Commit 68b4d2a50b1f8592f2665de8519db3a8105b76d0
1 parent
f01fc134
Exists in
master
and in
29 other branches
Image Reorientation (#36)
Image reorientation * Added the code to reorient image and numpy styles * Starting to show reoriented image * Styles * Showing the cross * Dragging the center of rotation * Improvements * It's already rotating * Improvements * Rotating using quaternion * Updating all orientations only when the user release the mouse button * Updated the setup.py to compile in mac * Showing angles in a dialog * Almost done * Improvements * Cythonize in windows * Avoiding zero division in vector normalize * Avoiding zero division in vector normalize * Showing and hidding mask when using reorient image * Closing reorient image dialog when out of reorient style * Added __init__
Showing
16 changed files
with
2896 additions
and
77 deletions
Show diff stats
@@ -0,0 +1,18 @@ | @@ -0,0 +1,18 @@ | ||
1 | +#-------------------------------------------------------------------------- | ||
2 | +# Software: InVesalius - Software de Reconstrucao 3D de Imagens Medicas | ||
3 | +# Copyright: (C) 2001 Centro de Pesquisas Renato Archer | ||
4 | +# Homepage: http://www.softwarepublico.gov.br | ||
5 | +# Contact: invesalius@cti.gov.br | ||
6 | +# License: GNU - GPL 2 (LICENSE.txt/LICENCA.txt) | ||
7 | +#-------------------------------------------------------------------------- | ||
8 | +# Este programa e software livre; voce pode redistribui-lo e/ou | ||
9 | +# modifica-lo sob os termos da Licenca Publica Geral GNU, conforme | ||
10 | +# publicada pela Free Software Foundation; de acordo com a versao 2 | ||
11 | +# da Licenca. | ||
12 | +# | ||
13 | +# Este programa eh distribuido na expectativa de ser util, mas SEM | ||
14 | +# QUALQUER GARANTIA; sem mesmo a garantia implicita de | ||
15 | +# COMERCIALIZACAO ou de ADEQUACAO A QUALQUER PROPOSITO EM | ||
16 | +# PARTICULAR. Consulte a Licenca Publica Geral GNU para obter mais | ||
17 | +# detalhes. | ||
18 | +#-------------------------------------------------------------------------- |
invesalius/constants.py
@@ -479,6 +479,8 @@ ID_SWAP_YZ = wx.NewId() | @@ -479,6 +479,8 @@ ID_SWAP_YZ = wx.NewId() | ||
479 | ID_BOOLEAN_MASK = wx.NewId() | 479 | ID_BOOLEAN_MASK = wx.NewId() |
480 | ID_CLEAN_MASK = wx.NewId() | 480 | ID_CLEAN_MASK = wx.NewId() |
481 | 481 | ||
482 | +ID_REORIENT_IMG = wx.NewId() | ||
483 | + | ||
482 | #--------------------------------------------------------- | 484 | #--------------------------------------------------------- |
483 | STATE_DEFAULT = 1000 | 485 | STATE_DEFAULT = 1000 |
484 | STATE_WL = 1001 | 486 | STATE_WL = 1001 |
@@ -494,16 +496,18 @@ SLICE_STATE_CROSS = 3006 | @@ -494,16 +496,18 @@ SLICE_STATE_CROSS = 3006 | ||
494 | SLICE_STATE_SCROLL = 3007 | 496 | SLICE_STATE_SCROLL = 3007 |
495 | SLICE_STATE_EDITOR = 3008 | 497 | SLICE_STATE_EDITOR = 3008 |
496 | SLICE_STATE_WATERSHED = 3009 | 498 | SLICE_STATE_WATERSHED = 3009 |
499 | +SLICE_STATE_REORIENT = 3010 | ||
497 | 500 | ||
498 | VOLUME_STATE_SEED = 2001 | 501 | VOLUME_STATE_SEED = 2001 |
499 | -#STATE_LINEAR_MEASURE = 3001 | ||
500 | -#STATE_ANGULAR_MEASURE = 3002 | 502 | +# STATE_LINEAR_MEASURE = 3001 |
503 | +# STATE_ANGULAR_MEASURE = 3002 | ||
501 | 504 | ||
502 | TOOL_STATES = [STATE_WL, STATE_SPIN, STATE_ZOOM, | 505 | TOOL_STATES = [STATE_WL, STATE_SPIN, STATE_ZOOM, |
503 | STATE_ZOOM_SL, STATE_PAN, STATE_MEASURE_DISTANCE, | 506 | STATE_ZOOM_SL, STATE_PAN, STATE_MEASURE_DISTANCE, |
504 | - STATE_MEASURE_ANGLE]#, STATE_ANNOTATE] | 507 | + STATE_MEASURE_ANGLE] #, STATE_ANNOTATE] |
505 | 508 | ||
506 | -TOOL_SLICE_STATES = [SLICE_STATE_CROSS, SLICE_STATE_SCROLL] | 509 | +TOOL_SLICE_STATES = [SLICE_STATE_CROSS, SLICE_STATE_SCROLL, |
510 | + SLICE_STATE_REORIENT] | ||
507 | 511 | ||
508 | 512 | ||
509 | SLICE_STYLES = TOOL_STATES + TOOL_SLICE_STATES | 513 | SLICE_STYLES = TOOL_STATES + TOOL_SLICE_STATES |
@@ -520,6 +524,7 @@ STYLE_LEVEL = {SLICE_STATE_EDITOR: 1, | @@ -520,6 +524,7 @@ STYLE_LEVEL = {SLICE_STATE_EDITOR: 1, | ||
520 | SLICE_STATE_WATERSHED: 1, | 524 | SLICE_STATE_WATERSHED: 1, |
521 | SLICE_STATE_CROSS: 2, | 525 | SLICE_STATE_CROSS: 2, |
522 | SLICE_STATE_SCROLL: 2, | 526 | SLICE_STATE_SCROLL: 2, |
527 | + SLICE_STATE_REORIENT: 2, | ||
523 | STATE_ANNOTATE: 2, | 528 | STATE_ANNOTATE: 2, |
524 | STATE_DEFAULT: 0, | 529 | STATE_DEFAULT: 0, |
525 | STATE_MEASURE_ANGLE: 2, | 530 | STATE_MEASURE_ANGLE: 2, |
invesalius/control.py
@@ -84,6 +84,8 @@ class Controller(): | @@ -84,6 +84,8 @@ class Controller(): | ||
84 | 84 | ||
85 | Publisher.subscribe(self.ShowBooleanOpDialog, 'Show boolean dialog') | 85 | Publisher.subscribe(self.ShowBooleanOpDialog, 'Show boolean dialog') |
86 | 86 | ||
87 | + Publisher.subscribe(self.ApplyReorientation, 'Apply reorientation') | ||
88 | + | ||
87 | 89 | ||
88 | def OnCancelImport(self, pubsub_evt): | 90 | def OnCancelImport(self, pubsub_evt): |
89 | #self.cancel_import = True | 91 | #self.cancel_import = True |
@@ -631,3 +633,6 @@ class Controller(): | @@ -631,3 +633,6 @@ class Controller(): | ||
631 | def ShowBooleanOpDialog(self, pubsub_evt): | 633 | def ShowBooleanOpDialog(self, pubsub_evt): |
632 | dlg = dialogs.MaskBooleanDialog(prj.Project().mask_dict) | 634 | dlg = dialogs.MaskBooleanDialog(prj.Project().mask_dict) |
633 | dlg.Show() | 635 | dlg.Show() |
636 | + | ||
637 | + def ApplyReorientation(self, pubsub_evt): | ||
638 | + self.Slice.apply_reorientation() |
@@ -0,0 +1,5 @@ | @@ -0,0 +1,5 @@ | ||
1 | +from .cy_my_types cimport image_t | ||
2 | + | ||
3 | +cdef inline double interpolate(image_t[:, :, :], double, double, double) nogil | ||
4 | +cdef inline double tricub_interpolate(image_t[:, :, :], double, double, double) nogil | ||
5 | +cdef inline double tricubicInterpolate (image_t[:, :, :], double, double, double) nogil |
@@ -0,0 +1,314 @@ | @@ -0,0 +1,314 @@ | ||
1 | +# from interpolation cimport interpolate | ||
2 | + | ||
3 | +import numpy as np | ||
4 | +cimport numpy as np | ||
5 | +cimport cython | ||
6 | + | ||
7 | +from libc.math cimport floor, ceil, sqrt, fabs, round | ||
8 | +from cython.parallel import prange | ||
9 | + | ||
10 | +cdef double[64][64] temp = [ | ||
11 | + [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | ||
12 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | ||
13 | + [-3, 3, 0, 0, 0, 0, 0, 0,-2,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | ||
14 | + [ 2, -2, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | ||
15 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | ||
16 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | ||
17 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | ||
18 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | ||
19 | + [-3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | ||
20 | + [ 0, 0, 0, 0, 0, 0, 0, 0,-3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | ||
21 | + [ 9, -9,-9, 9, 0, 0, 0, 0, 6, 3,-6,-3, 0, 0, 0, 0, 6,-6, 3,-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | ||
22 | + [-6, 6, 6,-6, 0, 0, 0, 0,-3,-3, 3, 3, 0, 0, 0, 0,-4, 4,-2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2,-2,-1,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | ||
23 | + [ 2, 0,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | ||
24 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 2, 0,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | ||
25 | + [-6, 6, 6,-6, 0, 0, 0, 0,-4,-2, 4, 2, 0, 0, 0, 0,-3, 3,-3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2,-1,-2,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | ||
26 | + [ 4, -4,-4, 4, 0, 0, 0, 0, 2, 2,-2,-2, 0, 0, 0, 0, 2,-2, 2,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | ||
27 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | ||
28 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | ||
29 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | ||
30 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | ||
31 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | ||
32 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], | ||
33 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 3, 0, 0, 0, 0, 0, 0,-2,-1, 0, 0, 0, 0, 0, 0], | ||
34 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2,-2, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0], | ||
35 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | ||
36 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0,-1, 0, 0, 0, 0, 0], | ||
37 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9,-9,-9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 3,-6,-3, 0, 0, 0, 0, 6,-6, 3,-3, 0, 0, 0, 0, 4, 2, 2, 1, 0, 0, 0, 0], | ||
38 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-6, 6, 6,-6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3,-3, 3, 3, 0, 0, 0, 0,-4, 4,-2, 2, 0, 0, 0, 0,-2,-2,-1,-1, 0, 0, 0, 0], | ||
39 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | ||
40 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0], | ||
41 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-6, 6, 6,-6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-4,-2, 4, 2, 0, 0, 0, 0,-3, 3,-3, 3, 0, 0, 0, 0,-2,-1,-2,-1, 0, 0, 0, 0], | ||
42 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4,-4,-4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2,-2,-2, 0, 0, 0, 0, 2,-2, 2,-2, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0], | ||
43 | + [-3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0, 0, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | ||
44 | + [ 0, 0, 0, 0, 0, 0, 0, 0,-3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0, 0, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | ||
45 | + [ 9, -9, 0, 0,-9, 9, 0, 0, 6, 3, 0, 0,-6,-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6,-6, 0, 0, 3,-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 2, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | ||
46 | + [-6, 6, 0, 0, 6,-6, 0, 0,-3,-3, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-4, 4, 0, 0,-2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2,-2, 0, 0,-1,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | ||
47 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0, 0, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | ||
48 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0, 0, 0,-1, 0, 0, 0], | ||
49 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9,-9, 0, 0,-9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 3, 0, 0,-6,-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6,-6, 0, 0, 3,-3, 0, 0, 4, 2, 0, 0, 2, 1, 0, 0], | ||
50 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-6, 6, 0, 0, 6,-6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3,-3, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-4, 4, 0, 0,-2, 2, 0, 0,-2,-2, 0, 0,-1,-1, 0, 0], | ||
51 | + [ 9, 0,-9, 0,-9, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 3, 0,-6, 0,-3, 0, 6, 0,-6, 0, 3, 0,-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 2, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], | ||
52 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 9, 0,-9, 0,-9, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 3, 0,-6, 0,-3, 0, 6, 0,-6, 0, 3, 0,-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 2, 0, 2, 0, 1, 0], | ||
