): |
| 1405 | 1406 | session.ChangeProject() |
| 1406 | 1407 | |
| 1407 | 1408 | |
| 1409 | +class ReorientImageInteractorStyle(DefaultInteractorStyle): | |
| 1410 | + """ | |
| 1411 | + Interactor style responsible for image reorientation | |
| 1412 | + """ | |
| 1413 | + def __init__(self, viewer): | |
| 1414 | + DefaultInteractorStyle.__init__(self, viewer) | |
| 1415 | + | |
| 1416 | + self.viewer = viewer | |
| 1417 | + | |
| 1418 | + self.line1 = None | |
| 1419 | + self.line2 = None | |
| 1420 | + | |
| 1421 | + self.actors = [] | |
| 1422 | + | |
| 1423 | + self._over_center = False | |
| 1424 | + self.dragging = False | |
| 1425 | + self.to_rot = False | |
| 1426 | + | |
| 1427 | + self.picker = vtk.vtkWorldPointPicker() | |
| 1428 | + | |
| 1429 | + self.AddObserver("LeftButtonPressEvent",self.OnLeftClick) | |
| 1430 | + self.AddObserver("LeftButtonReleaseEvent", self.OnLeftRelease) | |
| 1431 | + self.AddObserver("MouseMoveEvent", self.OnMouseMove) | |
| 1432 | + self.viewer.slice_data.renderer.AddObserver("StartEvent", self.OnUpdate) | |
| 1433 | + | |
| 1434 | + self.viewer.interactor.Bind(wx.EVT_LEFT_DCLICK, self.OnDblClick) | |
| 1435 | + | |
| 1436 | + def SetUp(self): | |
| 1437 | + self.draw_lines() | |
| 1438 | + Publisher.sendMessage('Hide current mask') | |
| 1439 | + Publisher.sendMessage('Reload actual slice') | |
| 1440 | + | |
| 1441 | + def CleanUp(self): | |
| 1442 | + for actor in self.actors: | |
| 1443 | + self.viewer.slice_data.renderer.RemoveActor(actor) | |
| 1444 | + | |
| 1445 | + self.viewer.slice_.rotations = [0, 0, 0] | |
| 1446 | + self.viewer.slice_.q_orientation = np.array((1, 0, 0, 0)) | |
| 1447 | + self._discard_buffers() | |
| 1448 | + Publisher.sendMessage('Close reorient dialog') | |
| 1449 | + Publisher.sendMessage('Show current mask') | |
| 1450 | + | |
| 1451 | + def OnLeftClick(self, obj, evt): | |
| 1452 | + if self._over_center: | |
| 1453 | + self.dragging = True | |
| 1454 | + else: | |
| 1455 | + x, y = self.viewer.interactor.GetEventPosition() | |
| 1456 | + w, h = self.viewer.interactor.GetSize() | |
| 1457 | + | |
| 1458 | + self.picker.Pick(h/2.0, w/2.0, 0, self.viewer.slice_data.renderer) | |
| 1459 | + cx, cy, cz = self.viewer.slice_.center | |
| 1460 | + | |
| 1461 | + self.picker.Pick(x, y, 0, self.viewer.slice_data.renderer) | |
| 1462 | + x, y, z = self.picker.GetPickPosition() | |
| 1463 | + | |
| 1464 | + self.p0 = self.get_image_point_coord(x, y, z) | |
| 1465 | + self.to_rot = True | |
| 1466 | + | |
| 1467 | + def OnLeftRelease(self, obj, evt): | |
| 1468 | + self.dragging = False | |
| 1469 | + | |
| 1470 | + if self.to_rot: | |
| 1471 | + Publisher.sendMessage('Reload actual slice') | |
| 1472 | + self.to_rot = False | |
| 1473 | + | |
| 1474 | + def OnMouseMove(self, obj, evt): | |
| 1475 | + """ | |
| 1476 | + This event is responsible to reorient image, set mouse cursors | |
| 1477 | + """ | |
| 1478 | + if self.dragging: | |
| 1479 | + self._move_center_rot() | |
| 1480 | + elif self.to_rot: | |
| 1481 | + self._rotate() | |
| 1482 | + else: | |
| 1483 | + # Getting mouse position | |
| 1484 | + iren = self.viewer.interactor | |
| 1485 | + mx, my = iren.GetEventPosition() | |
| 1486 | + | |
| 1487 | + # Getting center value | |
| 1488 | + center = self.viewer.slice_.center | |
| 1489 | + coord = vtk.vtkCoordinate() | |
| 1490 | + coord.SetValue(center) | |
| 1491 | + cx, cy = coord.GetComputedDisplayValue(self.viewer.slice_data.renderer) | |
| 1492 | + | |
| 1493 | + dist_center = ((mx - cx)**2 + (my - cy)**2)**0.5 | |
| 1494 | + if dist_center <= 15: | |
| 1495 | + self._over_center = True | |
| 1496 | + cursor = wx.StockCursor(wx.CURSOR_SIZENESW) | |
| 1497 | + else: | |
| 1498 | + self._over_center = False | |
| 1499 | + cursor = wx.StockCursor(wx.CURSOR_DEFAULT) | |
| 1500 | + | |
| 1501 | + self.viewer.interactor.SetCursor(cursor) | |
| 1502 | + | |
| 1503 | + def OnUpdate(self, obj, evt): | |
| 1504 | + w, h = self.viewer.slice_data.renderer.GetSize() | |
| 1505 | + | |
| 1506 | + center = self.viewer.slice_.center | |
| 1507 | + coord = vtk.vtkCoordinate() | |
| 1508 | + coord.SetValue(center) | |
| 1509 | + x, y = coord.GetComputedDisplayValue(self.viewer.slice_data.renderer) | |
| 1510 | + | |
| 1511 | + self.line1.SetPoint1(0, y, 0) | |
| 1512 | + self.line1.SetPoint2(w, y, 0) | |
| 1513 | + self.line1.Update() | |
| 1514 | + | |
| 1515 | + self.line2.SetPoint1(x, 0, 0) | |
| 1516 | + self.line2.SetPoint2(x, h, 0) | |
| 1517 | + self.line2.Update() | |
| 1518 | + | |
| 1519 | + def OnDblClick(self, evt): | |
| 1520 | + self.viewer.slice_.rotations = [0, 0, 0] | |
| 1521 | + self.viewer.slice_.q_orientation = np.array((1, 0, 0, 0)) | |
| 1522 | + | |
| 1523 | + Publisher.sendMessage('Update reorient angles', (0, 0, 0)) | |
| 1524 | + | |
| 1525 | + self._discard_buffers() | |
| 1526 | + self.viewer.slice_.current_mask.clear_history() | |
| 1527 | + Publisher.sendMessage('Reload actual slice') | |
| 1528 | + | |
| 1529 | + def _move_center_rot(self): | |
| 1530 | + iren = self.viewer.interactor | |
| 1531 | + mx, my = iren.GetEventPosition() | |
| 1532 | + | |
| 1533 | + icx, icy, icz = self.viewer.slice_.center | |
| 1534 | + | |
| 1535 | + self.picker.Pick(mx, my, 0, self.viewer.slice_data.renderer) | |
| 1536 | + x, y, z = self.picker.GetPickPosition() | |
| 1537 | + | |
| 1538 | + if self.viewer.orientation == 'AXIAL': | |
| 1539 | + self.viewer.slice_.center = (x, y, icz) | |
| 1540 | + elif self.viewer.orientation == 'CORONAL': | |
| 1541 | + self.viewer.slice_.center = (x, icy, z) | |
| 1542 | + elif self.viewer.orientation == 'SAGITAL': | |
| 1543 | + self.viewer.slice_.center = (icx, y, z) | |
| 1544 | + | |
| 1545 | + | |
| 1546 | + self._discard_buffers() | |
| 1547 | + self.viewer.slice_.current_mask.clear_history() | |
| 1548 | + Publisher.sendMessage('Reload actual slice') | |
| 1549 | + | |
| 1550 | + def _rotate(self): | |
| 1551 | + # Getting mouse position | |
| 1552 | + iren = self.viewer.interactor | |
| 1553 | + mx, my = iren.GetEventPosition() | |
| 1554 | + | |
| 1555 | + cx, cy, cz = self.viewer.slice_.center | |
| 1556 | + | |
| 1557 | + self.picker.Pick(mx, my, 0, self.viewer.slice_data.renderer) | |
| 1558 | + x, y, z = self.picker.GetPickPosition() | |
| 1559 | + | |
| 1560 | + if self.viewer.orientation == 'AXIAL': | |
| 1561 | + p1 = np.array((y-cy, x-cx)) | |
| 1562 | + elif self.viewer.orientation == 'CORONAL': | |
| 1563 | + p1 = np.array((z-cz, x-cx)) | |
| 1564 | + elif self.viewer.orientation == 'SAGITAL': | |
| 1565 | + p1 = np.array((z-cz, y-cy)) | |
| 1566 | + p0 = self.p0 | |
| 1567 | + p1 = self.get_image_point_coord(x, y, z) | |
| 1568 | + | |
| 1569 | + axis = np.cross(p0, p1) | |
| 1570 | + norm = np.linalg.norm(axis) | |
| 1571 | + if norm == 0: | |
| 1572 | + return | |
| 1573 | + axis = axis / norm | |
| 1574 | + angle = np.arccos(np.dot(p0, p1)/(np.linalg.norm(p0)*np.linalg.norm(p1))) | |
| 1575 | + | |
| 1576 | + self.viewer.slice_.q_orientation = transformations.quaternion_multiply(self.viewer.slice_.q_orientation, transformations.quaternion_about_axis(angle, axis)) | |
| 1577 | + | |
| 1578 | + az, ay, ax = transformations.euler_from_quaternion(self.viewer.slice_.q_orientation) | |
| 1579 | + Publisher.sendMessage('Update reorient angles', (ax, ay, az)) | |
| 1580 | + | |
| 1581 | + self._discard_buffers() | |
| 1582 | + self.viewer.slice_.current_mask.clear_history() | |
| 1583 | + Publisher.sendMessage('Reload actual slice %s' % self.viewer.orientation) | |
| 1584 | + self.p0 = self.get_image_point_coord(x, y, z) | |
| 1585 | + | |
| 1586 | + def get_image_point_coord(self, x, y, z): | |
| 1587 | + cx, cy, cz = self.viewer.slice_.center | |
| 1588 | + if self.viewer.orientation == 'AXIAL': | |
| 1589 | + z = cz | |
| 1590 | + elif self.viewer.orientation == 'CORONAL': | |
| 1591 | + y = cy | |
| 1592 | + elif self.viewer.orientation == 'SAGITAL': | |
| 1593 | + x = cx | |
| 1594 | + | |
| 1595 | + x, y, z = x-cx, y-cy, z-cz | |
| 1596 | + | |
| 1597 | + M = transformations.quaternion_matrix(self.viewer.slice_.q_orientation) | |
| 1598 | + tcoord = np.array((z, y, x, 1)).dot(M) | |
| 1599 | + tcoord = tcoord[:3]/tcoord[3] | |
| 1600 | + | |
| 1601 | + # print (z, y, x), tcoord | |
| 1602 | + return tcoord | |
| 1603 | + | |
| 1604 | + def _create_line(self, x0, y0, x1, y1, color): | |
| 1605 | + line = vtk.vtkLineSource() | |
| 1606 | + line.SetPoint1(x0, y0, 0) | |
| 1607 | + line.SetPoint2(x1, y1, 0) | |
| 1608 | + | |
| 1609 | + coord = vtk.vtkCoordinate() | |
| 1610 | + coord.SetCoordinateSystemToDisplay() | |
| 1611 | + | |
| 1612 | + mapper = vtk.vtkPolyDataMapper2D() | |
| 1613 | + mapper.SetTransformCoordinate(coord) | |
| 1614 | + mapper.SetInputConnection(line.GetOutputPort()) | |
| 1615 | + mapper.Update() | |
| 1616 | + | |
| 1617 | + actor = vtk.vtkActor2D() | |
| 1618 | + actor.SetMapper(mapper) | |
| 1619 | + actor.GetProperty().SetLineWidth(2.0) | |
| 1620 | + actor.GetProperty().SetColor(color) | |
| 1621 | + actor.GetProperty().SetOpacity(0.5) | |
| 1622 | + | |
| 1623 | + self.viewer.slice_data.renderer.AddActor(actor) | |
| 1624 | + | |
| 1625 | + self.actors.append(actor) | |
| 1626 | + | |
| 1627 | + return line | |
| 1628 | + | |
| 1629 | + def draw_lines(self): | |
| 1630 | + if self.viewer.orientation == 'AXIAL': | |
| 1631 | + color1 = (0, 1, 0) | |
| 1632 | + color2 = (0, 0, 1) | |
| 1633 | + elif self.viewer.orientation == 'CORONAL': | |
| 1634 | + color1 = (1, 0, 0) | |
| 1635 | + color2 = (0, 0, 1) | |
| 1636 | + elif self.viewer.orientation == 'SAGITAL': | |
| 1637 | + color1 = (1, 0, 0) | |
| 1638 | + color2 = (0, 1, 0) | |
| 1639 | + | |
| 1640 | + self.line1 = self._create_line(0, 0.5, 1, 0.5, color1) | |
| 1641 | + self.line2 = self._create_line(0.5, 0, 0.5, 1, color2) | |
| 1642 | + | |
| 1643 | + def _discard_buffers(self): | |
| 1644 | + for buffer_ in self.viewer.slice_.buffer_slices.values(): | |
| 1645 | + buffer_.discard_vtk_image() | |
| 1646 | + buffer_.discard_image() | |
| 1647 | + | |
| 1408 | 1648 | def get_style(style): |
| 1409 | 1649 | STYLES = { |
| 1410 | - const.STATE_DEFAULT: DefaultInteractorStyle, | |
| 1411 | - const.SLICE_STATE_CROSS: CrossInteractorStyle, | |
| 1412 | - const.STATE_WL: WWWLInteractorStyle, | |
| 1413 | - const.STATE_MEASURE_DISTANCE: LinearMeasureInteractorStyle, | |
| 1414 | - const.STATE_MEASURE_ANGLE: AngularMeasureInteractorStyle, | |
| 1415 | - const.STATE_PAN: PanMoveInteractorStyle, | |
| 1416 | - const.STATE_SPIN: SpinInteractorStyle, | |
| 1417 | - const.STATE_ZOOM: ZoomInteractorStyle, | |
| 1418 | - const.STATE_ZOOM_SL: ZoomSLInteractorStyle, | |
| 1419 | - const.SLICE_STATE_SCROLL: ChangeSliceInteractorStyle, | |
| 1420 | - const.SLICE_STATE_EDITOR: EditorInteractorStyle, | |
| 1421 | - const.SLICE_STATE_WATERSHED: WaterShedInteractorStyle, | |
| 1422 | - } | |
| 1650 | + const.STATE_DEFAULT: DefaultInteractorStyle, | |
| 1651 | + const.SLICE_STATE_CROSS: CrossInteractorStyle, | |
| 1652 | + const.STATE_WL: WWWLInteractorStyle, | |
| 1653 | + const.STATE_MEASURE_DISTANCE: LinearMeasureInteractorStyle, | |
| 1654 | + const.STATE_MEASURE_ANGLE: AngularMeasureInteractorStyle, | |
| 1655 | + const.STATE_PAN: PanMoveInteractorStyle, | |
| 1656 | + const.STATE_SPIN: SpinInteractorStyle, | |
| 1657 | + const.STATE_ZOOM: ZoomInteractorStyle, | |
| 1658 | + const.STATE_ZOOM_SL: ZoomSLInteractorStyle, | |
| 1659 | + const.SLICE_STATE_SCROLL: ChangeSliceInteractorStyle, | |
| 1660 | + const.SLICE_STATE_EDITOR: EditorInteractorStyle, | |
| 1661 | + const.SLICE_STATE_WATERSHED: WaterShedInteractorStyle, | |
| 1662 | + const.SLICE_STATE_REORIENT: ReorientImageInteractorStyle, | |
| 1663 | + } | |
| 1423 | 1664 | return STYLES[style] | ... | ... |
| ... | ... | @@ -0,0 +1,1920 @@ |
| 1 | +# -*- coding: utf-8 -*- | |
| 2 | +# transformations.py | |
| 3 | + | |
| 4 | +# Copyright (c) 2006-2015, Christoph Gohlke | |
| 5 | +# Copyright (c) 2006-2015, The Regents of the University of California | |
| 6 | +# Produced at the Laboratory for Fluorescence Dynamics | |
| 7 | +# All rights reserved. | |
| 8 | +# | |
| 9 | +# Redistribution and use in source and binary forms, with or without | |
| 10 | +# modification, are permitted provided that the following conditions are met: | |
| 11 | +# | |
| 12 | +# * Redistributions of source code must retain the above copyright | |
| 13 | +# notice, this list of conditions and the following disclaimer. | |
| 14 | +# * Redistributions in binary form must reproduce the above copyright | |
| 15 | +# notice, this list of conditions and the following disclaimer in the | |
| 16 | +# documentation and/or other materials provided with the distribution. | |
| 17 | +# * Neither the name of the copyright holders nor the names of any | |
| 18 | +# contributors may be used to endorse or promote products derived | |
| 19 | +# from this software without specific prior written permission. | |
| 20 | +# | |
| 21 | +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
| 22 | +# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
| 23 | +# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
| 24 | +# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | |
| 25 | +# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |
| 26 | +# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | |
| 27 | +# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
| 28 | +# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | |
| 29 | +# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | |
| 30 | +# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | |
| 31 | +# POSSIBILITY OF SUCH DAMAGE. | |
| 32 | + | |
| 33 | +"""Homogeneous Transformation Matrices and Quaternions. | |
| 34 | + | |
| 35 | +A library for calculating 4x4 matrices for translating, rotating, reflecting, | |
| 36 | +scaling, shearing, projecting, orthogonalizing, and superimposing arrays of | |