53 | + [-27, 27,27,-27,27,-27,-27,27,-18,-9,18, 9,18, 9,-18,-9,-18,18,-9, 9,18,-18, 9,-9,-18,18,18,-18,-9, 9, 9,-9,-12,-6,-6,-3,12, 6, 6, 3,-12,-6,12, 6,-6,-3, 6, 3,-12,12,-6, 6,-6, 6,-3, 3,-8,-4,-4,-2,-4,-2,-2,-1], | ||
54 | + [18, -18,-18,18,-18,18,18,-18, 9, 9,-9,-9,-9,-9, 9, 9,12,-12, 6,-6,-12,12,-6, 6,12,-12,-12,12, 6,-6,-6, 6, 6, 6, 3, 3,-6,-6,-3,-3, 6, 6,-6,-6, 3, 3,-3,-3, 8,-8, 4,-4, 4,-4, 2,-2, 4, 4, 2, 2, 2, 2, 1, 1], | ||
55 | + [-6, 0, 6, 0, 6, 0,-6, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 0,-3, 0, 3, 0, 3, 0,-4, 0, 4, 0,-2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0,-2, 0,-1, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0], | ||
56 | + [ 0, 0, 0, 0, 0, 0, 0, 0,-6, 0, 6, 0, 6, 0,-6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 0,-3, 0, 3, 0, 3, 0,-4, 0, 4, 0,-2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0,-2, 0,-1, 0,-1, 0], | ||
57 | + [18, -18,-18,18,-18,18,18,-18,12, 6,-12,-6,-12,-6,12, 6, 9,-9, 9,-9,-9, 9,-9, 9,12,-12,-12,12, 6,-6,-6, 6, 6, 3, 6, 3,-6,-3,-6,-3, 8, 4,-8,-4, 4, 2,-4,-2, 6,-6, 6,-6, 3,-3, 3,-3, 4, 2, 4, 2, 2, 1, 2, 1], | ||
58 | + [-12, 12,12,-12,12,-12,-12,12,-6,-6, 6, 6, 6, 6,-6,-6,-6, 6,-6, 6, 6,-6, 6,-6,-8, 8, 8,-8,-4, 4, 4,-4,-3,-3,-3,-3, 3, 3, 3, 3,-4,-4, 4, 4,-2,-2, 2, 2,-4, 4,-4, 4,-2, 2,-2, 2,-2,-2,-2,-2,-1,-1,-1,-1], | ||
59 | + [ 2, 0, 0, 0,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | ||
60 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | ||
61 | + [-6, 6, 0, 0, 6,-6, 0, 0,-4,-2, 0, 0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 3, 0, 0,-3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2,-1, 0, 0,-2,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | ||
62 | + [ 4, -4, 0, 0,-4, 4, 0, 0, 2, 2, 0, 0,-2,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2,-2, 0, 0, 2,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | ||
63 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | ||
64 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0], | ||
65 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-6, 6, 0, 0, 6,-6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-4,-2, 0, 0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 3, 0, 0,-3, 3, 0, 0,-2,-1, 0, 0,-2,-1, 0, 0], | ||
66 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4,-4, 0, 0,-4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0,-2,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2,-2, 0, 0, 2,-2, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0], | ||
67 | + [-6, 0, 6, 0, 6, 0,-6, 0, 0, 0, 0, 0, 0, 0, 0, 0,-4, 0,-2, 0, 4, 0, 2, 0,-3, 0, 3, 0,-3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0,-1, 0,-2, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0], | ||
68 | + [ 0, 0, 0, 0, 0, 0, 0, 0,-6, 0, 6, 0, 6, 0,-6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-4, 0,-2, 0, 4, 0, 2, 0,-3, 0, 3, 0,-3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0,-1, 0,-2, 0,-1, 0], | ||
69 | + [18, -18,-18,18,-18,18,18,-18,12, 6,-12,-6,-12,-6,12, 6,12,-12, 6,-6,-12,12,-6, 6, 9,-9,-9, 9, 9,-9,-9, 9, 8, 4, 4, 2,-8,-4,-4,-2, 6, 3,-6,-3, 6, 3,-6,-3, 6,-6, 3,-3, 6,-6, 3,-3, 4, 2, 2, 1, 4, 2, 2, 1], | ||
70 | + [-12, 12,12,-12,12,-12,-12,12,-6,-6, 6, 6, 6, 6,-6,-6,-8, 8,-4, 4, 8,-8, 4,-4,-6, 6, 6,-6,-6, 6, 6,-6,-4,-4,-2,-2, 4, 4, 2, 2,-3,-3, 3, 3,-3,-3, 3, 3,-4, 4,-2, 2,-4, 4,-2, 2,-2,-2,-1,-1,-2,-2,-1,-1], | ||
71 | + [ 4, 0,-4, 0,-4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0,-2, 0,-2, 0, 2, 0,-2, 0, 2, 0,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], | ||
72 | + [ 0, 0, 0, 0, 0, 0, 0, 0, 4, 0,-4, 0,-4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0,-2, 0,-2, 0, 2, 0,-2, 0, 2, 0,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0], | ||
73 | + [-12, 12,12,-12,12,-12,-12,12,-8,-4, 8, 4, 8, 4,-8,-4,-6, 6,-6, 6, 6,-6, 6,-6,-6, 6, 6,-6,-6, 6, 6,-6,-4,-2,-4,-2, 4, 2, 4, 2,-4,-2, 4, 2,-4,-2, 4, 2,-3, 3,-3, 3,-3, 3,-3, 3,-2,-1,-2,-1,-2,-1,-2,-1], | ||
74 | + [ 8, -8,-8, 8,-8, 8, 8,-8, 4, 4,-4,-4,-4,-4, 4, 4, 4,-4, 4,-4,-4, 4,-4, 4, 4,-4,-4, 4, 4,-4,-4, 4, 2, 2, 2, 2,-2,-2,-2,-2, 2, 2,-2,-2, 2, 2,-2,-2, 2,-2, 2,-2, 2,-2, 2,-2, 1, 1, 1, 1, 1, 1, 1, 1] | ||
75 | +] | ||
76 | + | ||
77 | +@cython.boundscheck(False) # turn of bounds-checking for entire function | ||
78 | +@cython.cdivision(True) | ||
79 | +@cython.wraparound(False) | ||
80 | +cdef inline double interpolate(image_t[:, :, :] V, double x, double y, double z) nogil: | ||
81 | + cdef double xd, yd, zd | ||
82 | + cdef double c00, c10, c01, c11 | ||
83 | + cdef double c0, c1 | ||
84 | + cdef double c | ||
85 | + | ||
86 | + cdef int x0 = <int>floor(x) | ||
87 | + cdef int x1 = x0 + 1 | ||
88 | + | ||
89 | + cdef int y0 = <int>floor(y) | ||
90 | + cdef int y1 = y0 + 1 | ||
91 | + | ||
92 | + cdef int z0 = <int>floor(z) | ||
93 | + cdef int z1 = z0 + 1 | ||
94 | + | ||
95 | + if x0 == x1: | ||
96 | + xd = 1.0 | ||
97 | + else: | ||
98 | + xd = (x - x0) / (x1 - x0) | ||
99 | + | ||
100 | + if y0 == y1: | ||
101 | + yd = 1.0 | ||
102 | + else: | ||
103 | + yd = (y - y0) / (y1 - y0) | ||
104 | + | ||
105 | + if z0 == z1: | ||
106 | + zd = 1.0 | ||
107 | + else: | ||
108 | + zd = (z - z0) / (z1 - z0) | ||
109 | + | ||
110 | + c00 = _G(V, x0, y0, z0)*(1 - xd) + _G(V, x1, y0, z0)*xd | ||
111 | + c10 = _G(V, x0, y1, z0)*(1 - xd) + _G(V, x1, y1, z0)*xd | ||
112 | + c01 = _G(V, x0, y0, z1)*(1 - xd) + _G(V, x1, y0, z1)*xd | ||
113 | + c11 = _G(V, x0, y1, z1)*(1 - xd) + _G(V, x1, y1, z1)*xd | ||
114 | + | ||
115 | + c0 = c00*(1 - yd) + c10*yd | ||
116 | + c1 = c01*(1 - yd) + c11*yd | ||
117 | + | ||
118 | + c = c0*(1 - zd) + c1*zd | ||
119 | + | ||
120 | + return c | ||
121 | + | ||
122 | + | ||
123 | +@cython.boundscheck(False) # turn of bounds-checking for entire function | ||
124 | +@cython.cdivision(True) | ||
125 | +@cython.wraparound(False) | ||
126 | +cdef inline image_t _G(image_t[:, :, :] V, int x, int y, int z) nogil: | ||
127 | + cdef int dz, dy, dx | ||
128 | + dz = V.shape[0] - 1 | ||
129 | + dy = V.shape[1] - 1 | ||
130 | + dx = V.shape[2] - 1 | ||
131 | + | ||
132 | + if x < 0: | ||
133 | + x = dx + x + 1 | ||
134 | + elif x > dx: | ||
135 | + x = x - dx - 1 | ||
136 | + | ||
137 | + if y < 0: | ||
138 | + y = dy + y + 1 | ||
139 | + elif y > dy: | ||
140 | + y = y - dy - 1 | ||
141 | + | ||
142 | + if z < 0: | ||
143 | + z = dz + z + 1 | ||
144 | + elif z > dz: | ||
145 | + z = z - dz - 1 | ||
146 | + | ||
147 | + return V[z, y, x] | ||
148 | + | ||
149 | + | ||
150 | +@cython.boundscheck(False) # turn of bounds-checking for entire function | ||
151 | +@cython.cdivision(True) | ||
152 | +@cython.wraparound(False) | ||
153 | +cdef void calc_coef_tricub(image_t[:, :, :] V, double x, double y, double z, double [64] coef) nogil: | ||
154 | + cdef int xi = <int>floor(x) | ||
155 | + cdef int yi = <int>floor(y) | ||
156 | + cdef int zi = <int>floor(z) | ||
157 | + | ||
158 | + cdef double[64] _x | ||
159 | + | ||
160 | + cdef int i, j | ||
161 | + | ||
162 | + _x[0] = _G(V, xi, yi, zi) | ||
163 | + _x[1] = _G(V, xi + 1, yi, zi) | ||
164 | + _x[2] = _G(V, xi, yi + 1, zi) | ||
165 | + _x[3] = _G(V, xi + 1, yi + 1, zi) | ||
166 | + _x[4] = _G(V, xi, yi, zi + 1) | ||
167 | + _x[5] = _G(V, xi + 1, yi, zi + 1) | ||
168 | + _x[6] = _G(V, xi, yi + 1, zi + 1) | ||
169 | + _x[7] = _G(V, xi + 1, yi + 1, zi + 1) | ||
170 | + | ||
171 | + _x[8] = 0.5*(_G(V, xi+1,yi,zi) - _G(V, xi-1, yi, zi)) | ||
172 | + _x[9] = 0.5*(_G(V, xi+2,yi,zi) - _G(V, xi, yi, zi)) | ||
173 | + _x[10] = 0.5*(_G(V, xi+1, yi+1,zi) - _G(V, xi-1, yi+1, zi)) | ||
174 | + _x[11] = 0.5*(_G(V, xi+2, yi+1,zi) - _G(V, xi, yi+1, zi)) | ||
175 | + _x[12] = 0.5*(_G(V, xi+1, yi,zi+1) - _G(V, xi-1, yi, zi+1)) | ||
176 | + _x[13] = 0.5*(_G(V, xi+2, yi,zi+1) - _G(V, xi, yi, zi+1)) | ||
177 | + _x[14] = 0.5*(_G(V, xi+1, yi+1,zi+1) - _G(V, xi-1, yi+1, zi+1)) | ||
178 | + _x[15] = 0.5*(_G(V, xi+2, yi+1,zi+1) - _G(V, xi, yi+1, zi+1)) | ||
179 | + _x[16] = 0.5*(_G(V, xi, yi+1,zi) - _G(V, xi, yi-1, zi)) | ||
180 | + _x[17] = 0.5*(_G(V, xi+1, yi+1,zi) - _G(V, xi+1, yi-1, zi)) | ||
181 | + _x[18] = 0.5*(_G(V, xi, yi+2,zi) - _G(V, xi, yi, zi)) | ||
182 | + _x[19] = 0.5*(_G(V, xi+1, yi+2,zi) - _G(V, xi+1, yi, zi)) | ||
183 | + _x[20] = 0.5*(_G(V, xi, yi+1,zi+1) - _G(V, xi, yi-1, zi+1)) | ||
184 | + _x[21] = 0.5*(_G(V, xi+1, yi+1,zi+1) - _G(V, xi+1, yi-1, zi+1)) | ||
185 | + _x[22] = 0.5*(_G(V, xi, yi+2,zi+1) - _G(V, xi, yi, zi+1)) | ||
186 | + _x[23] = 0.5*(_G(V, xi+1, yi+2,zi+1) - _G(V, xi+1, yi, zi+1)) | ||
187 | + _x[24] = 0.5*(_G(V, xi, yi,zi+1) - _G(V, xi, yi, zi-1)) | ||
188 | + _x[25] = 0.5*(_G(V, xi+1, yi,zi+1) - _G(V, xi+1, yi, zi-1)) | ||
189 | + _x[26] = 0.5*(_G(V, xi, yi+1,zi+1) - _G(V, xi, yi+1, zi-1)) | ||
190 | + _x[27] = 0.5*(_G(V, xi+1, yi+1,zi+1) - _G(V, xi+1, yi+1, zi-1)) | ||
191 | + _x[28] = 0.5*(_G(V, xi, yi,zi+2) - _G(V, xi, yi, zi)) | ||
192 | + _x[29] = 0.5*(_G(V, xi+1, yi,zi+2) - _G(V, xi+1, yi, zi)) | ||
193 | + _x[30] = 0.5*(_G(V, xi, yi+1,zi+2) - _G(V, xi, yi+1, zi)) | ||
194 | + _x[31] = 0.5*(_G(V, xi+1, yi+1,zi+2) - _G(V, xi+1, yi+1, zi)) | ||
195 | + | ||
196 | + _x [32] = 0.25*(_G(V, xi+1, yi+1, zi) - _G(V, xi-1, yi+1, zi) - _G(V, xi+1, yi-1, zi) + _G(V, xi-1, yi-1, zi)) | ||
197 | + _x [33] = 0.25*(_G(V, xi+2, yi+1, zi) - _G(V, xi, yi+1, zi) - _G(V, xi+2, yi-1, zi) + _G(V, xi, yi-1, zi)) | ||
198 | + _x [34] = 0.25*(_G(V, xi+1, yi+2, zi) - _G(V, xi-1, yi+2, zi) - _G(V, xi+1, yi, zi) + _G(V, xi-1, yi, zi)) | ||
199 | + _x [35] = 0.25*(_G(V, xi+2, yi+2, zi) - _G(V, xi, yi+2, zi) - _G(V, xi+2, yi, zi) + _G(V, xi, yi, zi)) | ||
200 | + _x [36] = 0.25*(_G(V, xi+1, yi+1, zi+1) - _G(V, xi-1, yi+1, zi+1) - _G(V, xi+1, yi-1, zi+1) + _G(V, xi-1, yi-1, zi+1)) | ||
201 | + _x [37] = 0.25*(_G(V, xi+2, yi+1, zi+1) - _G(V, xi, yi+1, zi+1) - _G(V, xi+2, yi-1, zi+1) + _G(V, xi, yi-1, zi+1)) | ||
202 | + _x [38] = 0.25*(_G(V, xi+1, yi+2, zi+1) - _G(V, xi-1, yi+2, zi+1) - _G(V, xi+1, yi, zi+1) + _G(V, xi-1, yi, zi+1)) | ||
203 | + _x [39] = 0.25*(_G(V, xi+2, yi+2, zi+1) - _G(V, xi, yi+2, zi+1) - _G(V, xi+2, yi, zi+1) + _G(V, xi, yi, zi+1)) | ||
204 | + _x [40] = 0.25*(_G(V, xi+1, yi, zi+1) - _G(V, xi-1, yi, zi+1) - _G(V, xi+1, yi, zi-1) + _G(V, xi-1, yi, zi-1)) | ||
205 | + _x [41] = 0.25*(_G(V, xi+2, yi, zi+1) - _G(V, xi, yi, zi+1) - _G(V, xi+2, yi, zi-1) + _G(V, xi, yi, zi-1)) | ||
206 | + _x [42] = 0.25*(_G(V, xi+1, yi+1, zi+1) - _G(V, xi-1, yi+1, zi+1) - _G(V, xi+1, yi+1, zi-1) + _G(V, xi-1, yi+1, zi-1)) | ||
207 | + _x [43] = 0.25*(_G(V, xi+2, yi+1, zi+1) - _G(V, xi, yi+1, zi+1) - _G(V, xi+2, yi+1, zi-1) + _G(V, xi, yi+1, zi-1)) | ||
208 | + _x [44] = 0.25*(_G(V, xi+1, yi, zi+2) - _G(V, xi-1, yi, zi+2) - _G(V, xi+1, yi, zi) + _G(V, xi-1, yi, zi)) | ||
209 | + _x [45] = 0.25*(_G(V, xi+2, yi, zi+2) - _G(V, xi, yi, zi+2) - _G(V, xi+2, yi, zi) + _G(V, xi, yi, zi)) | ||
210 | + _x [46] = 0.25*(_G(V, xi+1, yi+1, zi+2) - _G(V, xi-1, yi+1, zi+2) - _G(V, xi+1, yi+1, zi) + _G(V, xi-1, yi+1, zi)) | ||
211 | + _x [47] = 0.25*(_G(V, xi+2, yi+1, zi+2) - _G(V, xi, yi+1, zi+2) - _G(V, xi+2, yi+1, zi) + _G(V, xi, yi+1, zi)) | ||