| 37 | +3D homogeneous coordinates as well as for converting between rotation matrices, | |
| 38 | +Euler angles, and quaternions. Also includes an Arcball control object and | |
| 39 | +functions to decompose transformation matrices. | |
| 40 | + | |
| 41 | +:Author: | |
| 42 | + `Christoph Gohlke <http://www.lfd.uci.edu/~gohlke/>`_ | |
| 43 | + | |
| 44 | +:Organization: | |
| 45 | + Laboratory for Fluorescence Dynamics, University of California, Irvine | |
| 46 | + | |
| 47 | +:Version: 2015.07.18 | |
| 48 | + | |
| 49 | +Requirements | |
| 50 | +------------ | |
| 51 | +* `CPython 2.7 or 3.4 <http://www.python.org>`_ | |
| 52 | +* `Numpy 1.9 <http://www.numpy.org>`_ | |
| 53 | +* `Transformations.c 2015.07.18 <http://www.lfd.uci.edu/~gohlke/>`_ | |
| 54 | + (recommended for speedup of some functions) | |
| 55 | + | |
| 56 | +Notes | |
| 57 | +----- | |
| 58 | +The API is not stable yet and is expected to change between revisions. | |
| 59 | + | |
| 60 | +This Python code is not optimized for speed. Refer to the transformations.c | |
| 61 | +module for a faster implementation of some functions. | |
| 62 | + | |
| 63 | +Documentation in HTML format can be generated with epydoc. | |
| 64 | + | |
| 65 | +Matrices (M) can be inverted using numpy.linalg.inv(M), be concatenated using | |
| 66 | +numpy.dot(M0, M1), or transform homogeneous coordinate arrays (v) using | |
| 67 | +numpy.dot(M, v) for shape (4, \*) column vectors, respectively | |
| 68 | +numpy.dot(v, M.T) for shape (\*, 4) row vectors ("array of points"). | |
| 69 | + | |
| 70 | +This module follows the "column vectors on the right" and "row major storage" | |
| 71 | +(C contiguous) conventions. The translation components are in the right column | |
| 72 | +of the transformation matrix, i.e. M[:3, 3]. | |
| 73 | +The transpose of the transformation matrices may have to be used to interface | |
| 74 | +with other graphics systems, e.g. with OpenGL's glMultMatrixd(). See also [16]. | |
| 75 | + | |
| 76 | +Calculations are carried out with numpy.float64 precision. | |
| 77 | + | |
| 78 | +Vector, point, quaternion, and matrix function arguments are expected to be | |
| 79 | +"array like", i.e. tuple, list, or numpy arrays. | |
| 80 | + | |
| 81 | +Return types are numpy arrays unless specified otherwise. | |
| 82 | + | |
| 83 | +Angles are in radians unless specified otherwise. | |
| 84 | + | |
| 85 | +Quaternions w+ix+jy+kz are represented as [w, x, y, z]. | |
| 86 | + | |
| 87 | +A triple of Euler angles can be applied/interpreted in 24 ways, which can | |
| 88 | +be specified using a 4 character string or encoded 4-tuple: | |
| 89 | + | |
| 90 | + *Axes 4-string*: e.g. 'sxyz' or 'ryxy' | |
| 91 | + | |
| 92 | + - first character : rotations are applied to 's'tatic or 'r'otating frame | |
| 93 | + - remaining characters : successive rotation axis 'x', 'y', or 'z' | |
| 94 | + | |
| 95 | + *Axes 4-tuple*: e.g. (0, 0, 0, 0) or (1, 1, 1, 1) | |
| 96 | + | |
| 97 | + - inner axis: code of axis ('x':0, 'y':1, 'z':2) of rightmost matrix. | |
| 98 | + - parity : even (0) if inner axis 'x' is followed by 'y', 'y' is followed | |
| 99 | + by 'z', or 'z' is followed by 'x'. Otherwise odd (1). | |
| 100 | + - repetition : first and last axis are same (1) or different (0). | |
| 101 | + - frame : rotations are applied to static (0) or rotating (1) frame. | |
| 102 | + | |
| 103 | +Other Python packages and modules for 3D transformations and quaternions: | |
| 104 | + | |
| 105 | +* `Transforms3d <https://pypi.python.org/pypi/transforms3d>`_ | |
| 106 | + includes most code of this module. | |
| 107 | +* `Blender.mathutils <http://www.blender.org/api/blender_python_api>`_ | |
| 108 | +* `numpy-dtypes <https://github.com/numpy/numpy-dtypes>`_ | |
| 109 | + | |
| 110 | +References | |
| 111 | +---------- | |
| 112 | +(1) Matrices and transformations. Ronald Goldman. | |
| 113 | + In "Graphics Gems I", pp 472-475. Morgan Kaufmann, 1990. | |
| 114 | +(2) More matrices and transformations: shear and pseudo-perspective. | |
| 115 | + Ronald Goldman. In "Graphics Gems II", pp 320-323. Morgan Kaufmann, 1991. | |
| 116 | +(3) Decomposing a matrix into simple transformations. Spencer Thomas. | |
| 117 | + In "Graphics Gems II", pp 320-323. Morgan Kaufmann, 1991. | |
| 118 | +(4) Recovering the data from the transformation matrix. Ronald Goldman. | |
| 119 | + In "Graphics Gems II", pp 324-331. Morgan Kaufmann, 1991. | |
| 120 | +(5) Euler angle conversion. Ken Shoemake. | |
| 121 | + In "Graphics Gems IV", pp 222-229. Morgan Kaufmann, 1994. | |
| 122 | +(6) Arcball rotation control. Ken Shoemake. | |
| 123 | + In "Graphics Gems IV", pp 175-192. Morgan Kaufmann, 1994. | |
| 124 | +(7) Representing attitude: Euler angles, unit quaternions, and rotation | |
| 125 | + vectors. James Diebel. 2006. | |
| 126 | +(8) A discussion of the solution for the best rotation to relate two sets | |
| 127 | + of vectors. W Kabsch. Acta Cryst. 1978. A34, 827-828. | |
| 128 | +(9) Closed-form solution of absolute orientation using unit quaternions. | |
| 129 | + BKP Horn. J Opt Soc Am A. 1987. 4(4):629-642. | |
| 130 | +(10) Quaternions. Ken Shoemake. | |
| 131 | + http://www.sfu.ca/~jwa3/cmpt461/files/quatut.pdf | |
| 132 | +(11) From quaternion to matrix and back. JMP van Waveren. 2005. | |
| 133 | + http://www.intel.com/cd/ids/developer/asmo-na/eng/293748.htm | |
| 134 | +(12) Uniform random rotations. Ken Shoemake. | |
| 135 | + In "Graphics Gems III", pp 124-132. Morgan Kaufmann, 1992. | |
| 136 | +(13) Quaternion in molecular modeling. CFF Karney. | |
| 137 | + J Mol Graph Mod, 25(5):595-604 | |
| 138 | +(14) New method for extracting the quaternion from a rotation matrix. | |
| 139 | + Itzhack Y Bar-Itzhack, J Guid Contr Dynam. 2000. 23(6): 1085-1087. | |
| 140 | +(15) Multiple View Geometry in Computer Vision. Hartley and Zissermann. | |
| 141 | + Cambridge University Press; 2nd Ed. 2004. Chapter 4, Algorithm 4.7, p 130. | |
| 142 | +(16) Column Vectors vs. Row Vectors. | |
| 143 | + http://steve.hollasch.net/cgindex/math/matrix/column-vec.html | |
| 144 | + | |
| 145 | +Examples | |
| 146 | +-------- | |
| 147 | +>>> alpha, beta, gamma = 0.123, -1.234, 2.345 | |
| 148 | +>>> origin, xaxis, yaxis, zaxis = [0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1] | |
| 149 | +>>> I = identity_matrix() | |
| 150 | +>>> Rx = rotation_matrix(alpha, xaxis) | |
| 151 | +>>> Ry = rotation_matrix(beta, yaxis) | |
| 152 | +>>> Rz = rotation_matrix(gamma, zaxis) | |
| 153 | +>>> R = concatenate_matrices(Rx, Ry, Rz) | |
| 154 | +>>> euler = euler_from_matrix(R, 'rxyz') | |
| 155 | +>>> numpy.allclose([alpha, beta, gamma], euler) | |
| 156 | +True | |
| 157 | +>>> Re = euler_matrix(alpha, beta, gamma, 'rxyz') | |
| 158 | +>>> is_same_transform(R, Re) | |
| 159 | +True | |
| 160 | +>>> al, be, ga = euler_from_matrix(Re, 'rxyz') | |
| 161 | +>>> is_same_transform(Re, euler_matrix(al, be, ga, 'rxyz')) | |
| 162 | +True | |
| 163 | +>>> qx = quaternion_about_axis(alpha, xaxis) | |
| 164 | +>>> qy = quaternion_about_axis(beta, yaxis) | |
| 165 | +>>> qz = quaternion_about_axis(gamma, zaxis) | |
| 166 | +>>> q = quaternion_multiply(qx, qy) | |
| 167 | +>>> q = quaternion_multiply(q, qz) | |
| 168 | +>>> Rq = quaternion_matrix(q) | |
| 169 | +>>> is_same_transform(R, Rq) | |
| 170 | +True | |
| 171 | +>>> S = scale_matrix(1.23, origin) | |
| 172 | +>>> T = translation_matrix([1, 2, 3]) | |
| 173 | +>>> Z = shear_matrix(beta, xaxis, origin, zaxis) | |
| 174 | +>>> R = random_rotation_matrix(numpy.random.rand(3)) | |
| 175 | +>>> M = concatenate_matrices(T, R, Z, S) | |
| 176 | +>>> scale, shear, angles, trans, persp = decompose_matrix(M) | |
| 177 | +>>> numpy.allclose(scale, 1.23) | |
| 178 | +True | |
| 179 | +>>> numpy.allclose(trans, [1, 2, 3]) | |
| 180 | +True | |
| 181 | +>>> numpy.allclose(shear, [0, math.tan(beta), 0]) | |
| 182 | +True | |
| 183 | +>>> is_same_transform(R, euler_matrix(axes='sxyz', *angles)) | |
| 184 | +True | |
| 185 | +>>> M1 = compose_matrix(scale, shear, angles, trans, persp) | |
| 186 | +>>> is_same_transform(M, M1) | |
| 187 | +True | |
| 188 | +>>> v0, v1 = random_vector(3), random_vector(3) | |
| 189 | +>>> M = rotation_matrix(angle_between_vectors(v0, v1), vector_product(v0, v1)) | |
| 190 | +>>> v2 = numpy.dot(v0, M[:3,:3].T) | |
| 191 | +>>> numpy.allclose(unit_vector(v1), unit_vector(v2)) | |
| 192 | +True | |
| 193 | + | |
| 194 | +""" | |
| 195 | + | |
| 196 | +from __future__ import division, print_function | |
| 197 | + | |
| 198 | +import math | |
| 199 | + | |
| 200 | +import numpy | |
| 201 | + | |
| 202 | +__version__ = '2015.07.18' | |
| 203 | +__docformat__ = 'restructuredtext en' | |
| 204 | +__all__ = () | |
| 205 | + | |
| 206 | + | |
| 207 | +def identity_matrix(): | |
| 208 | + """Return 4x4 identity/unit matrix. | |
| 209 | + | |
| 210 | + >>> I = identity_matrix() | |
| 211 | + >>> numpy.allclose(I, numpy.dot(I, I)) | |
| 212 | + True | |
| 213 | + >>> numpy.sum(I), numpy.trace(I) | |
| 214 | + (4.0, 4.0) | |
| 215 | + >>> numpy.allclose(I, numpy.identity(4)) | |
| 216 | + True | |
| 217 | + | |
| 218 | + """ | |
| 219 | + return numpy.identity(4) | |
| 220 | + | |
| 221 | + | |
| 222 | +def translation_matrix(direction): | |
| 223 | + """Return matrix to translate by direction vector. | |
| 224 | + | |
| 225 | + >>> v = numpy.random.random(3) - 0.5 | |
| 226 | + >>> numpy.allclose(v, translation_matrix(v)[:3, 3]) | |
| 227 | + True | |
| 228 | + | |
| 229 | + """ | |
| 230 | + M = numpy.identity(4) | |
| 231 | + M[:3, 3] = direction[:3] | |
| 232 | + return M | |
| 233 | + | |
| 234 | + | |
| 235 | +def translation_from_matrix(matrix): | |
| 236 | + """Return translation vector from translation matrix. | |
| 237 | + | |
| 238 | + >>> v0 = numpy.random.random(3) - 0.5 | |
| 239 | + >>> v1 = translation_from_matrix(translation_matrix(v0)) | |
| 240 | + >>> numpy.allclose(v0, v1) | |
| 241 | + True | |
| 242 | + | |
| 243 | + """ | |
| 244 | + return numpy.array(matrix, copy=False)[:3, 3].copy() | |
| 245 | + | |
| 246 | + | |
| 247 | +def reflection_matrix(point, normal): | |
| 248 | + """Return matrix to mirror at plane defined by point and normal vector. | |
| 249 | + | |
| 250 | + >>> v0 = numpy.random.random(4) - 0.5 | |
| 251 | + >>> v0[3] = 1. | |
| 252 | + >>> v1 = numpy.random.random(3) - 0.5 | |
| 253 | + >>> R = reflection_matrix(v0, v1) | |
| 254 | + >>> numpy.allclose(2, numpy.trace(R)) | |
| 255 | + True | |
| 256 | + >>> numpy.allclose(v0, numpy.dot(R, v0)) | |
| 257 | + True | |
| 258 | + >>> v2 = v0.copy() | |
| 259 | + >>> v2[:3] += v1 | |
| 260 | + >>> v3 = v0.copy() | |
| 261 | + >>> v2[:3] -= v1 | |
| 262 | + >>> numpy.allclose(v2, numpy.dot(R, v3)) | |
| 263 | + True | |
| 264 | + | |
| 265 | + """ | |
| 266 | + normal = unit_vector(normal[:3]) | |
| 267 | + M = numpy.identity(4) | |
| 268 | + M[:3, :3] -= 2.0 * numpy.outer(normal, normal) | |
| 269 | + M[:3, 3] = (2.0 * numpy.dot(point[:3], normal)) * normal | |
| 270 | + return M | |
| 271 | + | |
| 272 | + | |
| 273 | +def reflection_from_matrix(matrix): | |
| 274 | + """Return mirror plane point and normal vector from reflection matrix. | |
| 275 | + | |
| 276 | + >>> v0 = numpy.random.random(3) - 0.5 | |
| 277 | + >>> v1 = numpy.random.random(3) - 0.5 | |
| 278 | + >>> M0 = reflection_matrix(v0, v1) | |
| 279 | + >>> point, normal = reflection_from_matrix(M0) | |
| 280 | + >>> M1 = reflection_matrix(point, normal) | |
| 281 | + >>> is_same_transform(M0, M1) | |
| 282 | + True | |
| 283 | + | |
| 284 | + """ | |
| 285 | + M = numpy.array(matrix, dtype=numpy.float64, copy=False) | |
| 286 | + # normal: unit eigenvector corresponding to eigenvalue -1 | |
| 287 | + w, V = numpy.linalg.eig(M[:3, :3]) | |
| 288 | + i = numpy.where(abs(numpy.real(w) + 1.0) < 1e-8)[0] | |
| 289 | + if not len(i): | |
| 290 | + raise ValueError("no unit eigenvector corresponding to eigenvalue -1") | |
| 291 | + normal = numpy.real(V[:, i[0]]).squeeze() | |
| 292 | + # point: any unit eigenvector corresponding to eigenvalue 1 | |
| 293 | + w, V = numpy.linalg.eig(M) | |
| 294 | + i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0] | |
| 295 | + if not len(i): | |
| 296 | + raise ValueError("no unit eigenvector corresponding to eigenvalue 1") | |
| 297 | + point = numpy.real(V[:, i[-1]]).squeeze() | |
| 298 | + point /= point[3] | |
| 299 | + return point, normal | |
| 300 | + | |
| 301 | + | |
| 302 | +def rotation_matrix(angle, direction, point=None): | |
| 303 | + """Return matrix to rotate about axis defined by point and direction. | |
| 304 | + | |
| 305 | + >>> R = rotation_matrix(math.pi/2, [0, 0, 1], [1, 0, 0]) | |
| 306 | + >>> numpy.allclose(numpy.dot(R, [0, 0, 0, 1]), [1, -1, 0, 1]) | |
| 307 | + True | |
| 308 | + >>> angle = (random.random() - 0.5) * (2*math.pi) | |
| 309 | + >>> direc = numpy.random.random(3) - 0.5 | |
| 310 | + >>> point = numpy.random.random(3) - 0.5 | |
| 311 | + >>> R0 = rotation_matrix(angle, direc, point) | |
| 312 | + >>> R1 = rotation_matrix(angle-2*math.pi, direc, point) | |
| 313 | + >>> is_same_transform(R0, R1) | |
| 314 | + True | |
| 315 | + >>> R0 = rotation_matrix(angle, direc, point) | |
| 316 | + >>> R1 = rotation_matrix(-angle, -direc, point) | |
| 317 | + >>> is_same_transform(R0, R1) | |
| 318 | + True | |
| 319 | + >>> I = numpy.identity(4, numpy.float64) | |
| 320 | + >>> numpy.allclose(I, rotation_matrix(math.pi*2, direc)) | |
| 321 | + True | |
| 322 | + >>> numpy.allclose(2, numpy.trace(rotation_matrix(math.pi/2, | |
| 323 | + ... direc, point))) | |
| 324 | + True | |
| 325 | + | |
| 326 | + """ | |
| 327 | + sina = math.sin(angle) | |
| 328 | + cosa = math.cos(angle) | |
| 329 | + direction = unit_vector(direction[:3]) | |
| 330 | + # rotation matrix around unit vector | |
| 331 | + R = numpy.diag([cosa, cosa, cosa]) | |
| 332 | + R += numpy.outer(direction, direction) * (1.0 - cosa) | |
| 333 | + direction *= sina | |
| 334 | + R += numpy.array([[ 0.0, -direction[2], direction[1]], | |
| 335 | + [ direction[2], 0.0, -direction[0]], | |
| 336 | + [-direction[1], direction[0], 0.0]]) | |
| 337 | + M = numpy.identity(4) | |
| 338 | + M[:3, :3] = R | |
| 339 | + if point is not None: | |
| 340 | + # rotation not around origin | |
| 341 | + point = numpy.array(point[:3], dtype=numpy.float64, copy=False) | |
| 342 | + M[:3, 3] = point - numpy.dot(R, point) | |
| 343 | + return M | |
| 344 | + | |
| 345 | + | |
| 346 | +def rotation_from_matrix(matrix): | |
| 347 | + """Return rotation angle and axis from rotation matrix. | |
| 348 | + | |
| 349 | + >>> angle = (random.random() - 0.5) * (2*math.pi) | |
| 350 | + >>> direc = numpy.random.random(3) - 0.5 | |
| 351 | + >>> point = numpy.random.random(3) - 0.5 | |
| 352 | + >>> R0 = rotation_matrix(angle, direc, point) | |
| 353 | + >>> angle, direc, point = rotation_from_matrix(R0) | |
| 354 | + >>> R1 = rotation_matrix(angle, direc, point) | |
| 355 | + >>> is_same_transform(R0, R1) | |
| 356 | + True | |
| 357 | + | |
| 358 | + """ | |
| 359 | + R = numpy.array(matrix, dtype=numpy.float64, copy=False) | |
| 360 | + R33 = R[:3, :3] | |
| 361 | + # direction: unit eigenvector of R33 corresponding to eigenvalue of 1 | |
| 362 | + w, W = numpy.linalg.eig(R33.T) | |
| 363 | + i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0] | |
| 364 | + if not len(i): | |
| 365 | + raise ValueError("no unit eigenvector corresponding to eigenvalue 1") | |
| 366 | + direction = numpy.real(W[:, i[-1]]).squeeze() | |
| 367 | + # point: unit eigenvector of R33 corresponding to eigenvalue of 1 | |
| 368 | + w, Q = numpy.linalg.eig(R) | |
| 369 | + i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0] | |
| 370 | + if not len(i): | |
| 371 | + raise ValueError("no unit eigenvector corresponding to eigenvalue 1") | |
| 372 | + point = numpy.real(Q[:, i[-1]]).squeeze() | |
| 373 | + point /= point[3] | |
| 374 | + # rotation angle depending on direction | |
| 375 | + cosa = (numpy.trace(R33) - 1.0) / 2.0 | |
| 376 | + if abs(direction[2]) > 1e-8: | |
| 377 | + sina = (R[1, 0] + (cosa-1.0)*direction[0]*direction[1]) / direction[2] | |
| 378 | + elif abs(direction[1]) > 1e-8: | |
| 379 | + sina = (R[0, 2] + (cosa-1.0)*direction[0]*direction[2]) / direction[1] | |
| 380 | + else: | |
| 381 | + sina = (R[2, 1] + (cosa-1.0)*direction[1]*direction[2]) / direction[0] | |
| 382 | + angle = math.atan2(sina, cosa) | |
| 383 | + return angle, direction, point | |
| 384 | + | |
| 385 | + | |
| 386 | +def scale_matrix(factor, origin=None, direction=None): | |
| 387 | + """Return matrix to scale by factor around origin in direction. | |
| 388 | + | |
| 389 | + Use factor -1 for point symmetry. | |
| 390 | + | |
| 391 | + >>> v = (numpy.random.rand(4, 5) - 0.5) * 20 | |
| 392 | + >>> v[3] = 1 | |
| 393 | + >>> S = scale_matrix(-1.234) | |
| 394 | + >>> numpy.allclose(numpy.dot(S, v)[:3], -1.234*v[:3]) | |
| 395 | + True | |
| 396 | + >>> factor = random.random() * 10 - 5 | |
| 397 | + >>> origin = numpy.random.random(3) - 0.5 | |
| 398 | + >>> direct = numpy.random.random(3) - 0.5 | |
| 399 | + >>> S = scale_matrix(factor, origin) | |
| 400 | + >>> S = scale_matrix(factor, origin, direct) | |
| 401 | + | |
| 402 | + """ | |
| 403 | + if direction is None: | |
| 404 | + # uniform scaling | |
| 405 | + M = numpy.diag([factor, factor, factor, 1.0]) | |
| 406 | + if origin is not None: | |
| 407 | + M[:3, 3] = origin[:3] | |
| 408 | + M[:3, 3] *= 1.0 - factor | |
| 409 | + else: | |
| 410 | + # nonuniform scaling | |
| 411 | + direction = unit_vector(direction[:3]) | |
| 412 | + factor = 1.0 - factor | |
| 413 | + M = numpy.identity(4) | |
| 414 | + M[:3, :3] -= factor * numpy.outer(direction, direction) | |
| 415 | + if origin is not None: | |
| 416 | + M[:3, 3] = (factor * numpy.dot(origin[:3], direction)) * direction | |
| 417 | + return M | |
| 418 | + | |
| 419 | + | |
| 420 | +def scale_from_matrix(matrix): | |
| 421 | + """Return scaling factor, origin and direction from scaling matrix. | |
| 422 | + | |
| 423 | + >>> factor = random.random() * 10 - 5 | |
| 424 | + >>> origin = numpy.random.random(3) - 0.5 | |
| 425 | + >>> direct = numpy.random.random(3) - 0.5 | |
| 426 | + >>> S0 = scale_matrix(factor, origin) | |
| 427 | + >>> factor, origin, direction = scale_from_matrix(S0) | |
| 428 | + >>> S1 = scale_matrix(factor, origin, direction) | |
| 429 | + >>> is_same_transform(S0, S1) | |
| 430 | + True | |
| 431 | + >>> S0 = scale_matrix(factor, origin, direct) | |
| 432 | + >>> factor, origin, direction = scale_from_matrix(S0) | |
| 433 | + >>> S1 = scale_matrix(factor, origin, direction) | |
| 434 | + >>> is_same_transform(S0, S1) | |
| 435 | + True | |
| 436 | + | |
| 437 | + """ | |
| 438 | + M = numpy.array(matrix, dtype=numpy.float64, copy=False) | |
| 439 | + M33 = M[:3, :3] | |
| 440 | + factor = numpy.trace(M33) - 2.0 | |
| 441 | + try: | |
| 442 | + # direction: unit eigenvector corresponding to eigenvalue factor | |
| 443 | + w, V = numpy.linalg.eig(M33) | |
| 444 | + i = numpy.where(abs(numpy.real(w) - factor) < 1e-8)[0][0] | |
| 445 | + direction = numpy.real(V[:, i]).squeeze() | |
| 446 | + direction /= vector_norm(direction) | |
| 447 | + except IndexError: | |
| 448 | + # uniform scaling | |
| 449 | + factor = (factor + 2.0) / 3.0 | |
| 450 | + direction = None | |
| 451 | + # origin: any eigenvector corresponding to eigenvalue 1 | |
| 452 | + w, V = numpy.linalg.eig(M) | |
| 453 | + i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0] | |
| 454 | + if not len(i): | |
| 455 | + raise ValueError("no eigenvector corresponding to eigenvalue 1") | |
| 456 | + origin = numpy.real(V[:, i[-1]]).squeeze() | |
| 457 | + origin /= origin[3] | |
| 458 | + return factor, origin, direction | |
| 459 | + | |
| 460 | + | |
| 461 | +def projection_matrix(point, normal, direction=None, | |
| 462 | + perspective=None, pseudo=False): | |
| 463 | + """Return matrix to project onto plane defined by point and normal. | |
| 464 | + | |
| 465 | + Using either perspective point, projection direction, or none of both. | |
| 466 | + | |
| 467 | + If pseudo is True, perspective projections will preserve relative depth | |
| 468 | + such that Perspective = dot(Orthogonal, PseudoPerspective). | |
| 469 | + | |
| 470 | + >>> P = projection_matrix([0, 0, 0], [1, 0, 0]) | |
| 471 | + >>> numpy.allclose(P[1:, 1:], numpy.identity(4)[1:, 1:]) | |
| 472 | + True | |
| 473 | + >>> point = numpy.random.random(3) - 0.5 | |
| 474 | + >>> normal = numpy.random.random(3) - 0.5 | |
| 475 | + >>> direct = numpy.random.random(3) - 0.5 | |
| 476 | + >>> persp = numpy.random.random(3) - 0.5 | |
| 477 | + >>> P0 = projection_matrix(point, normal) | |
| 478 | + >>> P1 = projection_matrix(point, normal, direction=direct) | |
| 479 | + >>> P2 = projection_matrix(point, normal, perspective=persp) | |
| 480 | + >>> P3 = projection_matrix(point, normal, perspective=persp, pseudo=True) | |
| 481 | + >>> is_same_transform(P2, numpy.dot(P0, P3)) | |
| 482 | + True | |
| 483 | + >>> P = projection_matrix([3, 0, 0], [1, 1, 0], [1, 0, 0]) | |
| 484 | + >>> v0 = (numpy.random.rand(4, 5) - 0.5) * 20 | |
| 485 | + >>> v0[3] = 1 | |
| 486 | + >>> v1 = numpy.dot(P, v0) | |
| 487 | + >>> numpy.allclose(v1[1], v0[1]) | |
| 488 | + True | |
| 489 | + >>> numpy.allclose(v1[0], 3-v1[1]) | |
| 490 | + True | |
| 491 | + | |
| 492 | + """ | |
| 493 | + M = numpy.identity(4) | |
| 494 | + point = numpy.array(point[:3], dtype=numpy.float64, copy=False) | |
| 495 | + normal = unit_vector(normal[:3]) | |
| 496 | + if perspective is not None: | |
| 497 | + # perspective projection | |
| 498 | + perspective = numpy.array(perspective[:3], dtype=numpy.float64, | |
| 499 | + copy=False) | |
| 500 | + M[0, 0] = M[1, 1] = M[2, 2] = numpy.dot(perspective-point, normal) | |
| 501 | + M[:3, :3] -= numpy.outer(perspective, normal) | |
| 502 | + if pseudo: | |
| 503 | + # preserve relative depth | |
| 504 | + M[:3, :3] -= numpy.outer(normal, normal) | |
| 505 | + M[:3, 3] = numpy.dot(point, normal) * (perspective+normal) | |
| 506 | + else: | |
| 507 | + M[:3, 3] = numpy.dot(point, normal) * perspective | |
| 508 | + M[3, :3] = -normal | |
| 509 | + M[3, 3] = numpy.dot(perspective, normal) | |
| 510 | + elif direction is not None: | |
| 511 | + # parallel projection | |
| 512 | + direction = numpy.array(direction[:3], dtype=numpy.float64, copy=False) | |
| 513 | + scale = numpy.dot(direction, normal) | |
| 514 | + M[:3, :3] -= numpy.outer(direction, normal) / scale | |
| 515 | + M[:3, 3] = direction * (numpy.dot(point, normal) / scale) | |
| 516 | + else: | |
| 517 | + # orthogonal projection | |
| 518 | + M[:3, :3] -= numpy.outer(normal, normal) | |
| 519 | + M[:3, 3] = numpy.dot(point, normal) * normal | |
| 520 | + return M | |
| 521 | + | |
| 522 | + | |
| 523 | +def projection_from_matrix(matrix, pseudo=False): | |
| 524 | + """Return projection plane and perspective point from projection matrix. | |
| 525 | + | |
| 526 | + Return values are same as arguments for projection_matrix function: | |
| 527 | + point, normal, direction, perspective, and pseudo. | |
| 528 | + | |
| 529 | + >>> point = numpy.random.random(3) - 0.5 | |
| 530 | + >>> normal = numpy.random.random(3) - 0.5 | |
| 531 | + >>> direct = numpy.random.random(3) - 0.5 | |
| 532 | + >>> persp = numpy.random.random(3) - 0.5 | |
| 533 | + >>> P0 = projection_matrix(point, normal) | |
| 534 | + >>> result = projection_from_matrix(P0) | |
| 535 | + >>> P1 = projection_matrix(*result) | |
| 536 | + >>> is_same_transform(P0, P1) | |
| 537 | + True | |
| 538 | + >>> P0 = projection_matrix(point, normal, direct) | |
| 539 | + >>> result = projection_from_matrix(P0) | |
| 540 | + >>> P1 = projection_matrix(*result) | |
| 541 | + >>> is_same_transform(P0, P1) | |
| 542 | + True | |
| 543 | + >>> P0 = projection_matrix(point, normal, perspective=persp, pseudo=False) | |
| 544 | + >>> result = projection_from_matrix(P0, pseudo=False) | |
| 545 | + >>> P1 = projection_matrix(*result) | |
| 546 | + >>> is_same_transform(P0, P1) | |
| 547 | + True | |
| 548 | + >>> P0 = projection_matrix(point, normal, perspective=persp, pseudo=True) | |
| 549 | + >>> result = projection_from_matrix(P0, pseudo=True) | |
| 550 | + >>> P1 = projection_matrix(*result) | |
| 551 | + >>> is_same_transform(P0, P1) | |
| 552 | + True | |
| 553 | + | |
| 554 | + """ | |
| 555 | + M = numpy.array(matrix, dtype=numpy.float64, copy=False) | |
| 556 | + M33 = M[:3, :3] | |
| 557 | + w, V = numpy.linalg.eig(M) | |
| 558 | + i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0] | |
| 559 | + if not pseudo and len(i): | |
| 560 | + # point: any eigenvector corresponding to eigenvalue 1 | |
| 561 | + point = numpy.real(V[:, i[-1]]).squeeze() | |
| 562 | + point /= point[3] | |
| 563 | + # direction: unit eigenvector corresponding to eigenvalue 0 | |
| 564 | + w, V = numpy.linalg.eig(M33) | |
| 565 | + i = numpy.where(abs(numpy.real(w)) < 1e-8)[0] | |
| 566 | + if not len(i): | |
| 567 | + raise ValueError("no eigenvector corresponding to eigenvalue 0") | |
| 568 | + direction = numpy.real(V[:, i[0]]).squeeze() | |
| 569 | + direction /= vector_norm(direction) | |
| 570 | + # normal: unit eigenvector of M33.T corresponding to eigenvalue 0 | |
| 571 | + w, V = numpy.linalg.eig(M33.T) | |
| 572 | + i = numpy.where(abs(numpy.real(w)) < 1e-8)[0] | |
| 573 | + if len(i): | |
| 574 | + # parallel projection | |
| 575 | + normal = numpy.real(V[:, i[0]]).squeeze() | |
| 576 | + normal /= vector_norm(normal) | |
| 577 | + return point, normal, direction, None, False | |
| 578 | + else: | |
| 579 | + # orthogonal projection, where normal equals direction vector | |
| 580 | + return point, direction, None, None, False | |
| 581 | + else: | |
| 582 | + # perspective projection | |
| 583 | + i = numpy.where(abs(numpy.real(w)) > 1e-8)[0] | |
| 584 | + if not len(i): | |
| 585 | + raise ValueError( | |
| 586 | + "no eigenvector not corresponding to eigenvalue 0") | |
| 587 | + point = numpy.real(V[:, i[-1]]).squeeze() | |
| 588 | + point /= point[3] | |
| 589 | + normal = - M[3, :3] | |
| 590 | + perspective = M[:3, 3] / numpy.dot(point[:3], normal) | |
| 591 | + if pseudo: | |
| 592 | + perspective -= normal | |
| 593 | + return point, normal, None, perspective, pseudo | |
| 594 | + | |
| 595 | + | |
| 596 | +def clip_matrix(left, right, bottom, top, near, far, perspective=False): | |
| 597 | + """Return matrix to obtain normalized device coordinates from frustum. | |
| 598 | + | |
| 599 | + The frustum bounds are axis-aligned along x (left, right), | |
| 600 | + y (bottom, top) and z (near, far). | |
| 601 | + | |
| 602 | + Normalized device coordinates are in range [-1, 1] if coordinates are | |
| 603 | + inside the frustum. | |
| 604 | + | |
| 605 | + If perspective is True the frustum is a truncated pyramid with the | |
| 606 | + perspective point at origin and direction along z axis, otherwise an | |
| 607 | + orthographic canonical view volume (a box). | |
| 608 | + | |
| 609 | + Homogeneous coordinates transformed by the perspective clip matrix | |
| 610 | + need to be dehomogenized (divided by w coordinate). | |
| 611 | + | |
| 612 | + >>> frustum = numpy.random.rand(6) | |
| 613 | + >>> frustum[1] += frustum[0] | |
| 614 | + >>> frustum[3] += frustum[2] | |
| 615 | + >>> frustum[5] += frustum[4] | |
| 616 | + >>> M = clip_matrix(perspective=False, *frustum) | |
| 617 | + >>> numpy.dot(M, [frustum[0], frustum[2], frustum[4], 1]) | |
| 618 | + array([-1., -1., -1., 1.]) | |
| 619 | + >>> numpy.dot(M, [frustum[1], frustum[3], frustum[5], 1]) | |
| 620 | + array([ 1., 1., 1., 1.]) | |
| 621 | + >>> M = clip_matrix(perspective=True, *frustum) | |
| 622 | + >>> v = numpy.dot(M, [frustum[0], frustum[2], frustum[4], 1]) | |
| 623 | + >>> v / v[3] | |
| 624 | + array([-1., -1., -1., 1.]) | |