212 | + _x [48] = 0.25*(_G(V, xi, yi+1, zi+1) - _G(V, xi, yi-1, zi+1) - _G(V, xi, yi+1, zi-1) + _G(V, xi, yi-1, zi-1)) | ||
213 | + _x [49] = 0.25*(_G(V, xi+1, yi+1, zi+1) - _G(V, xi+1, yi-1, zi+1) - _G(V, xi+1, yi+1, zi-1) + _G(V, xi+1, yi-1, zi-1)) | ||
214 | + _x [50] = 0.25*(_G(V, xi, yi+2, zi+1) - _G(V, xi, yi, zi+1) - _G(V, xi, yi+2, zi-1) + _G(V, xi, yi, zi-1)) | ||
215 | + _x [51] = 0.25*(_G(V, xi+1, yi+2, zi+1) - _G(V, xi+1, yi, zi+1) - _G(V, xi+1, yi+2, zi-1) + _G(V, xi+1, yi, zi-1)) | ||
216 | + _x [52] = 0.25*(_G(V, xi, yi+1, zi+2) - _G(V, xi, yi-1, zi+2) - _G(V, xi, yi+1, zi) + _G(V, xi, yi-1, zi)) | ||
217 | + _x [53] = 0.25*(_G(V, xi+1, yi+1, zi+2) - _G(V, xi+1, yi-1, zi+2) - _G(V, xi+1, yi+1, zi) + _G(V, xi+1, yi-1, zi)) | ||
218 | + _x [54] = 0.25*(_G(V, xi, yi+2, zi+2) - _G(V, xi, yi, zi+2) - _G(V, xi, yi+2, zi) + _G(V, xi, yi, zi)) | ||
219 | + _x [55] = 0.25*(_G(V, xi+1, yi+2, zi+2) - _G(V, xi+1, yi, zi+2) - _G(V, xi+1, yi+2, zi) + _G(V, xi+1, yi, zi)) | ||
220 | + | ||
221 | + _x[56] = 0.125*(_G(V, xi+1, yi+1, zi+1) - _G(V, xi-1, yi+1, zi+1) - _G(V, xi+1, yi-1, zi+1) + _G(V, xi-1, yi-1, zi+1) - _G(V, xi+1, yi+1, zi-1) + _G(V, xi-1,yi+1,zi-1)+_G(V, xi+1,yi-1,zi-1)-_G(V, xi-1,yi-1,zi-1)) | ||
222 | + _x[57] = 0.125*(_G(V, xi+2, yi+1, zi+1) - _G(V, xi, yi+1, zi+1) - _G(V, xi+2, yi-1, zi+1) + _G(V, xi, yi-1, zi+1) - _G(V, xi+2, yi+1, zi-1) + _G(V, xi,yi+1,zi-1)+_G(V, xi+2,yi-1,zi-1)-_G(V, xi,yi-1,zi-1)) | ||
223 | + _x[58] = 0.125*(_G(V, xi+1, yi+2, zi+1) - _G(V, xi-1, yi+2, zi+1) - _G(V, xi+1, yi, zi+1) + _G(V, xi-1, yi, zi+1) - _G(V, xi+1, yi+2, zi-1) + _G(V, xi-1,yi+2,zi-1)+_G(V, xi+1,yi,zi-1)-_G(V, xi-1,yi,zi-1)) | ||
224 | + _x[59] = 0.125*(_G(V, xi+2, yi+2, zi+1) - _G(V, xi, yi+2, zi+1) - _G(V, xi+2, yi, zi+1) + _G(V, xi, yi, zi+1) - _G(V, xi+2, yi+2, zi-1) + _G(V, xi,yi+2,zi-1)+_G(V, xi+2,yi,zi-1)-_G(V, xi,yi,zi-1)) | ||
225 | + _x[60] = 0.125*(_G(V, xi+1, yi+1, zi+2) - _G(V, xi-1, yi+1, zi+2) - _G(V, xi+1, yi-1, zi+2) + _G(V, xi-1, yi-1, zi+2) - _G(V, xi+1, yi+1, zi) + _G(V, xi-1,yi+1,zi)+_G(V, xi+1,yi-1,zi)-_G(V, xi-1,yi-1,zi)) | ||
226 | + _x[61] = 0.125*(_G(V, xi+2, yi+1, zi+2) - _G(V, xi, yi+1, zi+2) - _G(V, xi+2, yi-1, zi+2) + _G(V, xi, yi-1, zi+2) - _G(V, xi+2, yi+1, zi) + _G(V, xi,yi+1,zi)+_G(V, xi+2,yi-1,zi)-_G(V, xi,yi-1,zi)) | ||
227 | + _x[62] = 0.125*(_G(V, xi+1, yi+2, zi+2) - _G(V, xi-1, yi+2, zi+2) - _G(V, xi+1, yi, zi+2) + _G(V, xi-1, yi, zi+2) - _G(V, xi+1, yi+2, zi) + _G(V, xi-1,yi+2,zi)+_G(V, xi+1,yi,zi)-_G(V, xi-1,yi,zi)) | ||
228 | + _x[63] = 0.125*(_G(V, xi+2, yi+2, zi+2) - _G(V, xi, yi+2, zi+2) - _G(V, xi+2, yi, zi+2) + _G(V, xi, yi, zi+2) - _G(V, xi+2, yi+2, zi) + _G(V, xi,yi+2,zi)+_G(V, xi+2,yi,zi)-_G(V, xi,yi,zi)) | ||
229 | + | ||
230 | + for j in prange(64): | ||
231 | + coef[j] = 0.0 | ||
232 | + for i in xrange(64): | ||
233 | + coef[j] += (temp[j][i] * _x[i]) | ||
234 | + | ||
235 | + | ||
236 | +@cython.boundscheck(False) # turn of bounds-checking for entire function | ||
237 | +@cython.cdivision(True) | ||
238 | +@cython.wraparound(False) | ||
239 | +cdef inline double tricub_interpolate(image_t[:, :, :] V, double x, double y, double z) nogil: | ||
240 | + # From: Tricubic interpolation in three dimensions. Lekien and Marsden | ||
241 | + cdef double[64] coef | ||
242 | + cdef double result = 0.0 | ||
243 | + calc_coef_tricub(V, x, y, z, coef) | ||
244 | + | ||
245 | + cdef int i, j, k | ||
246 | + | ||
247 | + cdef int xi = <int>floor(x) | ||
248 | + cdef int yi = <int>floor(y) | ||
249 | + cdef int zi = <int>floor(z) | ||
250 | + | ||
251 | + for i in xrange(4): | ||
252 | + for j in xrange(4): | ||
253 | + for k in xrange(4): | ||
254 | + result += (coef[i+4*j+16*k] * ((x-xi)**i) * ((y-yi)**j) * ((z-zi)**k)) | ||
255 | + # return V[<int>z, <int>y, <int>x] | ||
256 | + # with gil: | ||
257 | + # print result | ||
258 | + return result | ||
259 | + | ||
260 | + | ||
261 | +@cython.boundscheck(False) # turn of bounds-checking for entire function | ||
262 | +@cython.cdivision(True) | ||
263 | +@cython.wraparound(False) | ||
264 | +cdef inline double cubicInterpolate(double p[4], double x) nogil: | ||
265 | + return p[1] + 0.5 * x*(p[2] - p[0] + x*(2.0*p[0] - 5.0*p[1] + 4.0*p[2] - p[3] + x*(3.0*(p[1] - p[2]) + p[3] - p[0]))) | ||
266 | + | ||
267 | + | ||
268 | +@cython.boundscheck(False) # turn of bounds-checking for entire function | ||
269 | +@cython.cdivision(True) | ||
270 | +@cython.wraparound(False) | ||
271 | +cdef inline double bicubicInterpolate (double p[4][4], double x, double y) nogil: | ||
272 | + cdef double arr[4] | ||
273 | + arr[0] = cubicInterpolate(p[0], y) | ||
274 | + arr[1] = cubicInterpolate(p[1], y) | ||
275 | + arr[2] = cubicInterpolate(p[2], y) | ||
276 | + arr[3] = cubicInterpolate(p[3], y) | ||
277 | + return cubicInterpolate(arr, x) | ||
278 | + | ||
279 | + | ||
280 | +@cython.boundscheck(False) # turn of bounds-checking for entire function | ||
281 | +@cython.cdivision(True) | ||
282 | +@cython.wraparound(False) | ||
283 | +cdef inline double tricubicInterpolate(image_t[:, :, :] V, double x, double y, double z) nogil: | ||
284 | + # From http://www.paulinternet.nl/?page=bicubic | ||
285 | + cdef double p[4][4][4] | ||
286 | + | ||
287 | + cdef int xi = <int>floor(x) | ||
288 | + cdef int yi = <int>floor(y) | ||
289 | + cdef int zi = <int>floor(z) | ||
290 | + | ||
291 | + cdef int i, j, k | ||
292 | + | ||
293 | + for i in xrange(4): | ||
294 | + for j in xrange(4): | ||
295 | + for k in xrange(4): | ||
296 | + p[i][j][k] = _G(V, xi + i -1, yi + j -1, zi + k - 1) | ||
297 | + | ||
298 | + cdef double arr[4] | ||
299 | + arr[0] = bicubicInterpolate(p[0], y-yi, z-zi) | ||
300 | + arr[1] = bicubicInterpolate(p[1], y-yi, z-zi) | ||
301 | + arr[2] = bicubicInterpolate(p[2], y-yi, z-zi) | ||
302 | + arr[3] = bicubicInterpolate(p[3], y-yi, z-zi) | ||
303 | + return cubicInterpolate(arr, x-xi) | ||
304 | + | ||
305 | + | ||
306 | +def tricub_interpolate_py(image_t[:, :, :] V, double x, double y, double z): | ||
307 | + return tricub_interpolate(V, x, y, z) | ||
308 | + | ||
309 | +def tricub_interpolate2_py(image_t[:, :, :] V, double x, double y, double z): | ||
310 | + return tricubicInterpolate(V, x, y, z) | ||
311 | + | ||
312 | +def trilin_interpolate_py(image_t[:, :, :] V, double x, double y, double z): | ||
313 | + return interpolate(V, x, y, z) | ||
314 | + |
invesalius/data/slice_.py
@@ -19,7 +19,7 @@ | @@ -19,7 +19,7 @@ | ||
19 | import os | 19 | import os |
20 | import tempfile | 20 | import tempfile |
21 | 21 | ||
22 | -import numpy | 22 | +import numpy as np |
23 | import vtk | 23 | import vtk |
24 | from wx.lib.pubsub import pub as Publisher | 24 | from wx.lib.pubsub import pub as Publisher |
25 | 25 | ||
@@ -34,6 +34,9 @@ from mask import Mask | @@ -34,6 +34,9 @@ from mask import Mask | ||
34 | from project import Project | 34 | from project import Project |
35 | from data import mips | 35 | from data import mips |
36 | 36 | ||
37 | +from data import transforms | ||
38 | +import transformations | ||
39 | + | ||
37 | OTHER=0 | 40 | OTHER=0 |
38 | PLIST=1 | 41 | PLIST=1 |
39 | WIDGET=2 | 42 | WIDGET=2 |
@@ -90,7 +93,10 @@ class Slice(object): | @@ -90,7 +93,10 @@ class Slice(object): | ||
90 | self._type_projection = const.PROJECTION_NORMAL | 93 | self._type_projection = const.PROJECTION_NORMAL |
91 | self.n_border = const.PROJECTION_BORDER_SIZE | 94 | self.n_border = const.PROJECTION_BORDER_SIZE |
92 | 95 | ||
93 | - self.spacing = (1.0, 1.0, 1.0) | 96 | + self._spacing = (1.0, 1.0, 1.0) |
97 | + self.center = [0, 0, 0] | ||
98 | + | ||
99 | + self.q_orientation = np.array((1, 0, 0, 0)) | ||
94 | 100 | ||
95 | self.number_of_colours = 256 | 101 | self.number_of_colours = 256 |
96 | self.saturation_range = (0, 0) | 102 | self.saturation_range = (0, 0) |
@@ -120,7 +126,17 @@ class Slice(object): | @@ -120,7 +126,17 @@ class Slice(object): | ||
120 | self._matrix = value | 126 | self._matrix = value |
121 | i, e = value.min(), value.max() | 127 | i, e = value.min(), value.max() |
122 | r = int(e) - int(i) | 128 | r = int(e) - int(i) |
123 | - self.histogram = numpy.histogram(self._matrix, r, (i, e))[0] | 129 | + self.histogram = np.histogram(self._matrix, r, (i, e))[0] |
130 | + self.center = [(s * d/2.0) for (d, s) in zip(self.matrix.shape[::-1], self.spacing)] | ||
131 | + | ||
132 | + @property | ||
133 | + def spacing(self): | ||
134 | + return self._spacing | ||
135 | + | ||
136 | + @spacing.setter | ||
137 | + def spacing(self, value): | ||
138 | + self._spacing = value | ||
139 | + self.center = [(s * d/2.0) for (d, s) in zip(self.matrix.shape[::-1], self.spacing)] | ||
124 | 140 | ||
125 | def __bind_events(self): | 141 | def __bind_events(self): |
126 | # General slice control | 142 | # General slice control |
@@ -142,6 +158,7 @@ class Slice(object): | @@ -142,6 +158,7 @@ class Slice(object): | ||
142 | Publisher.subscribe(self.__set_mask_name, 'Change mask name') | 158 | Publisher.subscribe(self.__set_mask_name, 'Change mask name') |
143 | Publisher.subscribe(self.__show_mask, 'Show mask') | 159 | Publisher.subscribe(self.__show_mask, 'Show mask') |
144 | Publisher.subscribe(self.__hide_current_mask, 'Hide current mask') | 160 | Publisher.subscribe(self.__hide_current_mask, 'Hide current mask') |
161 | + Publisher.subscribe(self.__show_current_mask, 'Show current mask') | ||
145 | Publisher.subscribe(self.__clean_current_mask, 'Clean current mask') | 162 | Publisher.subscribe(self.__clean_current_mask, 'Clean current mask') |
146 | 163 | ||
147 | Publisher.subscribe(self.__set_current_mask_threshold_limits, | 164 | Publisher.subscribe(self.__set_current_mask_threshold_limits, |
@@ -386,6 +403,12 @@ class Slice(object): | @@ -386,6 +403,12 @@ class Slice(object): | ||
386 | value = False | 403 | value = False |
387 | Publisher.sendMessage('Show mask', (index, value)) | 404 | Publisher.sendMessage('Show mask', (index, value)) |
388 | 405 | ||
406 | + def __show_current_mask(self, pubsub_evt): | ||
407 | + if self.current_mask: | ||
408 | + index = self.current_mask.index | ||
409 | + value = True | ||
410 | + Publisher.sendMessage('Show mask', (index, value)) | ||
411 | + | ||
389 | def __clean_current_mask(self, pubsub_evt): | 412 | def __clean_current_mask(self, pubsub_evt): |
390 | if self.current_mask: | 413 | if self.current_mask: |
391 | self.current_mask.clean() | 414 | self.current_mask.clean() |
@@ -402,7 +425,7 @@ class Slice(object): | @@ -402,7 +425,7 @@ class Slice(object): | ||
402 | def create_temp_mask(self): | 425 | def create_temp_mask(self): |
403 | temp_file = tempfile.mktemp() | 426 | temp_file = tempfile.mktemp() |
404 | shape = self.matrix.shape | 427 | shape = self.matrix.shape |
405 | - matrix = numpy.memmap(temp_file, mode='w+', dtype='uint8', shape=shape) | 428 | + matrix = np.memmap(temp_file, mode='w+', dtype='uint8', shape=shape) |
406 | return temp_file, matrix | 429 | return temp_file, matrix |
407 | 430 | ||
408 | def edit_mask_pixel(self, operation, index, position, radius, orientation): | 431 | def edit_mask_pixel(self, operation, index, position, radius, orientation): |