| 625 | + >>> v = numpy.dot(M, [frustum[1], frustum[3], frustum[4], 1]) | |
| 626 | + >>> v / v[3] | |
| 627 | + array([ 1., 1., -1., 1.]) | |
| 628 | + | |
| 629 | + """ | |
| 630 | + if left >= right or bottom >= top or near >= far: | |
| 631 | + raise ValueError("invalid frustum") | |
| 632 | + if perspective: | |
| 633 | + if near <= _EPS: | |
| 634 | + raise ValueError("invalid frustum: near <= 0") | |
| 635 | + t = 2.0 * near | |
| 636 | + M = [[t/(left-right), 0.0, (right+left)/(right-left), 0.0], | |
| 637 | + [0.0, t/(bottom-top), (top+bottom)/(top-bottom), 0.0], | |
| 638 | + [0.0, 0.0, (far+near)/(near-far), t*far/(far-near)], | |
| 639 | + [0.0, 0.0, -1.0, 0.0]] | |
| 640 | + else: | |
| 641 | + M = [[2.0/(right-left), 0.0, 0.0, (right+left)/(left-right)], | |
| 642 | + [0.0, 2.0/(top-bottom), 0.0, (top+bottom)/(bottom-top)], | |
| 643 | + [0.0, 0.0, 2.0/(far-near), (far+near)/(near-far)], | |
| 644 | + [0.0, 0.0, 0.0, 1.0]] | |
| 645 | + return numpy.array(M) | |
| 646 | + | |
| 647 | + | |
| 648 | +def shear_matrix(angle, direction, point, normal): | |
| 649 | + """Return matrix to shear by angle along direction vector on shear plane. | |
| 650 | + | |
| 651 | + The shear plane is defined by a point and normal vector. The direction | |
| 652 | + vector must be orthogonal to the plane's normal vector. | |
| 653 | + | |
| 654 | + A point P is transformed by the shear matrix into P" such that | |
| 655 | + the vector P-P" is parallel to the direction vector and its extent is | |
| 656 | + given by the angle of P-P'-P", where P' is the orthogonal projection | |
| 657 | + of P onto the shear plane. | |
| 658 | + | |
| 659 | + >>> angle = (random.random() - 0.5) * 4*math.pi | |
| 660 | + >>> direct = numpy.random.random(3) - 0.5 | |
| 661 | + >>> point = numpy.random.random(3) - 0.5 | |
| 662 | + >>> normal = numpy.cross(direct, numpy.random.random(3)) | |
| 663 | + >>> S = shear_matrix(angle, direct, point, normal) | |
| 664 | + >>> numpy.allclose(1, numpy.linalg.det(S)) | |
| 665 | + True | |
| 666 | + | |
| 667 | + """ | |
| 668 | + normal = unit_vector(normal[:3]) | |
| 669 | + direction = unit_vector(direction[:3]) | |
| 670 | + if abs(numpy.dot(normal, direction)) > 1e-6: | |
| 671 | + raise ValueError("direction and normal vectors are not orthogonal") | |
| 672 | + angle = math.tan(angle) | |
| 673 | + M = numpy.identity(4) | |
| 674 | + M[:3, :3] += angle * numpy.outer(direction, normal) | |
| 675 | + M[:3, 3] = -angle * numpy.dot(point[:3], normal) * direction | |
| 676 | + return M | |
| 677 | + | |
| 678 | + | |
| 679 | +def shear_from_matrix(matrix): | |
| 680 | + """Return shear angle, direction and plane from shear matrix. | |
| 681 | + | |
| 682 | + >>> angle = (random.random() - 0.5) * 4*math.pi | |
| 683 | + >>> direct = numpy.random.random(3) - 0.5 | |
| 684 | + >>> point = numpy.random.random(3) - 0.5 | |
| 685 | + >>> normal = numpy.cross(direct, numpy.random.random(3)) | |
| 686 | + >>> S0 = shear_matrix(angle, direct, point, normal) | |
| 687 | + >>> angle, direct, point, normal = shear_from_matrix(S0) | |
| 688 | + >>> S1 = shear_matrix(angle, direct, point, normal) | |
| 689 | + >>> is_same_transform(S0, S1) | |
| 690 | + True | |
| 691 | + | |
| 692 | + """ | |
| 693 | + M = numpy.array(matrix, dtype=numpy.float64, copy=False) | |
| 694 | + M33 = M[:3, :3] | |
| 695 | + # normal: cross independent eigenvectors corresponding to the eigenvalue 1 | |
| 696 | + w, V = numpy.linalg.eig(M33) | |
| 697 | + i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-4)[0] | |
| 698 | + if len(i) < 2: | |
| 699 | + raise ValueError("no two linear independent eigenvectors found %s" % w) | |
| 700 | + V = numpy.real(V[:, i]).squeeze().T | |
| 701 | + lenorm = -1.0 | |
| 702 | + for i0, i1 in ((0, 1), (0, 2), (1, 2)): | |
| 703 | + n = numpy.cross(V[i0], V[i1]) | |
| 704 | + w = vector_norm(n) | |
| 705 | + if w > lenorm: | |
| 706 | + lenorm = w | |
| 707 | + normal = n | |
| 708 | + normal /= lenorm | |
| 709 | + # direction and angle | |
| 710 | + direction = numpy.dot(M33 - numpy.identity(3), normal) | |
| 711 | + angle = vector_norm(direction) | |
| 712 | + direction /= angle | |
| 713 | + angle = math.atan(angle) | |
| 714 | + # point: eigenvector corresponding to eigenvalue 1 | |
| 715 | + w, V = numpy.linalg.eig(M) | |
| 716 | + i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0] | |
| 717 | + if not len(i): | |
| 718 | + raise ValueError("no eigenvector corresponding to eigenvalue 1") | |
| 719 | + point = numpy.real(V[:, i[-1]]).squeeze() | |
| 720 | + point /= point[3] | |
| 721 | + return angle, direction, point, normal | |
| 722 | + | |
| 723 | + | |
| 724 | +def decompose_matrix(matrix): | |
| 725 | + """Return sequence of transformations from transformation matrix. | |
| 726 | + | |
| 727 | + matrix : array_like | |
| 728 | + Non-degenerative homogeneous transformation matrix | |
| 729 | + | |
| 730 | + Return tuple of: | |
| 731 | + scale : vector of 3 scaling factors | |
| 732 | + shear : list of shear factors for x-y, x-z, y-z axes | |
| 733 | + angles : list of Euler angles about static x, y, z axes | |
| 734 | + translate : translation vector along x, y, z axes | |
| 735 | + perspective : perspective partition of matrix | |
| 736 | + | |
| 737 | + Raise ValueError if matrix is of wrong type or degenerative. | |
| 738 | + | |
| 739 | + >>> T0 = translation_matrix([1, 2, 3]) | |
| 740 | + >>> scale, shear, angles, trans, persp = decompose_matrix(T0) | |
| 741 | + >>> T1 = translation_matrix(trans) | |
| 742 | + >>> numpy.allclose(T0, T1) | |
| 743 | + True | |
| 744 | + >>> S = scale_matrix(0.123) | |
| 745 | + >>> scale, shear, angles, trans, persp = decompose_matrix(S) | |
| 746 | + >>> scale[0] | |
| 747 | + 0.123 | |
| 748 | + >>> R0 = euler_matrix(1, 2, 3) | |
| 749 | + >>> scale, shear, angles, trans, persp = decompose_matrix(R0) | |
| 750 | + >>> R1 = euler_matrix(*angles) | |
| 751 | + >>> numpy.allclose(R0, R1) | |
| 752 | + True | |
| 753 | + | |
| 754 | + """ | |
| 755 | + M = numpy.array(matrix, dtype=numpy.float64, copy=True).T | |
| 756 | + if abs(M[3, 3]) < _EPS: | |
| 757 | + raise ValueError("M[3, 3] is zero") | |
| 758 | + M /= M[3, 3] | |
| 759 | + P = M.copy() | |
| 760 | + P[:, 3] = 0.0, 0.0, 0.0, 1.0 | |
| 761 | + if not numpy.linalg.det(P): | |
| 762 | + raise ValueError("matrix is singular") | |
| 763 | + | |
| 764 | + scale = numpy.zeros((3, )) | |
| 765 | + shear = [0.0, 0.0, 0.0] | |
| 766 | + angles = [0.0, 0.0, 0.0] | |
| 767 | + | |
| 768 | + if any(abs(M[:3, 3]) > _EPS): | |
| 769 | + perspective = numpy.dot(M[:, 3], numpy.linalg.inv(P.T)) | |
| 770 | + M[:, 3] = 0.0, 0.0, 0.0, 1.0 | |
| 771 | + else: | |
| 772 | + perspective = numpy.array([0.0, 0.0, 0.0, 1.0]) | |
| 773 | + | |
| 774 | + translate = M[3, :3].copy() | |
| 775 | + M[3, :3] = 0.0 | |
| 776 | + | |
| 777 | + row = M[:3, :3].copy() | |
| 778 | + scale[0] = vector_norm(row[0]) | |
| 779 | + row[0] /= scale[0] | |
| 780 | + shear[0] = numpy.dot(row[0], row[1]) | |
| 781 | + row[1] -= row[0] * shear[0] | |
| 782 | + scale[1] = vector_norm(row[1]) | |
| 783 | + row[1] /= scale[1] | |
| 784 | + shear[0] /= scale[1] | |
| 785 | + shear[1] = numpy.dot(row[0], row[2]) | |
| 786 | + row[2] -= row[0] * shear[1] | |
| 787 | + shear[2] = numpy.dot(row[1], row[2]) | |
| 788 | + row[2] -= row[1] * shear[2] | |
| 789 | + scale[2] = vector_norm(row[2]) | |
| 790 | + row[2] /= scale[2] | |
| 791 | + shear[1:] /= scale[2] | |
| 792 | + | |
| 793 | + if numpy.dot(row[0], numpy.cross(row[1], row[2])) < 0: | |
| 794 | + numpy.negative(scale, scale) | |
| 795 | + numpy.negative(row, row) | |
| 796 | + | |
| 797 | + angles[1] = math.asin(-row[0, 2]) | |
| 798 | + if math.cos(angles[1]): | |
| 799 | + angles[0] = math.atan2(row[1, 2], row[2, 2]) | |
| 800 | + angles[2] = math.atan2(row[0, 1], row[0, 0]) | |
| 801 | + else: | |
| 802 | + #angles[0] = math.atan2(row[1, 0], row[1, 1]) | |
| 803 | + angles[0] = math.atan2(-row[2, 1], row[1, 1]) | |
| 804 | + angles[2] = 0.0 | |
| 805 | + | |
| 806 | + return scale, shear, angles, translate, perspective | |
| 807 | + | |
| 808 | + | |
| 809 | +def compose_matrix(scale=None, shear=None, angles=None, translate=None, | |
| 810 | + perspective=None): | |
| 811 | + """Return transformation matrix from sequence of transformations. | |
| 812 | + | |
| 813 | + This is the inverse of the decompose_matrix function. | |
| 814 | + | |
| 815 | + Sequence of transformations: | |
| 816 | + scale : vector of 3 scaling factors | |
| 817 | + shear : list of shear factors for x-y, x-z, y-z axes | |
| 818 | + angles : list of Euler angles about static x, y, z axes | |
| 819 | + translate : translation vector along x, y, z axes | |
| 820 | + perspective : perspective partition of matrix | |
| 821 | + | |
| 822 | + >>> scale = numpy.random.random(3) - 0.5 | |
| 823 | + >>> shear = numpy.random.random(3) - 0.5 | |
| 824 | + >>> angles = (numpy.random.random(3) - 0.5) * (2*math.pi) | |
| 825 | + >>> trans = numpy.random.random(3) - 0.5 | |
| 826 | + >>> persp = numpy.random.random(4) - 0.5 | |
| 827 | + >>> M0 = compose_matrix(scale, shear, angles, trans, persp) | |
| 828 | + >>> result = decompose_matrix(M0) | |
| 829 | + >>> M1 = compose_matrix(*result) | |
| 830 | + >>> is_same_transform(M0, M1) | |
| 831 | + True | |
| 832 | + | |
| 833 | + """ | |
| 834 | + M = numpy.identity(4) | |
| 835 | + if perspective is not None: | |
| 836 | + P = numpy.identity(4) | |
| 837 | + P[3, :] = perspective[:4] | |
| 838 | + M = numpy.dot(M, P) | |
| 839 | + if translate is not None: | |
| 840 | + T = numpy.identity(4) | |
| 841 | + T[:3, 3] = translate[:3] | |
| 842 | + M = numpy.dot(M, T) | |
| 843 | + if angles is not None: | |
| 844 | + R = euler_matrix(angles[0], angles[1], angles[2], 'sxyz') | |
| 845 | + M = numpy.dot(M, R) | |
| 846 | + if shear is not None: | |
| 847 | + Z = numpy.identity(4) | |
| 848 | + Z[1, 2] = shear[2] | |
| 849 | + Z[0, 2] = shear[1] | |
| 850 | + Z[0, 1] = shear[0] | |
| 851 | + M = numpy.dot(M, Z) | |
| 852 | + if scale is not None: | |
| 853 | + S = numpy.identity(4) | |
| 854 | + S[0, 0] = scale[0] | |
| 855 | + S[1, 1] = scale[1] | |
| 856 | + S[2, 2] = scale[2] | |
| 857 | + M = numpy.dot(M, S) | |
| 858 | + M /= M[3, 3] | |
| 859 | + return M | |
| 860 | + | |
| 861 | + | |
| 862 | +def orthogonalization_matrix(lengths, angles): | |
| 863 | + """Return orthogonalization matrix for crystallographic cell coordinates. | |
| 864 | + | |
| 865 | + Angles are expected in degrees. | |
| 866 | + | |
| 867 | + The de-orthogonalization matrix is the inverse. | |
| 868 | + | |
| 869 | + >>> O = orthogonalization_matrix([10, 10, 10], [90, 90, 90]) | |
| 870 | + >>> numpy.allclose(O[:3, :3], numpy.identity(3, float) * 10) | |
| 871 | + True | |
| 872 | + >>> O = orthogonalization_matrix([9.8, 12.0, 15.5], [87.2, 80.7, 69.7]) | |
| 873 | + >>> numpy.allclose(numpy.sum(O), 43.063229) | |
| 874 | + True | |
| 875 | + | |
| 876 | + """ | |
| 877 | + a, b, c = lengths | |
| 878 | + angles = numpy.radians(angles) | |
| 879 | + sina, sinb, _ = numpy.sin(angles) | |
| 880 | + cosa, cosb, cosg = numpy.cos(angles) | |
| 881 | + co = (cosa * cosb - cosg) / (sina * sinb) | |
| 882 | + return numpy.array([ | |
| 883 | + [ a*sinb*math.sqrt(1.0-co*co), 0.0, 0.0, 0.0], | |
| 884 | + [-a*sinb*co, b*sina, 0.0, 0.0], | |
| 885 | + [ a*cosb, b*cosa, c, 0.0], | |
| 886 | + [ 0.0, 0.0, 0.0, 1.0]]) | |
| 887 | + | |
| 888 | + | |
| 889 | +def affine_matrix_from_points(v0, v1, shear=True, scale=True, usesvd=True): | |
| 890 | + """Return affine transform matrix to register two point sets. | |
| 891 | + | |
| 892 | + v0 and v1 are shape (ndims, \*) arrays of at least ndims non-homogeneous | |
| 893 | + coordinates, where ndims is the dimensionality of the coordinate space. | |
| 894 | + | |
| 895 | + If shear is False, a similarity transformation matrix is returned. | |
| 896 | + If also scale is False, a rigid/Euclidean transformation matrix | |
| 897 | + is returned. | |
| 898 | + | |
| 899 | + By default the algorithm by Hartley and Zissermann [15] is used. | |
| 900 | + If usesvd is True, similarity and Euclidean transformation matrices | |
| 901 | + are calculated by minimizing the weighted sum of squared deviations | |
| 902 | + (RMSD) according to the algorithm by Kabsch [8]. | |
| 903 | + Otherwise, and if ndims is 3, the quaternion based algorithm by Horn [9] | |
| 904 | + is used, which is slower when using this Python implementation. | |
| 905 | + | |
| 906 | + The returned matrix performs rotation, translation and uniform scaling | |
| 907 | + (if specified). | |
| 908 | + | |
| 909 | + >>> v0 = [[0, 1031, 1031, 0], [0, 0, 1600, 1600]] | |
| 910 | + >>> v1 = [[675, 826, 826, 677], [55, 52, 281, 277]] | |
| 911 | + >>> affine_matrix_from_points(v0, v1) | |
| 912 | + array([[ 0.14549, 0.00062, 675.50008], | |
| 913 | + [ 0.00048, 0.14094, 53.24971], | |
| 914 | + [ 0. , 0. , 1. ]]) | |
| 915 | + >>> T = translation_matrix(numpy.random.random(3)-0.5) | |
| 916 | + >>> R = random_rotation_matrix(numpy.random.random(3)) | |
| 917 | + >>> S = scale_matrix(random.random()) | |
| 918 | + >>> M = concatenate_matrices(T, R, S) | |
| 919 | + >>> v0 = (numpy.random.rand(4, 100) - 0.5) * 20 | |
| 920 | + >>> v0[3] = 1 | |
| 921 | + >>> v1 = numpy.dot(M, v0) | |
| 922 | + >>> v0[:3] += numpy.random.normal(0, 1e-8, 300).reshape(3, -1) | |
| 923 | + >>> M = affine_matrix_from_points(v0[:3], v1[:3]) | |
| 924 | + >>> numpy.allclose(v1, numpy.dot(M, v0)) | |
| 925 | + True | |
| 926 | + | |
| 927 | + More examples in superimposition_matrix() | |
| 928 | + | |
| 929 | + """ | |
| 930 | + v0 = numpy.array(v0, dtype=numpy.float64, copy=True) | |
| 931 | + v1 = numpy.array(v1, dtype=numpy.float64, copy=True) | |
| 932 | + | |
| 933 | + ndims = v0.shape[0] | |
| 934 | + if ndims < 2 or v0.shape[1] < ndims or v0.shape != v1.shape: | |
| 935 | + raise ValueError("input arrays are of wrong shape or type") | |