@@ -560,145 +583,167 @@ class Slice(object): | @@ -560,145 +583,167 @@ class Slice(object): | ||
560 | and self.buffer_slices[orientation].image is not None: | 583 | and self.buffer_slices[orientation].image is not None: |
561 | n_image = self.buffer_slices[orientation].image | 584 | n_image = self.buffer_slices[orientation].image |
562 | else: | 585 | else: |
586 | + if self._type_projection == const.PROJECTION_NORMAL: | ||
587 | + number_slices = 1 | ||
588 | + | ||
589 | + if np.any(self.q_orientation[1::]): | ||
590 | + cx, cy, cz = self.center | ||
591 | + T0 = transformations.translation_matrix((-cz, -cy, -cx)) | ||
592 | + # Rx = transformations.rotation_matrix(rx, (0, 0, 1)) | ||
593 | + # Ry = transformations.rotation_matrix(ry, (0, 1, 0)) | ||
594 | + # Rz = transformations.rotation_matrix(rz, (1, 0, 0)) | ||
595 | + # # R = transformations.euler_matrix(rz, ry, rx, 'rzyx') | ||
596 | + # R = transformations.concatenate_matrices(Rx, Ry, Rz) | ||
597 | + R = transformations.quaternion_matrix(self.q_orientation) | ||
598 | + T1 = transformations.translation_matrix((cz, cy, cx)) | ||
599 | + M = transformations.concatenate_matrices(T1, R.T, T0) | ||
600 | + | ||
563 | 601 | ||
564 | if orientation == 'AXIAL': | 602 | if orientation == 'AXIAL': |
603 | + tmp_array = np.array(self.matrix[slice_number:slice_number + number_slices]) | ||
604 | + if np.any(self.q_orientation[1::]): | ||
605 | + transforms.apply_view_matrix_transform(self.matrix, self.spacing, M, slice_number, orientation, 2, self.matrix.min(), tmp_array) | ||
565 | if self._type_projection == const.PROJECTION_NORMAL: | 606 | if self._type_projection == const.PROJECTION_NORMAL: |
566 | - n_image = numpy.array(self.matrix[slice_number]) | 607 | + n_image = tmp_array.squeeze() |
567 | else: | 608 | else: |
568 | - tmp_array = numpy.array(self.matrix[slice_number: | ||
569 | - slice_number + number_slices]) | ||
570 | if inverted: | 609 | if inverted: |
571 | tmp_array = tmp_array[::-1] | 610 | tmp_array = tmp_array[::-1] |
572 | 611 | ||
573 | if self._type_projection == const.PROJECTION_MaxIP: | 612 | if self._type_projection == const.PROJECTION_MaxIP: |
574 | - n_image = numpy.array(tmp_array).max(0) | 613 | + n_image = np.array(tmp_array).max(0) |
575 | elif self._type_projection == const.PROJECTION_MinIP: | 614 | elif self._type_projection == const.PROJECTION_MinIP: |
576 | - n_image = numpy.array(tmp_array).min(0) | 615 | + n_image = np.array(tmp_array).min(0) |
577 | elif self._type_projection == const.PROJECTION_MeanIP: | 616 | elif self._type_projection == const.PROJECTION_MeanIP: |
578 | - n_image = numpy.array(tmp_array).mean(0) | 617 | + n_image = np.array(tmp_array).mean(0) |
579 | elif self._type_projection == const.PROJECTION_LMIP: | 618 | elif self._type_projection == const.PROJECTION_LMIP: |
580 | - n_image = numpy.empty(shape=(tmp_array.shape[1], | 619 | + n_image = np.empty(shape=(tmp_array.shape[1], |
581 | tmp_array.shape[2]), | 620 | tmp_array.shape[2]), |
582 | dtype=tmp_array.dtype) | 621 | dtype=tmp_array.dtype) |
583 | mips.lmip(tmp_array, 0, self.window_level, self.window_level, n_image) | 622 | mips.lmip(tmp_array, 0, self.window_level, self.window_level, n_image) |
584 | elif self._type_projection == const.PROJECTION_MIDA: | 623 | elif self._type_projection == const.PROJECTION_MIDA: |
585 | - n_image = numpy.empty(shape=(tmp_array.shape[1], | 624 | + n_image = np.empty(shape=(tmp_array.shape[1], |
586 | tmp_array.shape[2]), | 625 | tmp_array.shape[2]), |
587 | dtype=tmp_array.dtype) | 626 | dtype=tmp_array.dtype) |
588 | mips.mida(tmp_array, 0, self.window_level, self.window_level, n_image) | 627 | mips.mida(tmp_array, 0, self.window_level, self.window_level, n_image) |
589 | elif self._type_projection == const.PROJECTION_CONTOUR_MIP: | 628 | elif self._type_projection == const.PROJECTION_CONTOUR_MIP: |
590 | - n_image = numpy.empty(shape=(tmp_array.shape[1], | 629 | + n_image = np.empty(shape=(tmp_array.shape[1], |
591 | tmp_array.shape[2]), | 630 | tmp_array.shape[2]), |
592 | dtype=tmp_array.dtype) | 631 | dtype=tmp_array.dtype) |
593 | mips.fast_countour_mip(tmp_array, border_size, 0, self.window_level, | 632 | mips.fast_countour_mip(tmp_array, border_size, 0, self.window_level, |
594 | self.window_level, 0, n_image) | 633 | self.window_level, 0, n_image) |
595 | elif self._type_projection == const.PROJECTION_CONTOUR_LMIP: | 634 | elif self._type_projection == const.PROJECTION_CONTOUR_LMIP: |
596 | - n_image = numpy.empty(shape=(tmp_array.shape[1], | 635 | + n_image = np.empty(shape=(tmp_array.shape[1], |
597 | tmp_array.shape[2]), | 636 | tmp_array.shape[2]), |
598 | dtype=tmp_array.dtype) | 637 | dtype=tmp_array.dtype) |
599 | mips.fast_countour_mip(tmp_array, border_size, 0, self.window_level, | 638 | mips.fast_countour_mip(tmp_array, border_size, 0, self.window_level, |
600 | self.window_level, 1, n_image) | 639 | self.window_level, 1, n_image) |
601 | elif self._type_projection == const.PROJECTION_CONTOUR_MIDA: | 640 | elif self._type_projection == const.PROJECTION_CONTOUR_MIDA: |
602 | - n_image = numpy.empty(shape=(tmp_array.shape[1], | 641 | + n_image = np.empty(shape=(tmp_array.shape[1], |
603 | tmp_array.shape[2]), | 642 | tmp_array.shape[2]), |
604 | dtype=tmp_array.dtype) | 643 | dtype=tmp_array.dtype) |
605 | mips.fast_countour_mip(tmp_array, border_size, 0, self.window_level, | 644 | mips.fast_countour_mip(tmp_array, border_size, 0, self.window_level, |
606 | self.window_level, 2, n_image) | 645 | self.window_level, 2, n_image) |
607 | else: | 646 | else: |
608 | - n_image = numpy.array(self.matrix[slice_number]) | 647 | + n_image = np.array(self.matrix[slice_number]) |
609 | 648 | ||
610 | elif orientation == 'CORONAL': | 649 | elif orientation == 'CORONAL': |
650 | + tmp_array = np.array(self.matrix[:, slice_number: slice_number + number_slices, :]) | ||
651 | + if np.any(self.q_orientation[1::]): | ||
652 | + transforms.apply_view_matrix_transform(self.matrix, self.spacing, M, slice_number, orientation, 1, self.matrix.min(), tmp_array) | ||
653 | + | ||
611 | if self._type_projection == const.PROJECTION_NORMAL: | 654 | if self._type_projection == const.PROJECTION_NORMAL: |
612 | - n_image = numpy.array(self.matrix[..., slice_number, ...]) | 655 | + n_image = tmp_array.squeeze() |
613 | else: | 656 | else: |
614 | #if slice_number == 0: | 657 | #if slice_number == 0: |
615 | #slice_number = 1 | 658 | #slice_number = 1 |
616 | #if slice_number - number_slices < 0: | 659 | #if slice_number - number_slices < 0: |
617 | #number_slices = slice_number | 660 | #number_slices = slice_number |
618 | - tmp_array = numpy.array(self.matrix[..., slice_number: slice_number + number_slices, ...]) | ||
619 | if inverted: | 661 | if inverted: |
620 | - tmp_array = tmp_array[..., ::-1, ...] | 662 | + tmp_array = tmp_array[:, ::-1, :] |
621 | if self._type_projection == const.PROJECTION_MaxIP: | 663 | if self._type_projection == const.PROJECTION_MaxIP: |
622 | - n_image = numpy.array(tmp_array).max(1) | 664 | + n_image = np.array(tmp_array).max(1) |
623 | elif self._type_projection == const.PROJECTION_MinIP: | 665 | elif self._type_projection == const.PROJECTION_MinIP: |
624 | - n_image = numpy.array(tmp_array).min(1) | 666 | + n_image = np.array(tmp_array).min(1) |
625 | elif self._type_projection == const.PROJECTION_MeanIP: | 667 | elif self._type_projection == const.PROJECTION_MeanIP: |
626 | - n_image = numpy.array(tmp_array).mean(1) | 668 | + n_image = np.array(tmp_array).mean(1) |
627 | elif self._type_projection == const.PROJECTION_LMIP: | 669 | elif self._type_projection == const.PROJECTION_LMIP: |
628 | - n_image = numpy.empty(shape=(tmp_array.shape[0], | 670 | + n_image = np.empty(shape=(tmp_array.shape[0], |
629 | tmp_array.shape[2]), | 671 | tmp_array.shape[2]), |
630 | dtype=tmp_array.dtype) | 672 | dtype=tmp_array.dtype) |
631 | mips.lmip(tmp_array, 1, self.window_level, self.window_level, n_image) | 673 | mips.lmip(tmp_array, 1, self.window_level, self.window_level, n_image) |
632 | elif self._type_projection == const.PROJECTION_MIDA: | 674 | elif self._type_projection == const.PROJECTION_MIDA: |
633 | - n_image = numpy.empty(shape=(tmp_array.shape[0], | 675 | + n_image = np.empty(shape=(tmp_array.shape[0], |
634 | tmp_array.shape[2]), | 676 | tmp_array.shape[2]), |
635 | dtype=tmp_array.dtype) | 677 | dtype=tmp_array.dtype) |
636 | mips.mida(tmp_array, 1, self.window_level, self.window_level, n_image) | 678 | mips.mida(tmp_array, 1, self.window_level, self.window_level, n_image) |
637 | elif self._type_projection == const.PROJECTION_CONTOUR_MIP: | 679 | elif self._type_projection == const.PROJECTION_CONTOUR_MIP: |
638 | - n_image = numpy.empty(shape=(tmp_array.shape[0], | 680 | + n_image = np.empty(shape=(tmp_array.shape[0], |
639 | tmp_array.shape[2]), | 681 | tmp_array.shape[2]), |
640 | dtype=tmp_array.dtype) | 682 | dtype=tmp_array.dtype) |
641 | mips.fast_countour_mip(tmp_array, border_size, 1, self.window_level, | 683 | mips.fast_countour_mip(tmp_array, border_size, 1, self.window_level, |
642 | self.window_level, 0, n_image) | 684 | self.window_level, 0, n_image) |
643 | elif self._type_projection == const.PROJECTION_CONTOUR_LMIP: | 685 | elif self._type_projection == const.PROJECTION_CONTOUR_LMIP: |
644 | - n_image = numpy.empty(shape=(tmp_array.shape[0], | 686 | + n_image = np.empty(shape=(tmp_array.shape[0], |
645 | tmp_array.shape[2]), | 687 | tmp_array.shape[2]), |
646 | dtype=tmp_array.dtype) | 688 | dtype=tmp_array.dtype) |
647 | mips.fast_countour_mip(tmp_array, border_size, 1, self.window_level, | 689 | mips.fast_countour_mip(tmp_array, border_size, 1, self.window_level, |
648 | self.window_level, 1, n_image) | 690 | self.window_level, 1, n_image) |
649 | elif self._type_projection == const.PROJECTION_CONTOUR_MIDA: | 691 | elif self._type_projection == const.PROJECTION_CONTOUR_MIDA: |
650 | - n_image = numpy.empty(shape=(tmp_array.shape[0], | 692 | + n_image = np.empty(shape=(tmp_array.shape[0], |
651 | tmp_array.shape[2]), | 693 | tmp_array.shape[2]), |
652 | dtype=tmp_array.dtype) | 694 | dtype=tmp_array.dtype) |
653 | mips.fast_countour_mip(tmp_array, border_size, 1, self.window_level, | 695 | mips.fast_countour_mip(tmp_array, border_size, 1, self.window_level, |
654 | self.window_level, 2, n_image) | 696 | self.window_level, 2, n_image) |
655 | else: | 697 | else: |
656 | - n_image = numpy.array(self.matrix[..., slice_number, ...]) | 698 | + n_image = np.array(self.matrix[:, slice_number, :]) |
657 | elif orientation == 'SAGITAL': | 699 | elif orientation == 'SAGITAL': |
700 | + tmp_array = np.array(self.matrix[:, :, slice_number: slice_number + number_slices]) | ||
701 | + if np.any(self.q_orientation[1::]): | ||
702 | + transforms.apply_view_matrix_transform(self.matrix, self.spacing, M, slice_number, orientation, 1, self.matrix.min(), tmp_array) | ||
703 | + | ||
658 | if self._type_projection == const.PROJECTION_NORMAL: | 704 | if self._type_projection == const.PROJECTION_NORMAL: |
659 | - n_image = numpy.array(self.matrix[..., ..., slice_number]) | 705 | + n_image = tmp_array.squeeze() |
660 | else: | 706 | else: |
661 | - tmp_array = numpy.array(self.matrix[..., ..., | ||
662 | - slice_number: slice_number + number_slices]) | ||
663 | if inverted: | 707 | if inverted: |
664 | - tmp_array = tmp_array[..., ..., ::-1] | 708 | + tmp_array = tmp_array[:, :, ::-1] |
665 | if self._type_projection == const.PROJECTION_MaxIP: | 709 | if self._type_projection == const.PROJECTION_MaxIP: |
666 | - n_image = numpy.array(tmp_array).max(2) | 710 | + n_image = np.array(tmp_array).max(2) |
667 | elif self._type_projection == const.PROJECTION_MinIP: | 711 | elif self._type_projection == const.PROJECTION_MinIP: |
668 | - n_image = numpy.array(tmp_array).min(2) | 712 | + n_image = np.array(tmp_array).min(2) |
669 | elif self._type_projection == const.PROJECTION_MeanIP: | 713 | elif self._type_projection == const.PROJECTION_MeanIP: |
670 | - n_image = numpy.array(tmp_array).mean(2) | 714 | + n_image = np.array(tmp_array).mean(2) |
671 | elif self._type_projection == const.PROJECTION_LMIP: | 715 | elif self._type_projection == const.PROJECTION_LMIP: |
672 | - n_image = numpy.empty(shape=(tmp_array.shape[0], | 716 | + n_image = np.empty(shape=(tmp_array.shape[0], |
673 | tmp_array.shape[1]), | 717 | tmp_array.shape[1]), |
674 | dtype=tmp_array.dtype) | 718 | dtype=tmp_array.dtype) |
675 | mips.lmip(tmp_array, 2, self.window_level, self.window_level, n_image) | 719 | mips.lmip(tmp_array, 2, self.window_level, self.window_level, n_image) |
676 | elif self._type_projection == const.PROJECTION_MIDA: | 720 | elif self._type_projection == const.PROJECTION_MIDA: |
677 | - n_image = numpy.empty(shape=(tmp_array.shape[0], | 721 | + n_image = np.empty(shape=(tmp_array.shape[0], |
678 | tmp_array.shape[1]), | 722 | tmp_array.shape[1]), |
679 | dtype=tmp_array.dtype) | 723 | dtype=tmp_array.dtype) |
680 | mips.mida(tmp_array, 2, self.window_level, self.window_level, n_image) | 724 | mips.mida(tmp_array, 2, self.window_level, self.window_level, n_image) |
681 | 725 | ||
682 | elif self._type_projection == const.PROJECTION_CONTOUR_MIP: | 726 | elif self._type_projection == const.PROJECTION_CONTOUR_MIP: |
683 | - n_image = numpy.empty(shape=(tmp_array.shape[0], | 727 | + n_image = np.empty(shape=(tmp_array.shape[0], |
684 | tmp_array.shape[1]), | 728 | tmp_array.shape[1]), |
685 | dtype=tmp_array.dtype) | 729 | dtype=tmp_array.dtype) |
686 | mips.fast_countour_mip(tmp_array, border_size, 2, self.window_level, | 730 | mips.fast_countour_mip(tmp_array, border_size, 2, self.window_level, |
687 | self.window_level, 0, n_image) | 731 | self.window_level, 0, n_image) |
688 | elif self._type_projection == const.PROJECTION_CONTOUR_LMIP: | 732 | elif self._type_projection == const.PROJECTION_CONTOUR_LMIP: |
689 | - n_image = numpy.empty(shape=(tmp_array.shape[0], | 733 | + n_image = np.empty(shape=(tmp_array.shape[0], |
690 | tmp_array.shape[1]), | 734 | tmp_array.shape[1]), |
691 | dtype=tmp_array.dtype) | 735 | dtype=tmp_array.dtype) |
692 | mips.fast_countour_mip(tmp_array, border_size, 2, self.window_level, | 736 | mips.fast_countour_mip(tmp_array, border_size, 2, self.window_level, |
693 | self.window_level, 1, n_image) | 737 | self.window_level, 1, n_image) |
694 | elif self._type_projection == const.PROJECTION_CONTOUR_MIDA: | 738 | elif self._type_projection == const.PROJECTION_CONTOUR_MIDA: |
695 | - n_image = numpy.empty(shape=(tmp_array.shape[0], | 739 | + n_image = np.empty(shape=(tmp_array.shape[0], |
696 | tmp_array.shape[1]), | 740 | tmp_array.shape[1]), |
697 | dtype=tmp_array.dtype) | 741 | dtype=tmp_array.dtype) |
698 | mips.fast_countour_mip(tmp_array, border_size, 2, self.window_level, | 742 | mips.fast_countour_mip(tmp_array, border_size, 2, self.window_level, |
699 | self.window_level, 2, n_image) | 743 | self.window_level, 2, n_image) |
700 | else: | 744 | else: |
701 | - n_image = numpy.array(self.matrix[..., ..., slice_number]) | 745 | + n_image = np.array(self.matrix[:, :, slice_number]) |
746 | + | ||
702 | return n_image | 747 | return n_image |
703 | 748 | ||
704 | def get_mask_slice(self, orientation, slice_number): | 749 | def get_mask_slice(self, orientation, slice_number): |
@@ -719,7 +764,7 @@ class Slice(object): | @@ -719,7 +764,7 @@ class Slice(object): | ||
719 | slice_number), | 764 | slice_number), |
720 | mask) | 765 | mask) |
721 | self.current_mask.matrix[n, 0, 0] = 1 | 766 | self.current_mask.matrix[n, 0, 0] = 1 |
722 | - n_mask = numpy.array(self.current_mask.matrix[n, 1:, 1:], | 767 | + n_mask = np.array(self.current_mask.matrix[n, 1:, 1:], |
723 | dtype=self.current_mask.matrix.dtype) | 768 | dtype=self.current_mask.matrix.dtype) |
724 | 769 | ||
725 | elif orientation == 'CORONAL': | 770 | elif orientation == 'CORONAL': |
@@ -729,7 +774,7 @@ class Slice(object): | @@ -729,7 +774,7 @@ class Slice(object): | ||
729 | slice_number), | 774 | slice_number), |
730 | mask) | 775 | mask) |
731 | self.current_mask.matrix[0, n, 0] = 1 | 776 | self.current_mask.matrix[0, n, 0] = 1 |
732 | - n_mask = numpy.array(self.current_mask.matrix[1:, n, 1:], | 777 | + n_mask = np.array(self.current_mask.matrix[1:, n, 1:], |
733 | dtype=self.current_mask.matrix.dtype) | 778 | dtype=self.current_mask.matrix.dtype) |
734 | 779 | ||
735 | elif orientation == 'SAGITAL': | 780 | elif orientation == 'SAGITAL': |
@@ -739,7 +784,7 @@ class Slice(object): | @@ -739,7 +784,7 @@ class Slice(object): | ||
739 | slice_number), | 784 | slice_number), |
740 | mask) | 785 | mask) |
741 | self.current_mask.matrix[0, 0, n] = 1 | 786 | self.current_mask.matrix[0, 0, n] = 1 |
742 | - n_mask = numpy.array(self.current_mask.matrix[1:, 1:, n], | 787 | + n_mask = np.array(self.current_mask.matrix[1:, 1:, n], |
743 | dtype=self.current_mask.matrix.dtype) | 788 | dtype=self.current_mask.matrix.dtype) |
744 | 789 | ||
745 | return n_mask | 790 | return n_mask |
@@ -747,11 +792,11 @@ class Slice(object): | @@ -747,11 +792,11 @@ class Slice(object): | ||
747 | def get_aux_slice(self, name, orientation, n): | 792 | def get_aux_slice(self, name, orientation, n): |
748 | m = self.aux_matrices[name] | 793 | m = self.aux_matrices[name] |
749 | if orientation == 'AXIAL': | 794 | if orientation == 'AXIAL': |
750 | - return numpy.array(m[n]) | 795 | + return np.array(m[n]) |
751 | elif orientation == 'CORONAL': | 796 | elif orientation == 'CORONAL': |
752 | - return numpy.array(m[:, n, :]) | 797 | + return np.array(m[:, n, :]) |
753 | elif orientation == 'SAGITAL': | 798 | elif orientation == 'SAGITAL': |
754 | - return numpy.array(m[:, :, n]) | 799 | + return np.array(m[:, :, n]) |
755 | 800 | ||
756 | def GetNumberOfSlices(self, orientation): | 801 | def GetNumberOfSlices(self, orientation): |
757 | if orientation == 'AXIAL': | 802 | if orientation == 'AXIAL': |
@@ -809,7 +854,7 @@ class Slice(object): | @@ -809,7 +854,7 @@ class Slice(object): | ||
809 | # TODO: find out a better way to do threshold | 854 | # TODO: find out a better way to do threshold |
810 | if slice_number is None: | 855 | if slice_number is None: |
811 | for n, slice_ in enumerate(self.matrix): | 856 | for n, slice_ in enumerate(self.matrix): |
812 | - m = numpy.ones(slice_.shape, self.current_mask.matrix.dtype) | 857 | + m = np.ones(slice_.shape, self.current_mask.matrix.dtype) |
813 | m[slice_ < thresh_min] = 0 | 858 | m[slice_ < thresh_min] = 0 |
814 | m[slice_ > thresh_max] = 0 | 859 | m[slice_ > thresh_max] = 0 |
815 | m[m == 1] = 255 | 860 | m[m == 1] = 255 |
@@ -1271,7 +1316,7 @@ class Slice(object): | @@ -1271,7 +1316,7 @@ class Slice(object): | ||
1271 | m[:] = ((m1 > 2) & (m2 > 2)) * 255 | 1316 | m[:] = ((m1 > 2) & (m2 > 2)) * 255 |
1272 | 1317 | ||
1273 | elif op == const.BOOLEAN_XOR: | 1318 | elif op == const.BOOLEAN_XOR: |
1274 | - m[:] = numpy.logical_xor((m1 > 2), (m2 > 2)) * 255 | 1319 | + m[:] = np.logical_xor((m1 > 2), (m2 > 2)) * 255 |
1275 | 1320 | ||
1276 | for o in self.buffer_slices: | 1321 | for o in self.buffer_slices: |
1277 | self.buffer_slices[o].discard_mask() | 1322 | self.buffer_slices[o].discard_mask() |
@@ -1324,6 +1369,30 @@ class Slice(object): | @@ -1324,6 +1369,30 @@ class Slice(object): | ||
1324 | self.buffer_slices[o].discard_vtk_mask() | 1369 | self.buffer_slices[o].discard_vtk_mask() |
1325 | Publisher.sendMessage('Reload actual slice') | 1370 | Publisher.sendMessage('Reload actual slice') |
1326 | 1371 | ||
1372 | + def apply_reorientation(self): | ||
1373 | + temp_file = tempfile.mktemp() | ||
1374 | + mcopy = np.memmap(temp_file, shape=self.matrix.shape, dtype=self.matrix.dtype, mode='w+') | ||
1375 | + mcopy[:] = self.matrix | ||
1376 | + | ||
1377 | + cx, cy, cz = self.center | ||
1378 | + T0 = transformations.translation_matrix((-cz, -cy, -cx)) | ||
1379 | + R = transformations.quaternion_matrix(self.q_orientation) | ||
1380 | + T1 = transformations.translation_matrix((cz, cy, cx)) | ||
1381 | + M = transformations.concatenate_matrices(T1, R.T, T0) | ||
1382 | + | ||
1383 | + transforms.apply_view_matrix_transform(mcopy, self.spacing, M, 0, 'AXIAL', 2, mcopy.min(), self.matrix) | ||
1384 | + | ||
1385 | + del mcopy | ||
1386 | + os.remove(temp_file) | ||
1387 | + | ||
1388 | + self.q_orientation = np.array((1, 0, 0, 0)) | ||
1389 | + self.center = [(s * d/2.0) for (d, s) in zip(self.matrix.shape[::-1], self.spacing)] | ||
1390 | + | ||
1391 | + self.__clean_current_mask(None) | ||
1392 | + self.current_mask.matrix[:] = 0 | ||
1393 | + | ||
1394 | + Publisher.sendMessage('Reload actual slice') | ||
1395 | + | ||
1327 | def __undo_edition(self, pub_evt): | 1396 | def __undo_edition(self, pub_evt): |
1328 | buffer_slices = self.buffer_slices | 1397 | buffer_slices = self.buffer_slices |
1329 | actual_slices = {"AXIAL": buffer_slices["AXIAL"].index, | 1398 | actual_slices = {"AXIAL": buffer_slices["AXIAL"].index, |
@@ -1348,7 +1417,7 @@ class Slice(object): | @@ -1348,7 +1417,7 @@ class Slice(object): | ||
1348 | 1417 | ||
1349 | def _open_image_matrix(self, filename, shape, dtype): | 1418 | def _open_image_matrix(self, filename, shape, dtype): |
1350 | self.matrix_filename = filename | 1419 | self.matrix_filename = filename |
1351 | - self.matrix = numpy.memmap(filename, shape=shape, dtype=dtype, mode='r+') | 1420 | + self.matrix = np.memmap(filename, shape=shape, dtype=dtype, mode='r+') |
1352 | 1421 | ||
1353 | def OnFlipVolume(self, pubsub_evt): | 1422 | def OnFlipVolume(self, pubsub_evt): |
1354 | axis = pubsub_evt.data | 1423 | axis = pubsub_evt.data |
invesalius/data/styles.py
@@ -43,6 +43,7 @@ from skimage import filter | @@ -43,6 +43,7 @@ from skimage import filter | ||
43 | import watershed_process | 43 | import watershed_process |
44 | 44 | ||
45 | import utils | 45 | import utils |
46 | +import transformations | ||
46 | 47 | ||
47 | ORIENTATIONS = { | 48 | ORIENTATIONS = { |
48 | "AXIAL": const.AXIAL, | 49 | "AXIAL": const.AXIAL, |
@@ -1405,19 +1406,259 @@ class WaterShedInteractorStyle(DefaultInteractorStyle): | @@ -1405,19 +1406,259 @@ class WaterShedInteractorStyle(DefaultInteractorStyle): | ||
1405 | session.ChangeProject() | 1406 | session.ChangeProject() |
1406 | 1407 | ||
1407 | 1408 | ||