| 936 | + | |
| 937 | + # move centroids to origin | |
| 938 | + t0 = -numpy.mean(v0, axis=1) | |
| 939 | + M0 = numpy.identity(ndims+1) | |
| 940 | + M0[:ndims, ndims] = t0 | |
| 941 | + v0 += t0.reshape(ndims, 1) | |
| 942 | + t1 = -numpy.mean(v1, axis=1) | |
| 943 | + M1 = numpy.identity(ndims+1) | |
| 944 | + M1[:ndims, ndims] = t1 | |
| 945 | + v1 += t1.reshape(ndims, 1) | |
| 946 | + | |
| 947 | + if shear: | |
| 948 | + # Affine transformation | |
| 949 | + A = numpy.concatenate((v0, v1), axis=0) | |
| 950 | + u, s, vh = numpy.linalg.svd(A.T) | |
| 951 | + vh = vh[:ndims].T | |
| 952 | + B = vh[:ndims] | |
| 953 | + C = vh[ndims:2*ndims] | |
| 954 | + t = numpy.dot(C, numpy.linalg.pinv(B)) | |
| 955 | + t = numpy.concatenate((t, numpy.zeros((ndims, 1))), axis=1) | |
| 956 | + M = numpy.vstack((t, ((0.0,)*ndims) + (1.0,))) | |
| 957 | + elif usesvd or ndims != 3: | |
| 958 | + # Rigid transformation via SVD of covariance matrix | |
| 959 | + u, s, vh = numpy.linalg.svd(numpy.dot(v1, v0.T)) | |
| 960 | + # rotation matrix from SVD orthonormal bases | |
| 961 | + R = numpy.dot(u, vh) | |
| 962 | + if numpy.linalg.det(R) < 0.0: | |
| 963 | + # R does not constitute right handed system | |
| 964 | + R -= numpy.outer(u[:, ndims-1], vh[ndims-1, :]*2.0) | |
| 965 | + s[-1] *= -1.0 | |
| 966 | + # homogeneous transformation matrix | |
| 967 | + M = numpy.identity(ndims+1) | |
| 968 | + M[:ndims, :ndims] = R | |
| 969 | + else: | |
| 970 | + # Rigid transformation matrix via quaternion | |
| 971 | + # compute symmetric matrix N | |
| 972 | + xx, yy, zz = numpy.sum(v0 * v1, axis=1) | |
| 973 | + xy, yz, zx = numpy.sum(v0 * numpy.roll(v1, -1, axis=0), axis=1) | |
| 974 | + xz, yx, zy = numpy.sum(v0 * numpy.roll(v1, -2, axis=0), axis=1) | |
| 975 | + N = [[xx+yy+zz, 0.0, 0.0, 0.0], | |
| 976 | + [yz-zy, xx-yy-zz, 0.0, 0.0], | |
| 977 | + [zx-xz, xy+yx, yy-xx-zz, 0.0], | |
| 978 | + [xy-yx, zx+xz, yz+zy, zz-xx-yy]] | |
| 979 | + # quaternion: eigenvector corresponding to most positive eigenvalue | |
| 980 | + w, V = numpy.linalg.eigh(N) | |
| 981 | + q = V[:, numpy.argmax(w)] | |
| 982 | + q /= vector_norm(q) # unit quaternion | |
| 983 | + # homogeneous transformation matrix | |
| 984 | + M = quaternion_matrix(q) | |
| 985 | + | |
| 986 | + if scale and not shear: | |
| 987 | + # Affine transformation; scale is ratio of RMS deviations from centroid | |
| 988 | + v0 *= v0 | |
| 989 | + v1 *= v1 | |
| 990 | + M[:ndims, :ndims] *= math.sqrt(numpy.sum(v1) / numpy.sum(v0)) | |
| 991 | + | |
| 992 | + # move centroids back | |
| 993 | + M = numpy.dot(numpy.linalg.inv(M1), numpy.dot(M, M0)) | |
| 994 | + M /= M[ndims, ndims] | |
| 995 | + return M | |
| 996 | + | |
| 997 | + | |
| 998 | +def superimposition_matrix(v0, v1, scale=False, usesvd=True): | |
| 999 | + """Return matrix to transform given 3D point set into second point set. | |
| 1000 | + | |
| 1001 | + v0 and v1 are shape (3, \*) or (4, \*) arrays of at least 3 points. | |
| 1002 | + | |
| 1003 | + The parameters scale and usesvd are explained in the more general | |
| 1004 | + affine_matrix_from_points function. | |
| 1005 | + | |
| 1006 | + The returned matrix is a similarity or Euclidean transformation matrix. | |
| 1007 | + This function has a fast C implementation in transformations.c. | |
| 1008 | + | |
| 1009 | + >>> v0 = numpy.random.rand(3, 10) | |
| 1010 | + >>> M = superimposition_matrix(v0, v0) | |
| 1011 | + >>> numpy.allclose(M, numpy.identity(4)) | |
| 1012 | + True | |
| 1013 | + >>> R = random_rotation_matrix(numpy.random.random(3)) | |
| 1014 | + >>> v0 = [[1,0,0], [0,1,0], [0,0,1], [1,1,1]] | |
| 1015 | + >>> v1 = numpy.dot(R, v0) | |
| 1016 | + >>> M = superimposition_matrix(v0, v1) | |
| 1017 | + >>> numpy.allclose(v1, numpy.dot(M, v0)) | |
| 1018 | + True | |
| 1019 | + >>> v0 = (numpy.random.rand(4, 100) - 0.5) * 20 | |
| 1020 | + >>> v0[3] = 1 | |
| 1021 | + >>> v1 = numpy.dot(R, v0) | |
| 1022 | + >>> M = superimposition_matrix(v0, v1) | |
| 1023 | + >>> numpy.allclose(v1, numpy.dot(M, v0)) | |
| 1024 | + True | |
| 1025 | + >>> S = scale_matrix(random.random()) | |
| 1026 | + >>> T = translation_matrix(numpy.random.random(3)-0.5) | |
| 1027 | + >>> M = concatenate_matrices(T, R, S) | |
| 1028 | + >>> v1 = numpy.dot(M, v0) | |
| 1029 | + >>> v0[:3] += numpy.random.normal(0, 1e-9, 300).reshape(3, -1) | |
| 1030 | + >>> M = superimposition_matrix(v0, v1, scale=True) | |
| 1031 | + >>> numpy.allclose(v1, numpy.dot(M, v0)) | |
| 1032 | + True | |
| 1033 | + >>> M = superimposition_matrix(v0, v1, scale=True, usesvd=False) | |
| 1034 | + >>> numpy.allclose(v1, numpy.dot(M, v0)) | |
| 1035 | + True | |
| 1036 | + >>> v = numpy.empty((4, 100, 3)) | |
| 1037 | + >>> v[:, :, 0] = v0 | |
| 1038 | + >>> M = superimposition_matrix(v0, v1, scale=True, usesvd=False) | |
| 1039 | + >>> numpy.allclose(v1, numpy.dot(M, v[:, :, 0])) | |
| 1040 | + True | |
| 1041 | + | |
| 1042 | + """ | |
| 1043 | + v0 = numpy.array(v0, dtype=numpy.float64, copy=False)[:3] | |
| 1044 | + v1 = numpy.array(v1, dtype=numpy.float64, copy=False)[:3] | |
| 1045 | + return affine_matrix_from_points(v0, v1, shear=False, | |
| 1046 | + scale=scale, usesvd=usesvd) | |
| 1047 | + | |
| 1048 | + | |
| 1049 | +def euler_matrix(ai, aj, ak, axes='sxyz'): | |
| 1050 | + """Return homogeneous rotation matrix from Euler angles and axis sequence. | |
| 1051 | + | |
| 1052 | + ai, aj, ak : Euler's roll, pitch and yaw angles | |
| 1053 | + axes : One of 24 axis sequences as string or encoded tuple | |
| 1054 | + | |
| 1055 | + >>> R = euler_matrix(1, 2, 3, 'syxz') | |
| 1056 | + >>> numpy.allclose(numpy.sum(R[0]), -1.34786452) | |
| 1057 | + True | |
| 1058 | + >>> R = euler_matrix(1, 2, 3, (0, 1, 0, 1)) | |
| 1059 | + >>> numpy.allclose(numpy.sum(R[0]), -0.383436184) | |
| 1060 | + True | |
| 1061 | + >>> ai, aj, ak = (4*math.pi) * (numpy.random.random(3) - 0.5) | |
| 1062 | + >>> for axes in _AXES2TUPLE.keys(): | |
| 1063 | + ... R = euler_matrix(ai, aj, ak, axes) | |
| 1064 | + >>> for axes in _TUPLE2AXES.keys(): | |
| 1065 | + ... R = euler_matrix(ai, aj, ak, axes) | |
| 1066 | + | |
| 1067 | + """ | |
| 1068 | + try: | |
| 1069 | + firstaxis, parity, repetition, frame = _AXES2TUPLE[axes] | |
| 1070 | + except (AttributeError, KeyError): | |
| 1071 | + _TUPLE2AXES[axes] # validation | |
| 1072 | + firstaxis, parity, repetition, frame = axes | |
| 1073 | + | |
| 1074 | + i = firstaxis | |
| 1075 | + j = _NEXT_AXIS[i+parity] | |
| 1076 | + k = _NEXT_AXIS[i-parity+1] | |
| 1077 | + | |
| 1078 | + if frame: | |
| 1079 | + ai, ak = ak, ai | |
| 1080 | + if parity: | |
| 1081 | + ai, aj, ak = -ai, -aj, -ak | |
| 1082 | + | |
| 1083 | + si, sj, sk = math.sin(ai), math.sin(aj), math.sin(ak) | |
| 1084 | + ci, cj, ck = math.cos(ai), math.cos(aj), math.cos(ak) | |
| 1085 | + cc, cs = ci*ck, ci*sk | |
| 1086 | + sc, ss = si*ck, si*sk | |
| 1087 | + | |
| 1088 | + M = numpy.identity(4) | |
| 1089 | + if repetition: | |
| 1090 | + M[i, i] = cj | |
| 1091 | + M[i, j] = sj*si | |
| 1092 | + M[i, k] = sj*ci | |
| 1093 | + M[j, i] = sj*sk | |
| 1094 | + M[j, j] = -cj*ss+cc | |
| 1095 | + M[j, k] = -cj*cs-sc | |
| 1096 | + M[k, i] = -sj*ck | |
| 1097 | + M[k, j] = cj*sc+cs | |
| 1098 | + M[k, k] = cj*cc-ss | |
| 1099 | + else: | |
| 1100 | + M[i, i] = cj*ck | |
| 1101 | + M[i, j] = sj*sc-cs | |
| 1102 | + M[i, k] = sj*cc+ss | |
| 1103 | + M[j, i] = cj*sk | |
| 1104 | + M[j, j] = sj*ss+cc | |
| 1105 | + M[j, k] = sj*cs-sc | |
| 1106 | + M[k, i] = -sj | |
| 1107 | + M[k, j] = cj*si | |
| 1108 | + M[k, k] = cj*ci | |
| 1109 | + return M | |
| 1110 | + | |
| 1111 | + | |
| 1112 | +def euler_from_matrix(matrix, axes='sxyz'): | |
| 1113 | + """Return Euler angles from rotation matrix for specified axis sequence. | |
| 1114 | + | |
| 1115 | + axes : One of 24 axis sequences as string or encoded tuple | |
| 1116 | + | |
| 1117 | + Note that many Euler angle triplets can describe one matrix. | |
| 1118 | + | |
| 1119 | + >>> R0 = euler_matrix(1, 2, 3, 'syxz') | |
| 1120 | + >>> al, be, ga = euler_from_matrix(R0, 'syxz') | |
| 1121 | + >>> R1 = euler_matrix(al, be, ga, 'syxz') | |
| 1122 | + >>> numpy.allclose(R0, R1) | |
| 1123 | + True | |
| 1124 | + >>> angles = (4*math.pi) * (numpy.random.random(3) - 0.5) | |
| 1125 | + >>> for axes in _AXES2TUPLE.keys(): | |
| 1126 | + ... R0 = euler_matrix(axes=axes, *angles) | |
| 1127 | + ... R1 = euler_matrix(axes=axes, *euler_from_matrix(R0, axes)) | |
| 1128 | + ... if not numpy.allclose(R0, R1): print(axes, "failed") | |
| 1129 | + | |
| 1130 | + """ | |
| 1131 | + try: | |
| 1132 | + firstaxis, parity, repetition, frame = _AXES2TUPLE[axes.lower()] | |
| 1133 | + except (AttributeError, KeyError): | |
| 1134 | + _TUPLE2AXES[axes] # validation | |
| 1135 | + firstaxis, parity, repetition, frame = axes | |
| 1136 | + | |
| 1137 | + i = firstaxis | |
| 1138 | + j = _NEXT_AXIS[i+parity] | |
| 1139 | + k = _NEXT_AXIS[i-parity+1] | |
| 1140 | + | |
| 1141 | + M = numpy.array(matrix, dtype=numpy.float64, copy=False)[:3, :3] | |
| 1142 | + if repetition: | |
| 1143 | + sy = math.sqrt(M[i, j]*M[i, j] + M[i, k]*M[i, k]) | |
| 1144 | + if sy > _EPS: | |
| 1145 | + ax = math.atan2( M[i, j], M[i, k]) | |
| 1146 | + ay = math.atan2( sy, M[i, i]) | |
| 1147 | + az = math.atan2( M[j, i], -M[k, i]) | |
| 1148 | + else: | |
| 1149 | + ax = math.atan2(-M[j, k], M[j, j]) | |
| 1150 | + ay = math.atan2( sy, M[i, i]) | |
| 1151 | + az = 0.0 | |
| 1152 | + else: | |
| 1153 | + cy = math.sqrt(M[i, i]*M[i, i] + M[j, i]*M[j, i]) | |
| 1154 | + if cy > _EPS: | |
| 1155 | + ax = math.atan2( M[k, j], M[k, k]) | |
| 1156 | + ay = math.atan2(-M[k, i], cy) | |
| 1157 | + az = math.atan2( M[j, i], M[i, i]) | |
| 1158 | + else: | |
| 1159 | + ax = math.atan2(-M[j, k], M[j, j]) | |
| 1160 | + ay = math.atan2(-M[k, i], cy) | |
| 1161 | + az = 0.0 | |
| 1162 | + | |
| 1163 | + if parity: | |
| 1164 | + ax, ay, az = -ax, -ay, -az | |
| 1165 | + if frame: | |
| 1166 | + ax, az = az, ax | |
| 1167 | + return ax, ay, az | |
| 1168 | + | |
| 1169 | + | |
| 1170 | +def euler_from_quaternion(quaternion, axes='sxyz'): | |
| 1171 | + """Return Euler angles from quaternion for specified axis sequence. | |
| 1172 | + | |
| 1173 | + >>> angles = euler_from_quaternion([0.99810947, 0.06146124, 0, 0]) | |
| 1174 | + >>> numpy.allclose(angles, [0.123, 0, 0]) | |
| 1175 | + True | |
| 1176 | + | |
| 1177 | + """ | |
| 1178 | + return euler_from_matrix(quaternion_matrix(quaternion), axes) | |
| 1179 | + | |
| 1180 | + | |
| 1181 | +def quaternion_from_euler(ai, aj, ak, axes='sxyz'): | |
| 1182 | + """Return quaternion from Euler angles and axis sequence. | |
| 1183 | + | |
| 1184 | + ai, aj, ak : Euler's roll, pitch and yaw angles | |
| 1185 | + axes : One of 24 axis sequences as string or encoded tuple | |
| 1186 | + | |
| 1187 | + >>> q = quaternion_from_euler(1, 2, 3, 'ryxz') | |
| 1188 | + >>> numpy.allclose(q, [0.435953, 0.310622, -0.718287, 0.444435]) | |
| 1189 | + True | |
| 1190 | + | |
| 1191 | + """ | |
| 1192 | + try: | |
| 1193 | + firstaxis, parity, repetition, frame = _AXES2TUPLE[axes.lower()] | |
| 1194 | + except (AttributeError, KeyError): | |
| 1195 | + _TUPLE2AXES[axes] # validation | |
| 1196 | + firstaxis, parity, repetition, frame = axes | |
| 1197 | + | |
| 1198 | + i = firstaxis + 1 | |
| 1199 | + j = _NEXT_AXIS[i+parity-1] + 1 | |
| 1200 | + k = _NEXT_AXIS[i-parity] + 1 | |
| 1201 | + | |
| 1202 | + if frame: | |
| 1203 | + ai, ak = ak, ai | |
| 1204 | + if parity: | |
| 1205 | + aj = -aj | |
| 1206 | + | |
| 1207 | + ai /= 2.0 | |
| 1208 | + aj /= 2.0 | |
| 1209 | + ak /= 2.0 | |
| 1210 | + ci = math.cos(ai) | |
| 1211 | + si = math.sin(ai) | |
| 1212 | + cj = math.cos(aj) | |
| 1213 | + sj = math.sin(aj) | |
| 1214 | + ck = math.cos(ak) | |
| 1215 | + sk = math.sin(ak) | |
| 1216 | + cc = ci*ck | |
| 1217 | + cs = ci*sk | |
| 1218 | + sc = si*ck | |
| 1219 | + ss = si*sk | |
| 1220 | + | |
| 1221 | + q = numpy.empty((4, )) | |
| 1222 | + if repetition: | |
| 1223 | + q[0] = cj*(cc - ss) | |
| 1224 | + q[i] = cj*(cs + sc) | |
| 1225 | + q[j] = sj*(cc + ss) | |
| 1226 | + q[k] = sj*(cs - sc) | |
| 1227 | + else: | |
| 1228 | + q[0] = cj*cc + sj*ss | |
| 1229 | + q[i] = cj*sc - sj*cs | |
| 1230 | + q[j] = cj*ss + sj*cc | |
| 1231 | + q[k] = cj*cs - sj*sc | |
| 1232 | + if parity: | |
| 1233 | + q[j] *= -1.0 | |
| 1234 | + | |
| 1235 | + return q | |
| 1236 | + | |
| 1237 | + | |
| 1238 | +def quaternion_about_axis(angle, axis): | |
| 1239 | + """Return quaternion for rotation about axis. | |
| 1240 | + | |
| 1241 | + >>> q = quaternion_about_axis(0.123, [1, 0, 0]) | |
| 1242 | + >>> numpy.allclose(q, [0.99810947, 0.06146124, 0, 0]) | |
| 1243 | + True | |
| 1244 | + | |
| 1245 | + """ | |
| 1246 | + q = numpy.array([0.0, axis[0], axis[1], axis[2]]) | |
| 1247 | + qlen = vector_norm(q) | |
| 1248 | + if qlen > _EPS: | |
| 1249 | + q *= math.sin(angle/2.0) / qlen | |
| 1250 | + q[0] = math.cos(angle/2.0) | |
| 1251 | + return q | |
| 1252 | + | |
| 1253 | + | |
| 1254 | +def quaternion_matrix(quaternion): | |
| 1255 | + """Return homogeneous rotation matrix from quaternion. | |
| 1256 | + | |
| 1257 | + >>> M = quaternion_matrix([0.99810947, 0.06146124, 0, 0]) | |
| 1258 | + >>> numpy.allclose(M, rotation_matrix(0.123, [1, 0, 0])) | |
| 1259 | + True | |
| 1260 | + >>> M = quaternion_matrix([1, 0, 0, 0]) | |
| 1261 | + >>> numpy.allclose(M, numpy.identity(4)) | |
| 1262 | + True | |
| 1263 | + >>> M = quaternion_matrix([0, 1, 0, 0]) | |
| 1264 | + >>> numpy.allclose(M, numpy.diag([1, -1, -1, 1])) | |
| 1265 | + True | |
| 1266 | + | |
| 1267 | + """ | |
| 1268 | + q = numpy.array(quaternion, dtype=numpy.float64, copy=True) | |
| 1269 | + n = numpy.dot(q, q) | |
| 1270 | + if n < _EPS: | |
| 1271 | + return numpy.identity(4) | |
| 1272 | + q *= math.sqrt(2.0 / n) | |
| 1273 | + q = numpy.outer(q, q) | |
| 1274 | + return numpy.array([ | |
| 1275 | + [1.0-q[2, 2]-q[3, 3], q[1, 2]-q[3, 0], q[1, 3]+q[2, 0], 0.0], | |
| 1276 | + [ q[1, 2]+q[3, 0], 1.0-q[1, 1]-q[3, 3], q[2, 3]-q[1, 0], 0.0], | |
| 1277 | + [ q[1, 3]-q[2, 0], q[2, 3]+q[1, 0], 1.0-q[1, 1]-q[2, 2], 0.0], | |
| 1278 | + [ 0.0, 0.0, 0.0, 1.0]]) | |
| 1279 | + | |
| 1280 | + | |
| 1281 | +def quaternion_from_matrix(matrix, isprecise=False): | |
| 1282 | + """Return quaternion from rotation matrix. | |
| 1283 | + | |
| 1284 | + If isprecise is True, the input matrix is assumed to be a precise rotation | |
| 1285 | + matrix and a faster algorithm is used. | |
| 1286 | + | |
| 1287 | + >>> q = quaternion_from_matrix(numpy.identity(4), True) | |
| 1288 | + >>> numpy.allclose(q, [1, 0, 0, 0]) | |
| 1289 | + True | |
| 1290 | + >>> q = quaternion_from_matrix(numpy.diag([1, -1, -1, 1])) | |
| 1291 | + >>> numpy.allclose(q, [0, 1, 0, 0]) or numpy.allclose(q, [0, -1, 0, 0]) | |
| 1292 | + True | |
| 1293 | + >>> R = rotation_matrix(0.123, (1, 2, 3)) | |
| 1294 | + >>> q = quaternion_from_matrix(R, True) | |
| 1295 | + >>> numpy.allclose(q, [0.9981095, 0.0164262, 0.0328524, 0.0492786]) | |
| 1296 | + True | |
| 1297 | + >>> R = [[-0.545, 0.797, 0.260, 0], [0.733, 0.603, -0.313, 0], | |
| 1298 | + ... [-0.407, 0.021, -0.913, 0], [0, 0, 0, 1]] | |
| 1299 | + >>> q = quaternion_from_matrix(R) | |
| 1300 | + >>> numpy.allclose(q, [0.19069, 0.43736, 0.87485, -0.083611]) | |
| 1301 | + True | |
| 1302 | + >>> R = [[0.395, 0.362, 0.843, 0], [-0.626, 0.796, -0.056, 0], | |
| 1303 | + ... [-0.677, -0.498, 0.529, 0], [0, 0, 0, 1]] | |
| 1304 | + >>> q = quaternion_from_matrix(R) | |
| 1305 | + >>> numpy.allclose(q, [0.82336615, -0.13610694, 0.46344705, -0.29792603]) | |
| 1306 | + True | |
| 1307 | + >>> R = random_rotation_matrix() | |
| 1308 | + >>> q = quaternion_from_matrix(R) | |
| 1309 | + >>> is_same_transform(R, quaternion_matrix(q)) | |
| 1310 | + True | |
| 1311 | + >>> R = euler_matrix(0.0, 0.0, numpy.pi/2.0) | |
| 1312 | + >>> numpy.allclose(quaternion_from_matrix(R, isprecise=False), | |
| 1313 | + ... quaternion_from_matrix(R, isprecise=True)) | |
| 1314 | + True | |
| 1315 | + | |
| 1316 | + """ | |
| 1317 | + M = numpy.array(matrix, dtype=numpy.float64, copy=False)[:4, :4] | |
| 1318 | + if isprecise: | |
| 1319 | + q = numpy.empty((4, )) | |
| 1320 | + t = numpy.trace(M) | |
| 1321 | + if t > M[3, 3]: | |
| 1322 | + q[0] = t | |
| 1323 | + q[3] = M[1, 0] - M[0, 1] | |
| 1324 | + q[2] = M[0, 2] - M[2, 0] | |
| 1325 | + q[1] = M[2, 1] - M[1, 2] | |
| 1326 | + else: | |
| 1327 | + i, j, k = 1, 2, 3 | |
| 1328 | + if M[1, 1] > M[0, 0]: | |
| 1329 | + i, j, k = 2, 3, 1 | |
| 1330 | + if M[2, 2] > M[i, i]: | |
| 1331 | + i, j, k = 3, 1, 2 | |
| 1332 | + t = M[i, i] - (M[j, j] + M[k, k]) + M[3, 3] | |
| 1333 | + q[i] = t | |
| 1334 | + q[j] = M[i, j] + M[j, i] | |
| 1335 | + q[k] = M[k, i] + M[i, k] | |
| 1336 | + q[3] = M[k, j] - M[j, k] | |
| 1337 | + q *= 0.5 / math.sqrt(t * M[3, 3]) | |
| 1338 | + else: | |
| 1339 | + m00 = M[0, 0] | |
| 1340 | + m01 = M[0, 1] | |
| 1341 | + m02 = M[0, 2] | |
| 1342 | + m10 = M[1, 0] | |
| 1343 | + m11 = M[1, 1] | |
| 1344 | + m12 = M[1, 2] | |
| 1345 | + m20 = M[2, 0] | |
| 1346 | + m21 = M[2, 1] | |
| 1347 | + m22 = M[2, 2] | |
| 1348 | + # symmetric matrix K | |
| 1349 | + K = numpy.array([[m00-m11-m22, 0.0, 0.0, 0.0], | |
| 1350 | + [m01+m10, m11-m00-m22, 0.0, 0.0], | |
| 1351 | + [m02+m20, m12+m21, m22-m00-m11, 0.0], | |
| 1352 | + [m21-m12, m02-m20, m10-m01, m00+m11+m22]]) | |
| 1353 | + K /= 3.0 | |
| 1354 | + # quaternion is eigenvector of K that corresponds to largest eigenvalue | |
| 1355 | + w, V = numpy.linalg.eigh(K) | |
| 1356 | + q = V[[3, 0, 1, 2], numpy.argmax(w)] | |
| 1357 | + if q[0] < 0.0: | |
| 1358 | + numpy.negative(q, q) | |
| 1359 | + return q | |
| 1360 | + | |
| 1361 | + | |
| 1362 | +def quaternion_multiply(quaternion1, quaternion0): | |
| 1363 | + """Return multiplication of two quaternions. | |
| 1364 | + | |
| 1365 | + >>> q = quaternion_multiply([4, 1, -2, 3], [8, -5, 6, 7]) | |
| 1366 | + >>> numpy.allclose(q, [28, -44, -14, 48]) | |
| 1367 | + True | |
| 1368 | + | |
| 1369 | + """ | |
| 1370 | + w0, x0, y0, z0 = quaternion0 | |
| 1371 | + w1, x1, y1, z1 = quaternion1 | |
| 1372 | + return numpy.array([-x1*x0 - y1*y0 - z1*z0 + w1*w0, | |
| 1373 | + x1*w0 + y1*z0 - z1*y0 + w1*x0, | |
| 1374 | + -x1*z0 + y1*w0 + z1*x0 + w1*y0, | |
| 1375 | + x1*y0 - y1*x0 + z1*w0 + w1*z0], dtype=numpy.float64) | |
| 1376 | + | |
| 1377 | + | |
| 1378 | +def quaternion_conjugate(quaternion): | |
| 1379 | + """Return conjugate of quaternion. | |
| 1380 | + | |
| 1381 | + >>> q0 = random_quaternion() | |
| 1382 | + >>> q1 = quaternion_conjugate(q0) | |
| 1383 | + >>> q1[0] == q0[0] and all(q1[1:] == -q0[1:]) | |
| 1384 | + True | |
| 1385 | + | |
| 1386 | + """ | |
| 1387 | + q = numpy.array(quaternion, dtype=numpy.float64, copy=True) | |
| 1388 | + numpy.negative(q[1:], q[1:]) | |
| 1389 | + return q | |
| 1390 | + | |
| 1391 | + | |
| 1392 | +def quaternion_inverse(quaternion): | |
| 1393 | + """Return inverse of quaternion. | |
| 1394 | + | |
| 1395 | + >>> q0 = random_quaternion() | |
| 1396 | + >>> q1 = quaternion_inverse(q0) | |
| 1397 | + >>> numpy.allclose(quaternion_multiply(q0, q1), [1, 0, 0, 0]) | |
| 1398 | + True | |
| 1399 | + | |
| 1400 | + """ | |
| 1401 | + q = numpy.array(quaternion, dtype=numpy.float64, copy=True) | |
| 1402 | + numpy.negative(q[1:], q[1:]) | |
| 1403 | + return q / numpy.dot(q, q) | |
| 1404 | + | |
| 1405 | + | |
| 1406 | +def quaternion_real(quaternion): | |
| 1407 | + """Return real part of quaternion. | |
| 1408 | + | |
| 1409 | + >>> quaternion_real([3, 0, 1, 2]) | |
| 1410 | + 3.0 | |
| 1411 | + | |
| 1412 | + """ | |
| 1413 | + return float(quaternion[0]) | |
| 1414 | + | |
| 1415 | + | |
| 1416 | +def quaternion_imag(quaternion): | |
| 1417 | + """Return imaginary part of quaternion. | |
| 1418 | + | |
| 1419 | + >>> quaternion_imag([3, 0, 1, 2]) | |
| 1420 | + array([ 0., 1., 2.]) | |
| 1421 | + | |
| 1422 | + """ | |
| 1423 | + return numpy.array(quaternion[1:4], dtype=numpy.float64, copy=True) | |
| 1424 | + | |
| 1425 | + | |
| 1426 | +def quaternion_slerp(quat0, quat1, fraction, spin=0, shortestpath=True): | |
| 1427 | + """Return spherical linear interpolation between two quaternions. | |
| 1428 | + | |
| 1429 | + >>> q0 = random_quaternion() | |
| 1430 | + >>> q1 = random_quaternion() | |
| 1431 | + >>> q = quaternion_slerp(q0, q1, 0) | |
| 1432 | + >>> numpy.allclose(q, q0) | |
| 1433 | + True | |
| 1434 | + >>> q = quaternion_slerp(q0, q1, 1, 1) | |
| 1435 | + >>> numpy.allclose(q, q1) | |
| 1436 | + True | |
| 1437 | + >>> q = quaternion_slerp(q0, q1, 0.5) | |
| 1438 | + >>> angle = math.acos(numpy.dot(q0, q)) | |
| 1439 | + >>> numpy.allclose(2, math.acos(numpy.dot(q0, q1)) / angle) or \ | |
| 1440 | + numpy.allclose(2, math.acos(-numpy.dot(q0, q1)) / angle) | |
| 1441 | + True | |
| 1442 | + | |
| 1443 | + """ | |
| 1444 | + q0 = unit_vector(quat0[:4]) | |
| 1445 | + q1 = unit_vector(quat1[:4]) | |
| 1446 | + if fraction == 0.0: | |
| 1447 | + return q0 | |
| 1448 | + elif fraction == 1.0: | |
| 1449 | + return q1 | |
| 1450 | + d = numpy.dot(q0, q1) | |
| 1451 | + if abs(abs(d) - 1.0) < _EPS: | |
| 1452 | + return q0 | |
| 1453 | + if shortestpath and d < 0.0: | |
| 1454 | + # invert rotation | |
| 1455 | + d = -d | |
| 1456 | + numpy.negative(q1, q1) | |
| 1457 | + angle = math.acos(d) + spin * math.pi | |
| 1458 | + if abs(angle) < _EPS: | |
| 1459 | + return q0 | |
| 1460 | + isin = 1.0 / math.sin(angle) | |
| 1461 | + q0 *= math.sin((1.0 - fraction) * angle) * isin | |
| 1462 | + q1 *= math.sin(fraction * angle) * isin | |
| 1463 | + q0 += q1 | |
| 1464 | + return q0 | |
| 1465 | + | |
| 1466 | + | |
| 1467 | +def random_quaternion(rand=None): | |
| 1468 | + """Return uniform random unit quaternion. | |
| 1469 | + | |
| 1470 | + rand: array like or None | |
| 1471 | + Three independent random variables that are uniformly distributed | |
| 1472 | + between 0 and 1. | |
| 1473 | + | |
| 1474 | + >>> q = random_quaternion() | |
| 1475 | + >>> numpy.allclose(1, vector_norm(q)) | |
| 1476 | + True | |
| 1477 | + >>> q = random_quaternion(numpy.random.random(3)) | |
| 1478 | + >>> len(q.shape), q.shape[0]==4 | |
| 1479 | + (1, True) | |
| 1480 | + | |
| 1481 | + """ | |
| 1482 | + if rand is None: | |
| 1483 | + rand = numpy.random.rand(3) | |
| 1484 | + else: | |
| 1485 | + assert len(rand) == 3 | |
| 1486 | + r1 = numpy.sqrt(1.0 - rand[0]) | |
| 1487 | + r2 = numpy.sqrt(rand[0]) | |
| 1488 | + pi2 = math.pi * 2.0 | |
| 1489 | + t1 = pi2 * rand[1] | |
| 1490 | + t2 = pi2 * rand[2] | |
| 1491 | + return numpy.array([numpy.cos(t2)*r2, numpy.sin(t1)*r1, | |
| 1492 | + numpy.cos(t1)*r1, numpy.sin(t2)*r2]) | |
| 1493 | + | |
| 1494 | + | |
| 1495 | +def random_rotation_matrix(rand=None): | |
| 1496 | + """Return uniform random rotation matrix. | |
| 1497 | + | |
| 1498 | + rand: array like | |
| 1499 | + Three independent random variables that are uniformly distributed | |
| 1500 | + between 0 and 1 for each returned quaternion. | |
| 1501 | + | |
| 1502 | + >>> R = random_rotation_matrix() | |
| 1503 | + >>> numpy.allclose(numpy.dot(R.T, R), numpy.identity(4)) | |
| 1504 | + True | |
| 1505 | + | |
| 1506 | + """ | |
| 1507 | + return quaternion_matrix(random_quaternion(rand)) | |
| 1508 | + | |
| 1509 | + | |
| 1510 | +class Arcball(object): | |
| 1511 | + """Virtual Trackball Control. | |
| 1512 | + | |
| 1513 | + >>> ball = Arcball() | |
| 1514 | + >>> ball = Arcball(initial=numpy.identity(4)) | |
| 1515 | + >>> ball.place([320, 320], 320) | |
| 1516 | + >>> ball.down([500, 250]) | |
| 1517 | + >>> ball.drag([475, 275]) | |
| 1518 | + >>> R = ball.matrix() | |
| 1519 | + >>> numpy.allclose(numpy.sum(R), 3.90583455) | |
| 1520 | + True | |
| 1521 | + >>> ball = Arcball(initial=[1, 0, 0, 0]) | |
| 1522 | + >>> ball.place([320, 320], 320) | |
| 1523 | + >>> ball.setaxes([1, 1, 0], [-1, 1, 0]) | |
| 1524 | + >>> ball.constrain = True | |
| 1525 | + >>> ball.down([400, 200]) | |
| 1526 | + >>> ball.drag([200, 400]) | |
| 1527 | + >>> R = ball.matrix() | |
| 1528 | + >>> numpy.allclose(numpy.sum(R), 0.2055924) | |
| 1529 | + True | |
| 1530 | + >>> ball.next() | |
| 1531 | + | |
| 1532 | + """ | |
| 1533 | + def __init__(self, initial=None): | |
| 1534 | + """Initialize virtual trackball control. | |
| 1535 | + | |
| 1536 | + initial : quaternion or rotation matrix | |
| 1537 | + | |
| 1538 | + """ | |
| 1539 | + self._axis = None | |
| 1540 | + self._axes = None | |
| 1541 | + self._radius = 1.0 | |
| 1542 | + self._center = [0.0, 0.0] | |
| 1543 | + self._vdown = numpy.array([0.0, 0.0, 1.0]) | |
| 1544 | + self._constrain = False | |
| 1545 | + if initial is None: | |
| 1546 | + self._qdown = numpy.array([1.0, 0.0, 0.0, 0.0]) | |
| 1547 | + else: | |
| 1548 | + initial = numpy.array(initial, dtype=numpy.float64) | |
| 1549 | + if initial.shape == (4, 4): | |
| 1550 | + self._qdown = quaternion_from_matrix(initial) | |
| 1551 | + elif initial.shape == (4, ): | |
| 1552 | + initial /= vector_norm(initial) | |
| 1553 | + self._qdown = initial | |
| 1554 | + else: | |
| 1555 | + raise ValueError("initial not a quaternion or matrix") | |
| 1556 | + self._qnow = self._qpre = self._qdown | |
| 1557 | + | |
| 1558 | + def place(self, center, radius): | |
| 1559 | + """Place Arcball, e.g. when window size changes. | |
| 1560 | + | |
| 1561 | + center : sequence[2] | |
| 1562 | + Window coordinates of trackball center. | |
| 1563 | + radius : float | |
| 1564 | + Radius of trackball in window coordinates. | |
| 1565 | + | |
| 1566 | + """ | |
| 1567 | + self._radius = float(radius) | |
| 1568 | + self._center[0] = center[0] | |
| 1569 | + self._center[1] = center[1] | |
| 1570 | + | |
| 1571 | + def setaxes(self, *axes): | |
| 1572 | + """Set axes to constrain rotations.""" | |
| 1573 | + if axes is None: | |
| 1574 | + self._axes = None | |
| 1575 | + else: | |
| 1576 | + self._axes = [unit_vector(axis) for axis in axes] | |
| 1577 | + | |
| 1578 | + @property | |
| 1579 | + def constrain(self): | |
| 1580 | + """Return state of constrain to axis mode.""" | |
| 1581 | + return self._constrain | |
| 1582 | + | |
| 1583 | + @constrain.setter | |
| 1584 | + def constrain(self, value): | |
| 1585 | + """Set state of constrain to axis mode.""" | |
| 1586 | + self._constrain = bool(value) | |
| 1587 | + | |
| 1588 | + def down(self, point): | |
| 1589 | + """Set initial cursor window coordinates and pick constrain-axis.""" | |
| 1590 | + self._vdown = arcball_map_to_sphere(point, self._center, self._radius) | |
| 1591 | + self._qdown = self._qpre = self._qnow | |
| 1592 | + if self._constrain and self._axes is not None: | |
| 1593 | + self._axis = arcball_nearest_axis(self._vdown, self._axes) | |
| 1594 | + self._vdown = arcball_constrain_to_axis(self._vdown, self._axis) | |
| 1595 | + else: | |
| 1596 | + self._axis = None | |
| 1597 | + | |
| 1598 | + def drag(self, point): | |
| 1599 | + """Update current cursor window coordinates.""" | |
| 1600 | + vnow = arcball_map_to_sphere(point, self._center, self._radius) | |
| 1601 | + if self._axis is not None: | |
| 1602 | + vnow = arcball_constrain_to_axis(vnow, self._axis) | |
| 1603 | + self._qpre = self._qnow | |
| 1604 | + t = numpy.cross(self._vdown, vnow) | |
| 1605 | + if numpy.dot(t, t) < _EPS: | |
| 1606 | + self._qnow = self._qdown | |
| 1607 | + else: | |
| 1608 | + q = [numpy.dot(self._vdown, vnow), t[0], t[1], t[2]] | |
| 1609 | + self._qnow = quaternion_multiply(q, self._qdown) | |
| 1610 | + | |
| 1611 | + def next(self, acceleration=0.0): | |
| 1612 | + """Continue rotation in direction of last drag.""" | |
| 1613 | + q = quaternion_slerp(self._qpre, self._qnow, 2.0+acceleration, False) | |
| 1614 | + self._qpre, self._qnow = self._qnow, q | |
| 1615 | + | |
| 1616 | + def matrix(self): | |