1409 | +class ReorientImageInteractorStyle(DefaultInteractorStyle): | ||
1410 | + """ | ||
1411 | + Interactor style responsible for image reorientation | ||
1412 | + """ | ||
1413 | + def __init__(self, viewer): | ||
1414 | + DefaultInteractorStyle.__init__(self, viewer) | ||
1415 | + | ||
1416 | + self.viewer = viewer | ||
1417 | + | ||
1418 | + self.line1 = None | ||
1419 | + self.line2 = None | ||
1420 | + | ||
1421 | + self.actors = [] | ||
1422 | + | ||
1423 | + self._over_center = False | ||
1424 | + self.dragging = False | ||
1425 | + self.to_rot = False | ||
1426 | + | ||
1427 | + self.picker = vtk.vtkWorldPointPicker() | ||
1428 | + | ||
1429 | + self.AddObserver("LeftButtonPressEvent",self.OnLeftClick) | ||
1430 | + self.AddObserver("LeftButtonReleaseEvent", self.OnLeftRelease) | ||
1431 | + self.AddObserver("MouseMoveEvent", self.OnMouseMove) | ||
1432 | + self.viewer.slice_data.renderer.AddObserver("StartEvent", self.OnUpdate) | ||
1433 | + | ||
1434 | + self.viewer.interactor.Bind(wx.EVT_LEFT_DCLICK, self.OnDblClick) | ||
1435 | + | ||
1436 | + def SetUp(self): | ||
1437 | + self.draw_lines() | ||
1438 | + Publisher.sendMessage('Hide current mask') | ||
1439 | + Publisher.sendMessage('Reload actual slice') | ||
1440 | + | ||
1441 | + def CleanUp(self): | ||
1442 | + for actor in self.actors: | ||
1443 | + self.viewer.slice_data.renderer.RemoveActor(actor) | ||
1444 | + | ||
1445 | + self.viewer.slice_.rotations = [0, 0, 0] | ||
1446 | + self.viewer.slice_.q_orientation = np.array((1, 0, 0, 0)) | ||
1447 | + self._discard_buffers() | ||
1448 | + Publisher.sendMessage('Close reorient dialog') | ||
1449 | + Publisher.sendMessage('Show current mask') | ||
1450 | + | ||
1451 | + def OnLeftClick(self, obj, evt): | ||
1452 | + if self._over_center: | ||
1453 | + self.dragging = True | ||
1454 | + else: | ||
1455 | + x, y = self.viewer.interactor.GetEventPosition() | ||
1456 | + w, h = self.viewer.interactor.GetSize() | ||
1457 | + | ||
1458 | + self.picker.Pick(h/2.0, w/2.0, 0, self.viewer.slice_data.renderer) | ||
1459 | + cx, cy, cz = self.viewer.slice_.center | ||
1460 | + | ||
1461 | + self.picker.Pick(x, y, 0, self.viewer.slice_data.renderer) | ||
1462 | + x, y, z = self.picker.GetPickPosition() | ||
1463 | + | ||
1464 | + self.p0 = self.get_image_point_coord(x, y, z) | ||
1465 | + self.to_rot = True | ||
1466 | + | ||
1467 | + def OnLeftRelease(self, obj, evt): | ||
1468 | + self.dragging = False | ||
1469 | + | ||
1470 | + if self.to_rot: | ||
1471 | + Publisher.sendMessage('Reload actual slice') | ||
1472 | + self.to_rot = False | ||
1473 | + | ||
1474 | + def OnMouseMove(self, obj, evt): | ||
1475 | + """ | ||
1476 | + This event is responsible to reorient image, set mouse cursors | ||
1477 | + """ | ||
1478 | + if self.dragging: | ||
1479 | + self._move_center_rot() | ||
1480 | + elif self.to_rot: | ||
1481 | + self._rotate() | ||
1482 | + else: | ||
1483 | + # Getting mouse position | ||
1484 | + iren = self.viewer.interactor | ||
1485 | + mx, my = iren.GetEventPosition() | ||
1486 | + | ||
1487 | + # Getting center value | ||
1488 | + center = self.viewer.slice_.center | ||
1489 | + coord = vtk.vtkCoordinate() | ||
1490 | + coord.SetValue(center) | ||
1491 | + cx, cy = coord.GetComputedDisplayValue(self.viewer.slice_data.renderer) | ||
1492 | + | ||
1493 | + dist_center = ((mx - cx)**2 + (my - cy)**2)**0.5 | ||
1494 | + if dist_center <= 15: | ||
1495 | + self._over_center = True | ||
1496 | + cursor = wx.StockCursor(wx.CURSOR_SIZENESW) | ||
1497 | + else: | ||
1498 | + self._over_center = False | ||
1499 | + cursor = wx.StockCursor(wx.CURSOR_DEFAULT) | ||
1500 | + | ||
1501 | + self.viewer.interactor.SetCursor(cursor) | ||
1502 | + | ||
1503 | + def OnUpdate(self, obj, evt): | ||
1504 | + w, h = self.viewer.slice_data.renderer.GetSize() | ||
1505 | + | ||
1506 | + center = self.viewer.slice_.center | ||
1507 | + coord = vtk.vtkCoordinate() | ||
1508 | + coord.SetValue(center) | ||
1509 | + x, y = coord.GetComputedDisplayValue(self.viewer.slice_data.renderer) | ||
1510 | + | ||
1511 | + self.line1.SetPoint1(0, y, 0) | ||
1512 | + self.line1.SetPoint2(w, y, 0) | ||
1513 | + self.line1.Update() | ||
1514 | + | ||
1515 | + self.line2.SetPoint1(x, 0, 0) | ||
1516 | + self.line2.SetPoint2(x, h, 0) | ||
1517 | + self.line2.Update() | ||
1518 | + | ||
1519 | + def OnDblClick(self, evt): | ||
1520 | + self.viewer.slice_.rotations = [0, 0, 0] | ||
1521 | + self.viewer.slice_.q_orientation = np.array((1, 0, 0, 0)) | ||
1522 | + | ||
1523 | + Publisher.sendMessage('Update reorient angles', (0, 0, 0)) | ||
1524 | + | ||
1525 | + self._discard_buffers() | ||
1526 | + self.viewer.slice_.current_mask.clear_history() | ||
1527 | + Publisher.sendMessage('Reload actual slice') | ||
1528 | + | ||
1529 | + def _move_center_rot(self): | ||
1530 | + iren = self.viewer.interactor | ||
1531 | + mx, my = iren.GetEventPosition() | ||
1532 | + | ||
1533 | + icx, icy, icz = self.viewer.slice_.center | ||
1534 | + | ||
1535 | + self.picker.Pick(mx, my, 0, self.viewer.slice_data.renderer) | ||
1536 | + x, y, z = self.picker.GetPickPosition() | ||
1537 | + | ||
1538 | + if self.viewer.orientation == 'AXIAL': | ||
1539 | + self.viewer.slice_.center = (x, y, icz) | ||
1540 | + elif self.viewer.orientation == 'CORONAL': | ||
1541 | + self.viewer.slice_.center = (x, icy, z) | ||
1542 | + elif self.viewer.orientation == 'SAGITAL': | ||
1543 | + self.viewer.slice_.center = (icx, y, z) | ||
1544 | + | ||
1545 | + | ||
1546 | + self._discard_buffers() | ||
1547 | + self.viewer.slice_.current_mask.clear_history() | ||
1548 | + Publisher.sendMessage('Reload actual slice') | ||
1549 | + | ||
1550 | + def _rotate(self): | ||
1551 | + # Getting mouse position | ||
1552 | + iren = self.viewer.interactor | ||
1553 | + mx, my = iren.GetEventPosition() | ||
1554 | + | ||
1555 | + cx, cy, cz = self.viewer.slice_.center | ||
1556 | + | ||
1557 | + self.picker.Pick(mx, my, 0, self.viewer.slice_data.renderer) | ||
1558 | + x, y, z = self.picker.GetPickPosition() | ||
1559 | + | ||
1560 | + if self.viewer.orientation == 'AXIAL': | ||
1561 | + p1 = np.array((y-cy, x-cx)) | ||
1562 | + elif self.viewer.orientation == 'CORONAL': | ||
1563 | + p1 = np.array((z-cz, x-cx)) | ||
1564 | + elif self.viewer.orientation == 'SAGITAL': | ||
1565 | + p1 = np.array((z-cz, y-cy)) | ||
1566 | + p0 = self.p0 | ||
1567 | + p1 = self.get_image_point_coord(x, y, z) | ||
1568 | + | ||
1569 | + axis = np.cross(p0, p1) | ||
1570 | + norm = np.linalg.norm(axis) | ||
1571 | + if norm == 0: | ||
1572 | + return | ||
1573 | + axis = axis / norm | ||
1574 | + angle = np.arccos(np.dot(p0, p1)/(np.linalg.norm(p0)*np.linalg.norm(p1))) | ||
1575 | + | ||
1576 | + self.viewer.slice_.q_orientation = transformations.quaternion_multiply(self.viewer.slice_.q_orientation, transformations.quaternion_about_axis(angle, axis)) | ||
1577 | + | ||
1578 | + az, ay, ax = transformations.euler_from_quaternion(self.viewer.slice_.q_orientation) | ||
1579 | + Publisher.sendMessage('Update reorient angles', (ax, ay, az)) | ||
1580 | + | ||
1581 | + self._discard_buffers() | ||
1582 | + self.viewer.slice_.current_mask.clear_history() | ||
1583 | + Publisher.sendMessage('Reload actual slice %s' % self.viewer.orientation) | ||
1584 | + self.p0 = self.get_image_point_coord(x, y, z) | ||
1585 | + | ||
1586 | + def get_image_point_coord(self, x, y, z): | ||
1587 | + cx, cy, cz = self.viewer.slice_.center | ||
1588 | + if self.viewer.orientation == 'AXIAL': | ||
1589 | + z = cz | ||
1590 | + elif self.viewer.orientation == 'CORONAL': | ||
1591 | + y = cy | ||
1592 | + elif self.viewer.orientation == 'SAGITAL': | ||
1593 | + x = cx | ||
1594 | + | ||
1595 | + x, y, z = x-cx, y-cy, z-cz | ||
1596 | + | ||
1597 | + M = transformations.quaternion_matrix(self.viewer.slice_.q_orientation) | ||
1598 | + tcoord = np.array((z, y, x, 1)).dot(M) | ||
1599 | + tcoord = tcoord[:3]/tcoord[3] | ||
1600 | + | ||
1601 | + # print (z, y, x), tcoord | ||
1602 | + return tcoord | ||
1603 | + | ||
1604 | + def _create_line(self, x0, y0, x1, y1, color): | ||
1605 | + line = vtk.vtkLineSource() | ||
1606 | + line.SetPoint1(x0, y0, 0) | ||
1607 | + line.SetPoint2(x1, y1, 0) | ||
1608 | + | ||
1609 | + coord = vtk.vtkCoordinate() | ||
1610 | + coord.SetCoordinateSystemToDisplay() | ||
1611 | + | ||
1612 | + mapper = vtk.vtkPolyDataMapper2D() | ||
1613 | + mapper.SetTransformCoordinate(coord) | ||
1614 | + mapper.SetInputConnection(line.GetOutputPort()) | ||
1615 | + mapper.Update() | ||
1616 | + | ||
1617 | + actor = vtk.vtkActor2D() | ||
1618 | + actor.SetMapper(mapper) | ||
1619 | + actor.GetProperty().SetLineWidth(2.0) | ||
1620 | + actor.GetProperty().SetColor(color) | ||
1621 | + actor.GetProperty().SetOpacity(0.5) | ||
1622 | + | ||
1623 | + self.viewer.slice_data.renderer.AddActor(actor) | ||
1624 | + | ||
1625 | + self.actors.append(actor) | ||
1626 | + | ||
1627 | + return line | ||
1628 | + | ||
1629 | + def draw_lines(self): | ||
1630 | + if self.viewer.orientation == 'AXIAL': | ||
1631 | + color1 = (0, 1, 0) | ||
1632 | + color2 = (0, 0, 1) | ||
1633 | + elif self.viewer.orientation == 'CORONAL': | ||
1634 | + color1 = (1, 0, 0) | ||
1635 | + color2 = (0, 0, 1) | ||
1636 | + elif self.viewer.orientation == 'SAGITAL': | ||
1637 | + color1 = (1, 0, 0) | ||
1638 | + color2 = (0, 1, 0) | ||
1639 | + | ||
1640 | + self.line1 = self._create_line(0, 0.5, 1, 0.5, color1) | ||
1641 | + self.line2 = self._create_line(0.5, 0, 0.5, 1, color2) | ||
1642 | + | ||
1643 | + def _discard_buffers(self): | ||
1644 | + for buffer_ in self.viewer.slice_.buffer_slices.values(): | ||
1645 | + buffer_.discard_vtk_image() | ||
1646 | + buffer_.discard_image() | ||
1647 | + | ||
1408 | def get_style(style): | 1648 | def get_style(style): |
1409 | STYLES = { | 1649 | STYLES = { |
1410 | - const.STATE_DEFAULT: DefaultInteractorStyle, | ||
1411 | - const.SLICE_STATE_CROSS: CrossInteractorStyle, | ||
1412 | - const.STATE_WL: WWWLInteractorStyle, | ||
1413 | - const.STATE_MEASURE_DISTANCE: LinearMeasureInteractorStyle, | ||
1414 | - const.STATE_MEASURE_ANGLE: AngularMeasureInteractorStyle, | ||
1415 | - const.STATE_PAN: PanMoveInteractorStyle, | ||
1416 | - const.STATE_SPIN: SpinInteractorStyle, | ||
1417 | - const.STATE_ZOOM: ZoomInteractorStyle, | ||
1418 | - const.STATE_ZOOM_SL: ZoomSLInteractorStyle, | ||
1419 | - const.SLICE_STATE_SCROLL: ChangeSliceInteractorStyle, | ||
1420 | - const.SLICE_STATE_EDITOR: EditorInteractorStyle, | ||
1421 | - const.SLICE_STATE_WATERSHED: WaterShedInteractorStyle, | ||
1422 | - } | 1650 | + const.STATE_DEFAULT: DefaultInteractorStyle, |
1651 | + const.SLICE_STATE_CROSS: CrossInteractorStyle, | ||
1652 | + const.STATE_WL: WWWLInteractorStyle, | ||
1653 | + const.STATE_MEASURE_DISTANCE: LinearMeasureInteractorStyle, | ||
1654 | + const.STATE_MEASURE_ANGLE: AngularMeasureInteractorStyle, | ||
1655 | + const.STATE_PAN: PanMoveInteractorStyle, | ||
1656 | + const.STATE_SPIN: SpinInteractorStyle, | ||
1657 | + const.STATE_ZOOM: ZoomInteractorStyle, | ||
1658 | + const.STATE_ZOOM_SL: ZoomSLInteractorStyle, | ||
1659 | + const.SLICE_STATE_SCROLL: ChangeSliceInteractorStyle, | ||
1660 | + const.SLICE_STATE_EDITOR: EditorInteractorStyle, | ||
1661 | + const.SLICE_STATE_WATERSHED: WaterShedInteractorStyle, | ||
1662 | + const.SLICE_STATE_REORIENT: ReorientImageInteractorStyle, | ||
1663 | + } | ||
1423 | return STYLES[style] | 1664 | return STYLES[style] |
@@ -0,0 +1,1920 @@ | @@ -0,0 +1,1920 @@ | ||
1 | +# -*- coding: utf-8 -*- | ||
2 | +# transformations.py | ||
3 | + | ||
4 | +# Copyright (c) 2006-2015, Christoph Gohlke | ||
5 | +# Copyright (c) 2006-2015, The Regents of the University of California | ||
6 | +# Produced at the Laboratory for Fluorescence Dynamics | ||
7 | +# All rights reserved. | ||
8 | +# | ||
9 | +# Redistribution and use in source and binary forms, with or without | ||
10 | +# modification, are permitted provided that the following conditions are met: | ||
11 | +# | ||
12 | +# * Redistributions of source code must retain the above copyright | ||
13 | +# notice, this list of conditions and the following disclaimer. | ||
14 | +# * Redistributions in binary form must reproduce the above copyright | ||
15 | +# notice, this list of conditions and the following disclaimer in the | ||
16 | +# documentation and/or other materials provided with the distribution. | ||
17 | +# * Neither the name of the copyright holders nor the names of any | ||
18 | +# contributors may be used to endorse or promote products derived | ||
19 | +# from this software without specific prior written permission. | ||
20 | +# | ||
21 | +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | ||
22 | +# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
23 | +# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
24 | +# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | ||
25 | +# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | ||
26 | +# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | ||
27 | +# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | ||
28 | +# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | ||
29 | +# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
30 | +# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | ||
31 | +# POSSIBILITY OF SUCH DAMAGE. | ||
32 | + | ||
33 | +"""Homogeneous Transformation Matrices and Quaternions. | ||
34 | + | ||
35 | +A library for calculating 4x4 matrices for translating, rotating, reflecting, | ||
36 | +scaling, shearing, projecting, orthogonalizing, and superimposing arrays of | ||
37 | +3D homogeneous coordinates as well as for converting between rotation matrices, | ||
38 | +Euler angles, and quaternions. Also includes an Arcball control object and | ||
39 | +functions to decompose transformation matrices. | ||
40 | + | ||
41 | +:Author: | ||
42 | + `Christoph Gohlke <http://www.lfd.uci.edu/~gohlke/>`_ | ||
43 | + | ||
44 | +:Organization: | ||
45 | + Laboratory for Fluorescence Dynamics, University of California, Irvine | ||
46 | + | ||
47 | +:Version: 2015.07.18 | ||
48 | + | ||
49 | +Requirements | ||
50 | +------------ | ||
51 | +* `CPython 2.7 or 3.4 <http://www.python.org>`_ | ||
52 | +* `Numpy 1.9 <http://www.numpy.org>`_ | ||
53 | +* `Transformations.c 2015.07.18 <http://www.lfd.uci.edu/~gohlke/>`_ | ||
54 | + (recommended for speedup of some functions) | ||
55 | + | ||
56 | +Notes | ||
57 | +----- | ||
58 | +The API is not stable yet and is expected to change between revisions. | ||
59 | + | ||
60 | +This Python code is not optimized for speed. Refer to the transformations.c | ||
61 | +module for a faster implementation of some functions. | ||
62 | + | ||
63 | +Documentation in HTML format can be generated with epydoc. | ||
64 | + | ||
65 | +Matrices (M) can be inverted using numpy.linalg.inv(M), be concatenated using | ||
66 | +numpy.dot(M0, M1), or transform homogeneous coordinate arrays (v) using | ||
67 | +numpy.dot(M, v) for shape (4, \*) column vectors, respectively | ||
68 | +numpy.dot(v, M.T) for shape (\*, 4) row vectors ("array of points"). | ||
69 | + | ||
70 | +This module follows the "column vectors on the right" and "row major storage" | ||
71 | +(C contiguous) conventions. The translation components are in the right column | ||
72 | +of the transformation matrix, i.e. M[:3, 3]. | ||
73 | +The transpose of the transformation matrices may have to be used to interface | ||
74 | +with other graphics systems, e.g. with OpenGL's glMultMatrixd(). See also [16]. | ||
75 | + | ||
76 | +Calculations are carried out with numpy.float64 precision. | ||
77 | + | ||
78 | +Vector, point, quaternion, and matrix function arguments are expected to be | ||
79 | +"array like", i.e. tuple, list, or numpy arrays. | ||
80 | + | ||
81 | +Return types are numpy arrays unless specified otherwise. | ||
82 | + | ||
83 | +Angles are in radians unless specified otherwise. | ||
84 | + | ||
85 | +Quaternions w+ix+jy+kz are represented as [w, x, y, z]. | ||
86 | + | ||
87 | +A triple of Euler angles can be applied/interpreted in 24 ways, which can | ||
88 | +be specified using a 4 character string or encoded 4-tuple: | ||
89 | + | ||
90 | + *Axes 4-string*: e.g. 'sxyz' or 'ryxy' | ||
91 | + | ||
92 | + - first character : rotations are applied to 's'tatic or 'r'otating frame | ||
93 | + - remaining characters : successive rotation axis 'x', 'y', or 'z' | ||
94 | + | ||
95 | + *Axes 4-tuple*: e.g. (0, 0, 0, 0) or (1, 1, 1, 1) | ||
96 | + | ||
97 | + - inner axis: code of axis ('x':0, 'y':1, 'z':2) of rightmost matrix. | ||
98 | + - parity : even (0) if inner axis 'x' is followed by 'y', 'y' is followed | ||
99 | + by 'z', or 'z' is followed by 'x'. Otherwise odd (1). | ||
100 | + - repetition : first and last axis are same (1) or different (0). | ||
101 | + - frame : rotations are applied to static (0) or rotating (1) frame. | ||
102 | + | ||
103 | +Other Python packages and modules for 3D transformations and quaternions: | ||
104 | + | ||
105 | +* `Transforms3d <https://pypi.python.org/pypi/transforms3d>`_ | ||
106 | + includes most code of this module. | ||
107 | +* `Blender.mathutils <http://www.blender.org/api/blender_python_api>`_ | ||
108 | +* `numpy-dtypes <https://github.com/numpy/numpy-dtypes>`_ | ||
109 | + | ||
110 | +References | ||
111 | +---------- | ||
112 | +(1) Matrices and transformations. Ronald Goldman. | ||
113 | + In "Graphics Gems I", pp 472-475. Morgan Kaufmann, 1990. | ||
114 | +(2) More matrices and transformations: shear and pseudo-perspective. | ||
115 | + Ronald Goldman. In "Graphics Gems II", pp 320-323. Morgan Kaufmann, 1991. | ||
116 | +(3) Decomposing a matrix into simple transformations. Spencer Thomas. | ||
117 | + In "Graphics Gems II", pp 320-323. Morgan Kaufmann, 1991. | ||
118 | +(4) Recovering the data from the transformation matrix. Ronald Goldman. | ||
119 | + In "Graphics Gems II", pp 324-331. Morgan Kaufmann, 1991. | ||
120 | +(5) Euler angle conversion. Ken Shoemake. | ||
121 | + In "Graphics Gems IV", pp 222-229. Morgan Kaufmann, 1994. | ||
122 | +(6) Arcball rotation control. Ken Shoemake. | ||
123 | + In "Graphics Gems IV", pp 175-192. Morgan Kaufmann, 1994. | ||
124 | +(7) Representing attitude: Euler angles, unit quaternions, and rotation | ||
125 | + vectors. James Diebel. 2006. | ||
126 | +(8) A discussion of the solution for the best rotation to relate two sets | ||
127 | + of vectors. W Kabsch. Acta Cryst. 1978. A34, 827-828. | ||
128 | +(9) Closed-form solution of absolute orientation using unit quaternions. | ||
129 | + BKP Horn. J Opt Soc Am A. 1987. 4(4):629-642. | ||
130 | +(10) Quaternions. Ken Shoemake. | ||
131 | + http://www.sfu.ca/~jwa3/cmpt461/files/quatut.pdf | ||
132 | +(11) From quaternion to matrix and back. JMP van Waveren. 2005. | ||
133 | + http://www.intel.com/cd/ids/developer/asmo-na/eng/293748.htm | ||
134 | +(12) Uniform random rotations. Ken Shoemake. | ||
135 | + In "Graphics Gems III", pp 124-132. Morgan Kaufmann, 1992. | ||
136 | +(13) Quaternion in molecular modeling. CFF Karney. | ||
137 | + J Mol Graph Mod, 25(5):595-604 | ||
138 | +(14) New method for extracting the quaternion from a rotation matrix. | ||
139 | + Itzhack Y Bar-Itzhack, J Guid Contr Dynam. 2000. 23(6): 1085-1087. | ||
140 | +(15) Multiple View Geometry in Computer Vision. Hartley and Zissermann. | ||
141 | + Cambridge University Press; 2nd Ed. 2004. Chapter 4, Algorithm 4.7, p 130. | ||
142 | +(16) Column Vectors vs. Row Vectors. | ||
143 | + http://steve.hollasch.net/cgindex/math/matrix/column-vec.html | ||
144 | + | ||
145 | +Examples | ||
146 | +-------- | ||
147 | +>>> alpha, beta, gamma = 0.123, -1.234, 2.345 | ||
148 | +>>> origin, xaxis, yaxis, zaxis = [0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1] | ||
149 | +>>> I = identity_matrix() | ||
150 | +>>> Rx = rotation_matrix(alpha, xaxis) | ||
151 | +>>> Ry = rotation_matrix(beta, yaxis) | ||
152 | +>>> Rz = rotation_matrix(gamma, zaxis) | ||
153 | +>>> R = concatenate_matrices(Rx, Ry, Rz) | ||
154 | +>>> euler = euler_from_matrix(R, 'rxyz') | ||
155 | +>>> numpy.allclose([alpha, beta, gamma], euler) | ||
156 | +True | ||
157 | +>>> Re = euler_matrix(alpha, beta, gamma, 'rxyz') | ||
158 | +>>> is_same_transform(R, Re) | ||
159 | +True | ||
160 | +>>> al, be, ga = euler_from_matrix(Re, 'rxyz') | ||
161 | +>>> is_same_transform(Re, euler_matrix(al, be, ga, 'rxyz')) | ||
162 | +True | ||
163 | +>>> qx = quaternion_about_axis(alpha, xaxis) | ||
164 | +>>> qy = quaternion_about_axis(beta, yaxis) | ||
165 | +>>> qz = quaternion_about_axis(gamma, zaxis) | ||
166 | +>>> q = quaternion_multiply(qx, qy) | ||
167 | +>>> q = quaternion_multiply(q, qz) | ||
168 | +>>> Rq = quaternion_matrix(q) | ||
169 | +>>> is_same_transform(R, Rq) | ||
170 | +True | ||
171 | +>>> S = scale_matrix(1.23, origin) | ||
172 | +>>> T = translation_matrix([1, 2, 3]) | ||
173 | +>>> Z = shear_matrix(beta, xaxis, origin, zaxis) | ||
174 | +>>> R = random_rotation_matrix(numpy.random.rand(3)) | ||
175 | +>>> M = concatenate_matrices(T, R, Z, S) | ||
176 | +>>> scale, shear, angles, trans, persp = decompose_matrix(M) | ||
177 | +>>> numpy.allclose(scale, 1.23) | ||
178 | +True | ||
179 | +>>> numpy.allclose(trans, [1, 2, 3]) | ||
180 | +True | ||
181 | +>>> numpy.allclose(shear, [0, math.tan(beta), 0]) | ||
182 | +True | ||
183 | +>>> is_same_transform(R, euler_matrix(axes='sxyz', *angles)) | ||
184 | +True | ||
185 | +>>> M1 = compose_matrix(scale, shear, angles, trans, persp) | ||
186 | +>>> is_same_transform(M, M1) | ||
187 | +True | ||
188 | +>>> v0, v1 = random_vector(3), random_vector(3) | ||
189 | +>>> M = rotation_matrix(angle_between_vectors(v0, v1), vector_product(v0, v1)) | ||
190 | +>>> v2 = numpy.dot(v0, M[:3,:3].T) | ||
191 | +>>> numpy.allclose(unit_vector(v1), unit_vector(v2)) | ||
192 | +True | ||
193 | + | ||
194 | +""" | ||
195 | + | ||
196 | +from __future__ import division, print_function | ||
197 | + | ||
198 | +import math | ||
199 | + | ||
200 | +import numpy | ||
201 | + | ||
202 | +__version__ = '2015.07.18' | ||
203 | +__docformat__ = 'restructuredtext en' | ||
204 | +__all__ = () | ||
205 | + | ||
206 | + | ||
207 | +def identity_matrix(): | ||