| 1617 | + """Return homogeneous rotation matrix.""" | |
| 1618 | + return quaternion_matrix(self._qnow) | |
| 1619 | + | |
| 1620 | + | |
| 1621 | +def arcball_map_to_sphere(point, center, radius): | |
| 1622 | + """Return unit sphere coordinates from window coordinates.""" | |
| 1623 | + v0 = (point[0] - center[0]) / radius | |
| 1624 | + v1 = (center[1] - point[1]) / radius | |
| 1625 | + n = v0*v0 + v1*v1 | |
| 1626 | + if n > 1.0: | |
| 1627 | + # position outside of sphere | |
| 1628 | + n = math.sqrt(n) | |
| 1629 | + return numpy.array([v0/n, v1/n, 0.0]) | |
| 1630 | + else: | |
| 1631 | + return numpy.array([v0, v1, math.sqrt(1.0 - n)]) | |
| 1632 | + | |
| 1633 | + | |
| 1634 | +def arcball_constrain_to_axis(point, axis): | |
| 1635 | + """Return sphere point perpendicular to axis.""" | |
| 1636 | + v = numpy.array(point, dtype=numpy.float64, copy=True) | |
| 1637 | + a = numpy.array(axis, dtype=numpy.float64, copy=True) | |
| 1638 | + v -= a * numpy.dot(a, v) # on plane | |
| 1639 | + n = vector_norm(v) | |
| 1640 | + if n > _EPS: | |
| 1641 | + if v[2] < 0.0: | |
| 1642 | + numpy.negative(v, v) | |
| 1643 | + v /= n | |
| 1644 | + return v | |
| 1645 | + if a[2] == 1.0: | |
| 1646 | + return numpy.array([1.0, 0.0, 0.0]) | |
| 1647 | + return unit_vector([-a[1], a[0], 0.0]) | |
| 1648 | + | |
| 1649 | + | |
| 1650 | +def arcball_nearest_axis(point, axes): | |
| 1651 | + """Return axis, which arc is nearest to point.""" | |
| 1652 | + point = numpy.array(point, dtype=numpy.float64, copy=False) | |
| 1653 | + nearest = None | |
| 1654 | + mx = -1.0 | |
| 1655 | + for axis in axes: | |
| 1656 | + t = numpy.dot(arcball_constrain_to_axis(point, axis), point) | |
| 1657 | + if t > mx: | |
| 1658 | + nearest = axis | |
| 1659 | + mx = t | |
| 1660 | + return nearest | |
| 1661 | + | |
| 1662 | + | |
| 1663 | +# epsilon for testing whether a number is close to zero | |
| 1664 | +_EPS = numpy.finfo(float).eps * 4.0 | |
| 1665 | + | |
| 1666 | +# axis sequences for Euler angles | |
| 1667 | +_NEXT_AXIS = [1, 2, 0, 1] | |
| 1668 | + | |
| 1669 | +# map axes strings to/from tuples of inner axis, parity, repetition, frame | |
| 1670 | +_AXES2TUPLE = { | |
| 1671 | + 'sxyz': (0, 0, 0, 0), 'sxyx': (0, 0, 1, 0), 'sxzy': (0, 1, 0, 0), | |
| 1672 | + 'sxzx': (0, 1, 1, 0), 'syzx': (1, 0, 0, 0), 'syzy': (1, 0, 1, 0), | |
| 1673 | + 'syxz': (1, 1, 0, 0), 'syxy': (1, 1, 1, 0), 'szxy': (2, 0, 0, 0), | |
| 1674 | + 'szxz': (2, 0, 1, 0), 'szyx': (2, 1, 0, 0), 'szyz': (2, 1, 1, 0), | |
| 1675 | + 'rzyx': (0, 0, 0, 1), 'rxyx': (0, 0, 1, 1), 'ryzx': (0, 1, 0, 1), | |
| 1676 | + 'rxzx': (0, 1, 1, 1), 'rxzy': (1, 0, 0, 1), 'ryzy': (1, 0, 1, 1), | |
| 1677 | + 'rzxy': (1, 1, 0, 1), 'ryxy': (1, 1, 1, 1), 'ryxz': (2, 0, 0, 1), | |
| 1678 | + 'rzxz': (2, 0, 1, 1), 'rxyz': (2, 1, 0, 1), 'rzyz': (2, 1, 1, 1)} | |
| 1679 | + | |
| 1680 | +_TUPLE2AXES = dict((v, k) for k, v in _AXES2TUPLE.items()) | |
| 1681 | + | |
| 1682 | + | |
| 1683 | +def vector_norm(data, axis=None, out=None): | |
| 1684 | + """Return length, i.e. Euclidean norm, of ndarray along axis. | |
| 1685 | + | |
| 1686 | + >>> v = numpy.random.random(3) | |
| 1687 | + >>> n = vector_norm(v) | |
| 1688 | + >>> numpy.allclose(n, numpy.linalg.norm(v)) | |
| 1689 | + True | |
| 1690 | + >>> v = numpy.random.rand(6, 5, 3) | |
| 1691 | + >>> n = vector_norm(v, axis=-1) | |
| 1692 | + >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=2))) | |
| 1693 | + True | |
| 1694 | + >>> n = vector_norm(v, axis=1) | |
| 1695 | + >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=1))) | |
| 1696 | + True | |
| 1697 | + >>> v = numpy.random.rand(5, 4, 3) | |
| 1698 | + >>> n = numpy.empty((5, 3)) | |
| 1699 | + >>> vector_norm(v, axis=1, out=n) | |
| 1700 | + >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=1))) | |
| 1701 | + True | |
| 1702 | + >>> vector_norm([]) | |
| 1703 | + 0.0 | |
| 1704 | + >>> vector_norm([1]) | |
| 1705 | + 1.0 | |
| 1706 | + | |
| 1707 | + """ | |
| 1708 | + data = numpy.array(data, dtype=numpy.float64, copy=True) | |
| 1709 | + if out is None: | |
| 1710 | + if data.ndim == 1: | |
| 1711 | + return math.sqrt(numpy.dot(data, data)) | |
| 1712 | + data *= data | |
| 1713 | + out = numpy.atleast_1d(numpy.sum(data, axis=axis)) | |
| 1714 | + numpy.sqrt(out, out) | |
| 1715 | + return out | |
| 1716 | + else: | |
| 1717 | + data *= data | |
| 1718 | + numpy.sum(data, axis=axis, out=out) | |
| 1719 | + numpy.sqrt(out, out) | |
| 1720 | + | |
| 1721 | + | |
| 1722 | +def unit_vector(data, axis=None, out=None): | |
| 1723 | + """Return ndarray normalized by length, i.e. Euclidean norm, along axis. | |
| 1724 | + | |
| 1725 | + >>> v0 = numpy.random.random(3) | |
| 1726 | + >>> v1 = unit_vector(v0) | |
| 1727 | + >>> numpy.allclose(v1, v0 / numpy.linalg.norm(v0)) | |
| 1728 | + True | |
| 1729 | + >>> v0 = numpy.random.rand(5, 4, 3) | |
| 1730 | + >>> v1 = unit_vector(v0, axis=-1) | |
| 1731 | + >>> v2 = v0 / numpy.expand_dims(numpy.sqrt(numpy.sum(v0*v0, axis=2)), 2) | |
| 1732 | + >>> numpy.allclose(v1, v2) | |
| 1733 | + True | |
| 1734 | + >>> v1 = unit_vector(v0, axis=1) | |
| 1735 | + >>> v2 = v0 / numpy.expand_dims(numpy.sqrt(numpy.sum(v0*v0, axis=1)), 1) | |
| 1736 | + >>> numpy.allclose(v1, v2) | |
| 1737 | + True | |
| 1738 | + >>> v1 = numpy.empty((5, 4, 3)) | |
| 1739 | + >>> unit_vector(v0, axis=1, out=v1) | |
| 1740 | + >>> numpy.allclose(v1, v2) | |
| 1741 | + True | |
| 1742 | + >>> list(unit_vector([])) | |
| 1743 | + [] | |
| 1744 | + >>> list(unit_vector([1])) | |
| 1745 | + [1.0] | |
| 1746 | + | |
| 1747 | + """ | |
| 1748 | + if out is None: | |
| 1749 | + data = numpy.array(data, dtype=numpy.float64, copy=True) | |
| 1750 | + if data.ndim == 1: | |
| 1751 | + data /= math.sqrt(numpy.dot(data, data)) | |
| 1752 | + return data | |
| 1753 | + else: | |
| 1754 | + if out is not data: | |
| 1755 | + out[:] = numpy.array(data, copy=False) | |
| 1756 | + data = out | |
| 1757 | + length = numpy.atleast_1d(numpy.sum(data*data, axis)) | |
| 1758 | + numpy.sqrt(length, length) | |
| 1759 | + if axis is not None: | |
| 1760 | + length = numpy.expand_dims(length, axis) | |
| 1761 | + data /= length | |
| 1762 | + if out is None: | |
| 1763 | + return data | |
| 1764 | + | |
| 1765 | + | |
| 1766 | +def random_vector(size): | |
| 1767 | + """Return array of random doubles in the half-open interval [0.0, 1.0). | |
| 1768 | + | |
| 1769 | + >>> v = random_vector(10000) | |
| 1770 | + >>> numpy.all(v >= 0) and numpy.all(v < 1) | |
| 1771 | + True | |
| 1772 | + >>> v0 = random_vector(10) | |
| 1773 | + >>> v1 = random_vector(10) | |
| 1774 | + >>> numpy.any(v0 == v1) | |
| 1775 | + False | |
| 1776 | + | |
| 1777 | + """ | |
| 1778 | + return numpy.random.random(size) | |
| 1779 | + | |
| 1780 | + | |
| 1781 | +def vector_product(v0, v1, axis=0): | |
| 1782 | + """Return vector perpendicular to vectors. | |
| 1783 | + | |
| 1784 | + >>> v = vector_product([2, 0, 0], [0, 3, 0]) | |
| 1785 | + >>> numpy.allclose(v, [0, 0, 6]) | |
| 1786 | + True | |
| 1787 | + >>> v0 = [[2, 0, 0, 2], [0, 2, 0, 2], [0, 0, 2, 2]] | |
| 1788 | + >>> v1 = [[3], [0], [0]] | |
| 1789 | + >>> v = vector_product(v0, v1) | |
| 1790 | + >>> numpy.allclose(v, [[0, 0, 0, 0], [0, 0, 6, 6], [0, -6, 0, -6]]) | |
| 1791 | + True | |
| 1792 | + >>> v0 = [[2, 0, 0], [2, 0, 0], [0, 2, 0], [2, 0, 0]] | |
| 1793 | + >>> v1 = [[0, 3, 0], [0, 0, 3], [0, 0, 3], [3, 3, 3]] | |
| 1794 | + >>> v = vector_product(v0, v1, axis=1) | |
| 1795 | + >>> numpy.allclose(v, [[0, 0, 6], [0, -6, 0], [6, 0, 0], [0, -6, 6]]) | |
| 1796 | + True | |
| 1797 | + | |
| 1798 | + """ | |
| 1799 | + return numpy.cross(v0, v1, axis=axis) | |
| 1800 | + | |
| 1801 | + | |
| 1802 | +def angle_between_vectors(v0, v1, directed=True, axis=0): | |
| 1803 | + """Return angle between vectors. | |
| 1804 | + | |
| 1805 | + If directed is False, the input vectors are interpreted as undirected axes, | |
| 1806 | + i.e. the maximum angle is pi/2. | |
| 1807 | + | |
| 1808 | + >>> a = angle_between_vectors([1, -2, 3], [-1, 2, -3]) | |
| 1809 | + >>> numpy.allclose(a, math.pi) | |
| 1810 | + True | |
| 1811 | + >>> a = angle_between_vectors([1, -2, 3], [-1, 2, -3], directed=False) | |
| 1812 | + >>> numpy.allclose(a, 0) | |
| 1813 | + True | |
| 1814 | + >>> v0 = [[2, 0, 0, 2], [0, 2, 0, 2], [0, 0, 2, 2]] | |
| 1815 | + >>> v1 = [[3], [0], [0]] | |
| 1816 | + >>> a = angle_between_vectors(v0, v1) | |
| 1817 | + >>> numpy.allclose(a, [0, 1.5708, 1.5708, 0.95532]) | |
| 1818 | + True | |
| 1819 | + >>> v0 = [[2, 0, 0], [2, 0, 0], [0, 2, 0], [2, 0, 0]] | |
| 1820 | + >>> v1 = [[0, 3, 0], [0, 0, 3], [0, 0, 3], [3, 3, 3]] | |
| 1821 | + >>> a = angle_between_vectors(v0, v1, axis=1) | |
| 1822 | + >>> numpy.allclose(a, [1.5708, 1.5708, 1.5708, 0.95532]) | |
| 1823 | + True | |
| 1824 | + | |
| 1825 | + """ | |
| 1826 | + v0 = numpy.array(v0, dtype=numpy.float64, copy=False) | |
| 1827 | + v1 = numpy.array(v1, dtype=numpy.float64, copy=False) | |
| 1828 | + dot = numpy.sum(v0 * v1, axis=axis) | |
| 1829 | + dot /= vector_norm(v0, axis=axis) * vector_norm(v1, axis=axis) | |
| 1830 | + return numpy.arccos(dot if directed else numpy.fabs(dot)) | |
| 1831 | + | |
| 1832 | + | |
| 1833 | +def inverse_matrix(matrix): | |
| 1834 | + """Return inverse of square transformation matrix. | |
| 1835 | + | |
| 1836 | + >>> M0 = random_rotation_matrix() | |
| 1837 | + >>> M1 = inverse_matrix(M0.T) | |
| 1838 | + >>> numpy.allclose(M1, numpy.linalg.inv(M0.T)) | |
| 1839 | + True | |
| 1840 | + >>> for size in range(1, 7): | |
| 1841 | + ... M0 = numpy.random.rand(size, size) | |
| 1842 | + ... M1 = inverse_matrix(M0) | |
| 1843 | + ... if not numpy.allclose(M1, numpy.linalg.inv(M0)): print(size) | |
| 1844 | + | |
| 1845 | + """ | |
| 1846 | + return numpy.linalg.inv(matrix) | |
| 1847 | + | |
| 1848 | + | |
| 1849 | +def concatenate_matrices(*matrices): | |
| 1850 | + """Return concatenation of series of transformation matrices. | |
| 1851 | + | |
| 1852 | + >>> M = numpy.random.rand(16).reshape((4, 4)) - 0.5 | |
| 1853 | + >>> numpy.allclose(M, concatenate_matrices(M)) | |
| 1854 | + True | |
| 1855 | + >>> numpy.allclose(numpy.dot(M, M.T), concatenate_matrices(M, M.T)) | |
| 1856 | + True | |
| 1857 | + | |
| 1858 | + """ | |
| 1859 | + M = numpy.identity(4) | |
| 1860 | + for i in matrices: | |
| 1861 | + M = numpy.dot(M, i) | |
| 1862 | + return M | |
| 1863 | + | |
| 1864 | + | |
| 1865 | +def is_same_transform(matrix0, matrix1): | |
| 1866 | + """Return True if two matrices perform same transformation. | |
| 1867 | + | |
| 1868 | + >>> is_same_transform(numpy.identity(4), numpy.identity(4)) | |
| 1869 | + True | |
| 1870 | + >>> is_same_transform(numpy.identity(4), random_rotation_matrix()) | |
| 1871 | + False | |
| 1872 | + | |
| 1873 | + """ | |
| 1874 | + matrix0 = numpy.array(matrix0, dtype=numpy.float64, copy=True) | |
| 1875 | + matrix0 /= matrix0[3, 3] | |
| 1876 | + matrix1 = numpy.array(matrix1, dtype=numpy.float64, copy=True) | |
| 1877 | + matrix1 /= matrix1[3, 3] | |
| 1878 | + return numpy.allclose(matrix0, matrix1) | |
| 1879 | + | |
| 1880 | + | |
| 1881 | +def _import_module(name, package=None, warn=True, prefix='_py_', ignore='_'): | |
| 1882 | + """Try import all public attributes from module into global namespace. | |
| 1883 | + | |
| 1884 | + Existing attributes with name clashes are renamed with prefix. | |
| 1885 | + Attributes starting with underscore are ignored by default. | |
| 1886 | + | |
| 1887 | + Return True on successful import. | |
| 1888 | + | |
| 1889 | + """ | |
| 1890 | + import warnings | |
| 1891 | + from importlib import import_module | |
| 1892 | + try: | |
| 1893 | + if not package: | |
| 1894 | + module = import_module(name) | |
| 1895 | + else: | |
| 1896 | + module = import_module('.' + name, package=package) | |
| 1897 | + except ImportError: | |
| 1898 | + if warn: | |
| 1899 | + warnings.warn("failed to import module %s" % name) | |
| 1900 | + else: | |
| 1901 | + for attr in dir(module): | |
| 1902 | + if ignore and attr.startswith(ignore): | |
| 1903 | + continue | |
| 1904 | + if prefix: | |
| 1905 | + if attr in globals(): | |
| 1906 | + globals()[prefix + attr] = globals()[attr] | |
| 1907 | + elif warn: | |
| 1908 | + warnings.warn("no Python implementation of " + attr) | |
| 1909 | + globals()[attr] = getattr(module, attr) | |
| 1910 | + return True | |
| 1911 | + | |
| 1912 | + | |
| 1913 | +_import_module('_transformations') | |
| 1914 | + | |
| 1915 | +if __name__ == "__main__": | |
| 1916 | + import doctest | |
| 1917 | + import random # used in doctests | |
| 1918 | + numpy.set_printoptions(suppress=True, precision=5) | |
| 1919 | + doctest.testmod() | |
| 1920 | + | ... | ... |
| ... | ... | @@ -0,0 +1,117 @@ |
| 1 | +import numpy as np | |
| 2 | +cimport numpy as np | |
| 3 | +cimport cython | |
| 4 | + | |
| 5 | +from .cy_my_types cimport image_t | |
| 6 | +from .interpolation cimport interpolate, tricub_interpolate, tricubicInterpolate | |
| 7 | + | |
| 8 | +from libc.math cimport floor, ceil, sqrt, fabs, round | |
| 9 | +from cython.parallel import prange | |
| 10 | + | |
| 11 | + | |
| 12 | +@cython.boundscheck(False) # turn of bounds-checking for entire function | |
| 13 | +@cython.cdivision(True) | |
| 14 | +@cython.wraparound(False) | |
| 15 | +cdef inline void mul_mat4_vec4(np.float64_t[:, :] M, | |
| 16 | + double* coord, | |
| 17 | + double* out) nogil: | |
| 18 | + | |
| 19 | + out[0] = coord[0] * M[0, 0] + coord[1] * M[0, 1] + coord[2] * M[0, 2] + coord[3] * M[0, 3] | |
| 20 | + out[1] = coord[0] * M[1, 0] + coord[1] * M[1, 1] + coord[2] * M[1, 2] + coord[3] * M[1, 3] | |
| 21 | + out[2] = coord[0] * M[2, 0] + coord[1] * M[2, 1] + coord[2] * M[2, 2] + coord[3] * M[2, 3] | |
| 22 | + out[3] = coord[0] * M[3, 0] + coord[1] * M[3, 1] + coord[2] * M[3, 2] + coord[3] * M[3, 3] | |
| 23 | + | |
| 24 | + | |
| 25 | +@cython.boundscheck(False) # turn of bounds-checking for entire function | |
| 26 | +@cython.cdivision(True) | |
| 27 | +@cython.wraparound(False) | |
| 28 | +cdef image_t coord_transform(image_t[:, :, :] volume, np.float64_t[:, :] M, int x, int y, int z, double sx, double sy, double sz, short minterpol, image_t cval) nogil: | |
| 29 | + | |
| 30 | + cdef double coord[4] | |
| 31 | + coord[0] = z*sz | |
| 32 | + coord[1] = y*sy | |
| 33 | + coord[2] = x*sx | |
| 34 | + coord[3] = 1.0 | |
| 35 | + | |
| 36 | + cdef double _ncoord[4] | |
| 37 | + _ncoord[3] = 1 | |
| 38 | + # _ncoord[:] = [0.0, 0.0, 0.0, 1.0] | |
| 39 | + | |
| 40 | + cdef unsigned int dz, dy, dx | |
| 41 | + dz = volume.shape[0] | |
| 42 | + dy = volume.shape[1] | |
| 43 | + dx = volume.shape[2] | |
| 44 | + | |
| 45 | + | |
| 46 | + mul_mat4_vec4(M, coord, _ncoord) | |
| 47 | + | |
| 48 | + cdef double nz, ny, nx | |
| 49 | + nz = (_ncoord[0]/_ncoord[3])/sz | |
| 50 | + ny = (_ncoord[1]/_ncoord[3])/sy | |
| 51 | + nx = (_ncoord[2]/_ncoord[3])/sx | |
| 52 | + | |
| 53 | + cdef double v | |
| 54 | + | |
| 55 | + if 0 <= nz <= (dz-1) and 0 <= ny <= (dy-1) and 0 <= nx <= (dx-1): | |
| 56 | + if minterpol == 0: | |
| 57 | + return volume[<int>round(nz), <int>round(ny), <int>round(nx)] | |
| 58 | + elif minterpol == 1: | |
| 59 | + return <image_t>interpolate(volume, nx, ny, nz) | |
| 60 | + else: | |
| 61 | + v = tricubicInterpolate(volume, nx, ny, nz) | |
| 62 | + if (v < cval): | |
| 63 | + v = cval | |
| 64 | + return <image_t>v | |
| 65 | + else: | |
| 66 | + return cval | |
| 67 | + | |
| 68 | + | |
| 69 | +@cython.boundscheck(False) # turn of bounds-checking for entire function | |
| 70 | +@cython.cdivision(True) | |
| 71 | +@cython.wraparound(False) | |
| 72 | +def apply_view_matrix_transform(image_t[:, :, :] volume, | |
| 73 | + spacing, | |
| 74 | + np.float64_t[:, :] M, | |
| 75 | + unsigned int n, str orientation, | |
| 76 | + int minterpol, | |
| 77 | + image_t cval, | |
| 78 | + image_t[:, :, :] out): | |
| 79 | + | |
| 80 | + cdef unsigned int dz, dy, dx | |
| 81 | + cdef int z, y, x | |
| 82 | + dz = volume.shape[0] | |
| 83 | + dy = volume.shape[1] | |
| 84 | + dx = volume.shape[2] | |
| 85 | + | |
| 86 | + cdef unsigned int odz, ody, odx | |
| 87 | + odz = out.shape[0] | |
| 88 | + ody = out.shape[1] | |
| 89 | + odx = out.shape[2] | |
| 90 | + | |
| 91 | + cdef unsigned int count = 0 | |
| 92 | + | |
| 93 | + cdef double sx, sy, sz | |
| 94 | + sx = spacing[0] | |
| 95 | + sy = spacing[1] | |
| 96 | + sz = spacing[2] | |
| 97 | + | |
| 98 | + if orientation == 'AXIAL': | |
| 99 | + for z in xrange(n, n+odz): | |
| 100 | + for y in prange(dy, nogil=True): | |
| 101 | + for x in xrange(dx): | |
| 102 | + out[count, y, x] = coord_transform(volume, M, x, y, z, sx, sy, sz, minterpol, cval) | |
| 103 | + count += 1 | |
| 104 | + | |
| 105 | + elif orientation == 'CORONAL': | |
| 106 | + for y in xrange(n, n+ody): | |
| 107 | + for z in prange(dz, nogil=True): | |
| 108 | + for x in xrange(dx): | |
| 109 | + out[z, count, x] = coord_transform(volume, M, x, y, z, sx, sy, sz, minterpol, cval) | |
| 110 | + count += 1 | |
| 111 | + | |
| 112 | + elif orientation == 'SAGITAL': | |
| 113 | + for x in xrange(n, n+odx): | |
| 114 | + for z in prange(dz, nogil=True): | |
| 115 | + for y in xrange(dy): | |
| 116 | + out[z, y, count] = coord_transform(volume, M, x, y, z, sx, sy, sz, minterpol,cval) | |
| 117 | + count += 1 | ... | ... |
invesalius/data/viewer_slice.py
| ... | ... | @@ -706,6 +706,7 @@ class Viewer(wx.Panel): |
| 706 | 706 | Publisher.subscribe(self.OnSwapVolumeAxes, 'Swap volume axes') |
| 707 | 707 | |
| 708 | 708 | Publisher.subscribe(self.ReloadActualSlice, 'Reload actual slice') |
| 709 | + Publisher.subscribe(self.ReloadActualSlice, 'Reload actual slice %s' % self.orientation) | |
| 709 | 710 | Publisher.subscribe(self.OnUpdateScroll, 'Update scroll') |
| 710 | 711 | |
| 711 | 712 | ... | ... |
invesalius/gui/data_notebook.py
| ... | ... | @@ -364,6 +364,7 @@ class MasksListCtrlPanel(wx.ListCtrl, listmix.TextEditMixin): |
| 364 | 364 | |
| 365 | 365 | Publisher.subscribe(self.OnChangeCurrentMask, 'Change mask selected') |
| 366 | 366 | Publisher.subscribe(self.__hide_current_mask, 'Hide current mask') |
| 367 | + Publisher.subscribe(self.__show_current_mask, 'Show current mask') | |
| 367 | 368 | Publisher.subscribe(self.OnCloseProject, 'Close project data') |
| 368 | 369 | |
| 369 | 370 | def OnKeyEvent(self, event): |
| ... | ... | @@ -435,6 +436,9 @@ class MasksListCtrlPanel(wx.ListCtrl, listmix.TextEditMixin): |
| 435 | 436 | def __hide_current_mask(self, pubsub_evt): |
| 436 | 437 | self.SetItemImage(self.current_index, 0) |
| 437 | 438 | |
| 439 | + def __show_current_mask(self, pubsub_evt): | |
| 440 | + self.SetItemImage(self.current_index, 1) | |
| 441 | + | |
| 438 | 442 | def __init_columns(self): |
| 439 | 443 | |
| 440 | 444 | self.InsertColumn(0, "", wx.LIST_FORMAT_CENTER) | ... | ... |
invesalius/gui/dialogs.py
| ... | ... | @@ -1566,3 +1566,67 @@ class MaskBooleanDialog(wx.Dialog): |
| 1566 | 1566 | |
| 1567 | 1567 | self.Close() |
| 1568 | 1568 | self.Destroy() |
| 1569 | + | |
| 1570 | + | |
| 1571 | +class ReorientImageDialog(wx.Dialog): | |
| 1572 | + def __init__(self): | |
| 1573 | + pre = wx.PreDialog() | |
| 1574 | + pre.Create(wx.GetApp().GetTopWindow(), -1, _(u'Image reorientation'), style=wx.DEFAULT_DIALOG_STYLE|wx.FRAME_FLOAT_ON_PARENT) | |
| 1575 | + self.PostCreate(pre) | |
| 1576 | + | |
| 1577 | + self._init_gui() | |
| 1578 | + self._bind_events() | |
| 1579 | + self._bind_events_wx() | |
| 1580 | + | |
| 1581 | + def _init_gui(self): | |
| 1582 | + self.anglex = wx.TextCtrl(self, -1, "0.0", style=wx.TE_READONLY) | |
| 1583 | + self.angley = wx.TextCtrl(self, -1, "0.0", style=wx.TE_READONLY) | |
| 1584 | + self.anglez = wx.TextCtrl(self, -1, "0.0", style=wx.TE_READONLY) | |
| 1585 | + | |
| 1586 | + self.btnapply = wx.Button(self, -1, _("Apply")) | |
| 1587 | + | |
| 1588 | + sizer = wx.BoxSizer(wx.HORIZONTAL) | |
| 1589 | + | |
| 1590 | + sizer.Add(wx.StaticText(self, -1, _("Angle X")), 0, wx.EXPAND | wx.ALIGN_CENTER_VERTICAL | wx.ALL, 5) | |
| 1591 | + sizer.Add(self.anglex, 0, wx.EXPAND | wx.ALL, 5) | |
| 1592 | + sizer.AddSpacer(5) | |
| 1593 | + | |
| 1594 | + sizer.Add(wx.StaticText(self, -1, _("Angle Y")), 0, wx.EXPAND | wx.ALIGN_CENTER_VERTICAL | wx.ALL, 5) | |
| 1595 | + sizer.Add(self.angley, 0, wx.EXPAND | wx.ALL, 5) | |
| 1596 | + sizer.AddSpacer(5) | |
| 1597 | + | |
| 1598 | + sizer.Add(wx.StaticText(self, -1, _("Angle Z")), 0, wx.EXPAND | wx.ALIGN_CENTER_VERTICAL | wx.ALL, 5) | |
| 1599 | + sizer.Add(self.anglez, 0, wx.EXPAND | wx.ALL, 5) | |
| 1600 | + sizer.AddSpacer(5) | |
| 1601 | + | |
| 1602 | + sizer.Add(self.btnapply, 0, wx.EXPAND | wx.ALL, 5) | |
| 1603 | + sizer.AddSpacer(5) | |
| 1604 | + | |
| 1605 | + self.SetSizer(sizer) | |
| 1606 | + self.Fit() | |
| 1607 | + | |
| 1608 | + def _bind_events(self): | |
| 1609 | + Publisher.subscribe(self._update_angles, 'Update reorient angles') | |
| 1610 | + Publisher.subscribe(self._close_dialog, 'Close reorient dialog') | |
| 1611 | + | |
| 1612 | + def _bind_events_wx(self): | |
| 1613 | + self.btnapply.Bind(wx.EVT_BUTTON, self.apply_reorientation) | |
| 1614 | + self.Bind(wx.EVT_CLOSE, self.OnClose) | |
| 1615 | + | |
| 1616 | + def _update_angles(self, pubsub_evt): | |
| 1617 | + anglex, angley, anglez = pubsub_evt.data | |
| 1618 | + self.anglex.SetValue("%.2f" % np.rad2deg(anglex)) | |
| 1619 | + self.angley.SetValue("%.2f" % np.rad2deg(angley)) | |
| 1620 | + self.anglez.SetValue("%.2f" % np.rad2deg(anglez)) | |
| 1621 | + | |
| 1622 | + def _close_dialog(self, pubsub_evt): | |
| 1623 | + self.Destroy() | |
| 1624 | + | |
| 1625 | + def apply_reorientation(self, evt): | |
| 1626 | + Publisher.sendMessage('Apply reorientation') | |
| 1627 | + self.Close() | |
| 1628 | + | |
| 1629 | + def OnClose(self, evt): | |
| 1630 | + Publisher.sendMessage('Disable style', const.SLICE_STATE_REORIENT) | |
| 1631 | + Publisher.sendMessage('Enable style', const.STATE_DEFAULT) | |
| 1632 | + self.Destroy() | ... | ... |
invesalius/gui/frame.py
| ... | ... | @@ -411,6 +411,9 @@ class Frame(wx.Frame): |
| 411 | 411 | elif id == const.ID_CLEAN_MASK: |
| 412 | 412 | self.OnCleanMask() |
| 413 | 413 | |
| 414 | + elif id == const.ID_REORIENT_IMG: | |
| 415 | + self.OnReorientImg() | |
| 416 | + | |
| 414 | 417 | def OnSize(self, evt): |
| 415 | 418 | """ |
| 416 | 419 | Refresh GUI when frame is resized. |
| ... | ... | @@ -520,6 +523,11 @@ class Frame(wx.Frame): |
| 520 | 523 | Publisher.sendMessage('Clean current mask') |
| 521 | 524 | Publisher.sendMessage('Reload actual slice') |
| 522 | 525 | |
| 526 | + def OnReorientImg(self): | |
| 527 | + Publisher.sendMessage('Enable style', const.SLICE_STATE_REORIENT) | |
| 528 | + rdlg = dlg.ReorientImageDialog() | |
| 529 | + rdlg.Show() | |
| 530 | + | |
| 523 | 531 | # ------------------------------------------------------------------ |
| 524 | 532 | # ------------------------------------------------------------------ |
| 525 | 533 | # ------------------------------------------------------------------ |
| ... | ... | @@ -538,7 +546,8 @@ class MenuBar(wx.MenuBar): |
| 538 | 546 | # not. Eg. save should only be available if a project is open |
| 539 | 547 | self.enable_items = [const.ID_PROJECT_SAVE, |
| 540 | 548 | const.ID_PROJECT_SAVE_AS, |
| 541 | - const.ID_PROJECT_CLOSE] | |
| 549 | + const.ID_PROJECT_CLOSE, | |
| 550 | + const.ID_REORIENT_IMG] | |
| 542 | 551 | self.__init_items() |
| 543 | 552 | self.__bind_events() |
| 544 | 553 | |
| ... | ... | @@ -650,6 +659,12 @@ class MenuBar(wx.MenuBar): |
| 650 | 659 | |
| 651 | 660 | tools_menu.AppendMenu(-1, _(u"Mask"), mask_menu) |
| 652 | 661 | |
| 662 | + # Image menu | |
| 663 | + image_menu = wx.Menu() | |
| 664 | + reorient_menu = image_menu.Append(const.ID_REORIENT_IMG, _(u'Reorient image\tCtrl+Shift+R')) | |
| 665 | + reorient_menu.Enable(False) | |
| 666 | + tools_menu.AppendMenu(-1, _(u'Image'), image_menu) | |
| 667 | + | |
| 653 | 668 | |
| 654 | 669 | # VIEW |
| 655 | 670 | #view_tool_menu = wx.Menu() |
| ... | ... | @@ -1278,7 +1293,7 @@ class SliceToolBar(AuiToolBar): |
| 1278 | 1293 | |
| 1279 | 1294 | self.parent = parent |
| 1280 | 1295 | self.enable_items = [const.SLICE_STATE_SCROLL, |
| 1281 | - const.SLICE_STATE_CROSS] | |
| 1296 | + const.SLICE_STATE_CROSS,] | |
| 1282 | 1297 | self.__init_items() |
| 1283 | 1298 | self.__bind_events() |
| 1284 | 1299 | self.__bind_events_wx() | ... | ... |
invesalius/invesalius.py
setup.py
| 1 | 1 | from distutils.core import setup |
| 2 | 2 | from distutils.extension import Extension |
| 3 | 3 | from Cython.Distutils import build_ext |
| 4 | +from Cython.Build import cythonize | |
| 4 | 5 | |
| 6 | +import os | |
| 5 | 7 | import sys |
| 6 | 8 | |
| 7 | 9 | import numpy |
| ... | ... | @@ -9,24 +11,57 @@ import numpy |
| 9 | 11 | if sys.platform == 'linux2': |
| 10 | 12 | setup( |
| 11 | 13 | cmdclass = {'build_ext': build_ext}, |
| 12 | - ext_modules = [ Extension("invesalius.data.mips", ["invesalius/data/mips.pyx"], | |
| 14 | + ext_modules = cythonize([ Extension("invesalius.data.mips", ["invesalius/data/mips.pyx"], | |
| 13 | 15 | include_dirs = [numpy.get_include()], |
| 14 | 16 | extra_compile_args=['-fopenmp'], |
| 15 | - extra_link_args=['-fopenmp'],)] | |
| 17 | + extra_link_args=['-fopenmp']), | |
| 18 | + | |
| 19 | + Extension("invesalius.data.interpolation", ["invesalius/data/interpolation.pyx"], | |
| 20 | + include_dirs=[numpy.get_include()], | |
| 21 | + extra_compile_args=['-fopenmp',], | |
| 22 | + extra_link_args=['-fopenmp',]), | |
| 23 | + | |
| 24 | + Extension("invesalius.data.transforms", ["invesalius/data/transforms.pyx"], | |
| 25 | + include_dirs=[numpy.get_include()], | |
| 26 | + extra_compile_args=['-fopenmp',], | |
| 27 | + extra_link_args=['-fopenmp',]), | |
| 28 | + ]) | |
| 16 | 29 | ) |
| 17 | 30 | |
| 18 | 31 | elif sys.platform == 'win32': |
| 19 | 32 | setup( |
| 20 | 33 | cmdclass = {'build_ext': build_ext}, |
| 21 | - ext_modules = [ Extension("invesalius.data.mips", ["invesalius/data/mips.pyx"], | |
| 34 | + ext_modules = cythonize([ Extension("invesalius.data.mips", ["invesalius/data/mips.pyx"], | |
| 22 | 35 | include_dirs = [numpy.get_include()], |
| 23 | - extra_compile_args=['/openmp'], | |
| 24 | - )] | |
| 36 | + extra_compile_args=['/openmp'],), | |
| 37 | + | |
| 38 | + Extension("invesalius.data.interpolation", ["invesalius/data/interpolation.pyx"], | |
| 39 | + include_dirs=[numpy.get_include()], | |
| 40 | + extra_compile_args=['/openmp'],), | |
| 41 | + | |
| 42 | + Extension("invesalius.data.transforms", ["invesalius/data/transforms.pyx"], | |
| 43 | + include_dirs=[numpy.get_include()], | |
| 44 | + extra_compile_args=['/openmp'],), | |
| 45 | + ]) | |
| 25 | 46 | ) |
| 26 | 47 | |
| 27 | 48 | else: |
| 28 | 49 | setup( |
| 50 | + packages=["invesalius", ], | |
| 29 | 51 | cmdclass = {'build_ext': build_ext}, |
| 30 | - ext_modules = [ Extension("invesalius.data.mips", ["invesalius/data/mips.pyx"], | |
| 31 | - include_dirs = [numpy.get_include()],)] | |
| 32 | - ) | |
| 52 | + ext_modules = cythonize([Extension("invesalius.data.mips", ["invesalius/data/mips.pyx"], | |
| 53 | + include_dirs = [numpy.get_include()], | |
| 54 | + extra_compile_args=['-fopenmp',], | |
| 55 | + extra_link_args=['-fopenmp',]), | |
| 56 | + | |
| 57 | + Extension("invesalius.data.interpolation", ["invesalius/data/interpolation.pyx"], | |
| 58 | + include_dirs=[numpy.get_include()], | |
| 59 | + extra_compile_args=['-fopenmp',], | |
| 60 | + extra_link_args=['-fopenmp',]), | |
| 61 | + | |
| 62 | + Extension("invesalius.data.transforms", ["invesalius/data/transforms.pyx"], | |
| 63 | + include_dirs=[numpy.get_include()], | |
| 64 | + extra_compile_args=['-fopenmp',], | |
| 65 | + extra_link_args=['-fopenmp',]), | |
| 66 | + ]) | |
| 67 | + ) | ... | ... |