208 | + """Return 4x4 identity/unit matrix. | ||
209 | + | ||
210 | + >>> I = identity_matrix() | ||
211 | + >>> numpy.allclose(I, numpy.dot(I, I)) | ||
212 | + True | ||
213 | + >>> numpy.sum(I), numpy.trace(I) | ||
214 | + (4.0, 4.0) | ||
215 | + >>> numpy.allclose(I, numpy.identity(4)) | ||
216 | + True | ||
217 | + | ||
218 | + """ | ||
219 | + return numpy.identity(4) | ||
220 | + | ||
221 | + | ||
222 | +def translation_matrix(direction): | ||
223 | + """Return matrix to translate by direction vector. | ||
224 | + | ||
225 | + >>> v = numpy.random.random(3) - 0.5 | ||
226 | + >>> numpy.allclose(v, translation_matrix(v)[:3, 3]) | ||
227 | + True | ||
228 | + | ||
229 | + """ | ||
230 | + M = numpy.identity(4) | ||
231 | + M[:3, 3] = direction[:3] | ||
232 | + return M | ||
233 | + | ||
234 | + | ||
235 | +def translation_from_matrix(matrix): | ||
236 | + """Return translation vector from translation matrix. | ||
237 | + | ||
238 | + >>> v0 = numpy.random.random(3) - 0.5 | ||
239 | + >>> v1 = translation_from_matrix(translation_matrix(v0)) | ||
240 | + >>> numpy.allclose(v0, v1) | ||
241 | + True | ||
242 | + | ||
243 | + """ | ||
244 | + return numpy.array(matrix, copy=False)[:3, 3].copy() | ||
245 | + | ||
246 | + | ||
247 | +def reflection_matrix(point, normal): | ||
248 | + """Return matrix to mirror at plane defined by point and normal vector. | ||
249 | + | ||
250 | + >>> v0 = numpy.random.random(4) - 0.5 | ||
251 | + >>> v0[3] = 1. | ||
252 | + >>> v1 = numpy.random.random(3) - 0.5 | ||
253 | + >>> R = reflection_matrix(v0, v1) | ||
254 | + >>> numpy.allclose(2, numpy.trace(R)) | ||
255 | + True | ||
256 | + >>> numpy.allclose(v0, numpy.dot(R, v0)) | ||
257 | + True | ||
258 | + >>> v2 = v0.copy() | ||
259 | + >>> v2[:3] += v1 | ||
260 | + >>> v3 = v0.copy() | ||
261 | + >>> v2[:3] -= v1 | ||
262 | + >>> numpy.allclose(v2, numpy.dot(R, v3)) | ||
263 | + True | ||
264 | + | ||
265 | + """ | ||
266 | + normal = unit_vector(normal[:3]) | ||
267 | + M = numpy.identity(4) | ||
268 | + M[:3, :3] -= 2.0 * numpy.outer(normal, normal) | ||
269 | + M[:3, 3] = (2.0 * numpy.dot(point[:3], normal)) * normal | ||
270 | + return M | ||
271 | + | ||
272 | + | ||
273 | +def reflection_from_matrix(matrix): | ||
274 | + """Return mirror plane point and normal vector from reflection matrix. | ||
275 | + | ||
276 | + >>> v0 = numpy.random.random(3) - 0.5 | ||
277 | + >>> v1 = numpy.random.random(3) - 0.5 | ||
278 | + >>> M0 = reflection_matrix(v0, v1) | ||
279 | + >>> point, normal = reflection_from_matrix(M0) | ||
280 | + >>> M1 = reflection_matrix(point, normal) | ||
281 | + >>> is_same_transform(M0, M1) | ||
282 | + True | ||
283 | + | ||
284 | + """ | ||
285 | + M = numpy.array(matrix, dtype=numpy.float64, copy=False) | ||
286 | + # normal: unit eigenvector corresponding to eigenvalue -1 | ||
287 | + w, V = numpy.linalg.eig(M[:3, :3]) | ||
288 | + i = numpy.where(abs(numpy.real(w) + 1.0) < 1e-8)[0] | ||
289 | + if not len(i): | ||
290 | + raise ValueError("no unit eigenvector corresponding to eigenvalue -1") | ||
291 | + normal = numpy.real(V[:, i[0]]).squeeze() | ||
292 | + # point: any unit eigenvector corresponding to eigenvalue 1 | ||
293 | + w, V = numpy.linalg.eig(M) | ||
294 | + i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0] | ||
295 | + if not len(i): | ||
296 | + raise ValueError("no unit eigenvector corresponding to eigenvalue 1") | ||
297 | + point = numpy.real(V[:, i[-1]]).squeeze() | ||
298 | + point /= point[3] | ||
299 | + return point, normal | ||
300 | + | ||
301 | + | ||
302 | +def rotation_matrix(angle, direction, point=None): | ||
303 | + """Return matrix to rotate about axis defined by point and direction. | ||
304 | + | ||
305 | + >>> R = rotation_matrix(math.pi/2, [0, 0, 1], [1, 0, 0]) | ||
306 | + >>> numpy.allclose(numpy.dot(R, [0, 0, 0, 1]), [1, -1, 0, 1]) | ||
307 | + True | ||
308 | + >>> angle = (random.random() - 0.5) * (2*math.pi) | ||
309 | + >>> direc = numpy.random.random(3) - 0.5 | ||
310 | + >>> point = numpy.random.random(3) - 0.5 | ||
311 | + >>> R0 = rotation_matrix(angle, direc, point) | ||
312 | + >>> R1 = rotation_matrix(angle-2*math.pi, direc, point) | ||
313 | + >>> is_same_transform(R0, R1) | ||
314 | + True | ||
315 | + >>> R0 = rotation_matrix(angle, direc, point) | ||
316 | + >>> R1 = rotation_matrix(-angle, -direc, point) | ||
317 | + >>> is_same_transform(R0, R1) | ||
318 | + True | ||
319 | + >>> I = numpy.identity(4, numpy.float64) | ||
320 | + >>> numpy.allclose(I, rotation_matrix(math.pi*2, direc)) | ||
321 | + True | ||
322 | + >>> numpy.allclose(2, numpy.trace(rotation_matrix(math.pi/2, | ||
323 | + ... direc, point))) | ||
324 | + True | ||
325 | + | ||
326 | + """ | ||
327 | + sina = math.sin(angle) | ||
328 | + cosa = math.cos(angle) | ||
329 | + direction = unit_vector(direction[:3]) | ||
330 | + # rotation matrix around unit vector | ||
331 | + R = numpy.diag([cosa, cosa, cosa]) | ||
332 | + R += numpy.outer(direction, direction) * (1.0 - cosa) | ||
333 | + direction *= sina | ||
334 | + R += numpy.array([[ 0.0, -direction[2], direction[1]], | ||
335 | + [ direction[2], 0.0, -direction[0]], | ||
336 | + [-direction[1], direction[0], 0.0]]) | ||
337 | + M = numpy.identity(4) | ||
338 | + M[:3, :3] = R | ||
339 | + if point is not None: | ||
340 | + # rotation not around origin | ||
341 | + point = numpy.array(point[:3], dtype=numpy.float64, copy=False) | ||
342 | + M[:3, 3] = point - numpy.dot(R, point) | ||
343 | + return M | ||
344 | + | ||
345 | + | ||
346 | +def rotation_from_matrix(matrix): | ||
347 | + """Return rotation angle and axis from rotation matrix. | ||
348 | + | ||
349 | + >>> angle = (random.random() - 0.5) * (2*math.pi) | ||
350 | + >>> direc = numpy.random.random(3) - 0.5 | ||
351 | + >>> point = numpy.random.random(3) - 0.5 | ||
352 | + >>> R0 = rotation_matrix(angle, direc, point) | ||
353 | + >>> angle, direc, point = rotation_from_matrix(R0) | ||
354 | + >>> R1 = rotation_matrix(angle, direc, point) | ||
355 | + >>> is_same_transform(R0, R1) | ||
356 | + True | ||
357 | + | ||
358 | + """ | ||
359 | + R = numpy.array(matrix, dtype=numpy.float64, copy=False) | ||
360 | + R33 = R[:3, :3] | ||
361 | + # direction: unit eigenvector of R33 corresponding to eigenvalue of 1 | ||
362 | + w, W = numpy.linalg.eig(R33.T) | ||
363 | + i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0] | ||
364 | + if not len(i): | ||
365 | + raise ValueError("no unit eigenvector corresponding to eigenvalue 1") | ||
366 | + direction = numpy.real(W[:, i[-1]]).squeeze() | ||
367 | + # point: unit eigenvector of R33 corresponding to eigenvalue of 1 | ||
368 | + w, Q = numpy.linalg.eig(R) | ||
369 | + i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0] | ||
370 | + if not len(i): | ||
371 | + raise ValueError("no unit eigenvector corresponding to eigenvalue 1") | ||
372 | + point = numpy.real(Q[:, i[-1]]).squeeze() | ||
373 | + point /= point[3] | ||
374 | + # rotation angle depending on direction | ||
375 | + cosa = (numpy.trace(R33) - 1.0) / 2.0 | ||
376 | + if abs(direction[2]) > 1e-8: | ||
377 | + sina = (R[1, 0] + (cosa-1.0)*direction[0]*direction[1]) / direction[2] | ||
378 | + elif abs(direction[1]) > 1e-8: | ||
379 | + sina = (R[0, 2] + (cosa-1.0)*direction[0]*direction[2]) / direction[1] | ||
380 | + else: | ||
381 | + sina = (R[2, 1] + (cosa-1.0)*direction[1]*direction[2]) / direction[0] | ||
382 | + angle = math.atan2(sina, cosa) | ||
383 | + return angle, direction, point | ||
384 | + | ||
385 | + | ||
386 | +def scale_matrix(factor, origin=None, direction=None): | ||
387 | + """Return matrix to scale by factor around origin in direction. | ||
388 | + | ||
389 | + Use factor -1 for point symmetry. | ||
390 | + | ||
391 | + >>> v = (numpy.random.rand(4, 5) - 0.5) * 20 | ||
392 | + >>> v[3] = 1 | ||
393 | + >>> S = scale_matrix(-1.234) | ||
394 | + >>> numpy.allclose(numpy.dot(S, v)[:3], -1.234*v[:3]) | ||
395 | + True | ||
396 | + >>> factor = random.random() * 10 - 5 | ||
397 | + >>> origin = numpy.random.random(3) - 0.5 | ||
398 | + >>> direct = numpy.random.random(3) - 0.5 | ||
399 | + >>> S = scale_matrix(factor, origin) | ||
400 | + >>> S = scale_matrix(factor, origin, direct) | ||
401 | + | ||
402 | + """ | ||
403 | + if direction is None: | ||
404 | + # uniform scaling | ||
405 | + M = numpy.diag([factor, factor, factor, 1.0]) | ||
406 | + if origin is not None: | ||
407 | + M[:3, 3] = origin[:3] | ||
408 | + M[:3, 3] *= 1.0 - factor | ||
409 | + else: | ||
410 | + # nonuniform scaling | ||
411 | + direction = unit_vector(direction[:3]) | ||
412 | + factor = 1.0 - factor | ||
413 | + M = numpy.identity(4) | ||
414 | + M[:3, :3] -= factor * numpy.outer(direction, direction) | ||
415 | + if origin is not None: | ||
416 | + M[:3, 3] = (factor * numpy.dot(origin[:3], direction)) * direction | ||
417 | + return M | ||
418 | + | ||
419 | + | ||
420 | +def scale_from_matrix(matrix): | ||
421 | + """Return scaling factor, origin and direction from scaling matrix. | ||
422 | + | ||
423 | + >>> factor = random.random() * 10 - 5 | ||
424 | + >>> origin = numpy.random.random(3) - 0.5 | ||
425 | + >>> direct = numpy.random.random(3) - 0.5 | ||
426 | + >>> S0 = scale_matrix(factor, origin) | ||
427 | + >>> factor, origin, direction = scale_from_matrix(S0) | ||
428 | + >>> S1 = scale_matrix(factor, origin, direction) | ||
429 | + >>> is_same_transform(S0, S1) | ||
430 | + True | ||
431 | + >>> S0 = scale_matrix(factor, origin, direct) | ||
432 | + >>> factor, origin, direction = scale_from_matrix(S0) | ||
433 | + >>> S1 = scale_matrix(factor, origin, direction) | ||
434 | + >>> is_same_transform(S0, S1) | ||
435 | + True | ||
436 | + | ||
437 | + """ | ||
438 | + M = numpy.array(matrix, dtype=numpy.float64, copy=False) | ||
439 | + M33 = M[:3, :3] | ||
440 | + factor = numpy.trace(M33) - 2.0 | ||
441 | + try: | ||
442 | + # direction: unit eigenvector corresponding to eigenvalue factor | ||
443 | + w, V = numpy.linalg.eig(M33) | ||
444 | + i = numpy.where(abs(numpy.real(w) - factor) < 1e-8)[0][0] | ||
445 | + direction = numpy.real(V[:, i]).squeeze() | ||
446 | + direction /= vector_norm(direction) | ||
447 | + except IndexError: | ||
448 | + # uniform scaling | ||
449 | + factor = (factor + 2.0) / 3.0 | ||
450 | + direction = None | ||
451 | + # origin: any eigenvector corresponding to eigenvalue 1 | ||
452 | + w, V = numpy.linalg.eig(M) | ||
453 | + i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0] | ||
454 | + if not len(i): | ||
455 | + raise ValueError("no eigenvector corresponding to eigenvalue 1") | ||
456 | + origin = numpy.real(V[:, i[-1]]).squeeze() | ||
457 | + origin /= origin[3] | ||
458 | + return factor, origin, direction | ||
459 | + | ||
460 | + | ||
461 | +def projection_matrix(point, normal, direction=None, | ||
462 | + perspective=None, pseudo=False): | ||
463 | + """Return matrix to project onto plane defined by point and normal. | ||
464 | + | ||
465 | + Using either perspective point, projection direction, or none of both. | ||
466 | + | ||
467 | + If pseudo is True, perspective projections will preserve relative depth | ||
468 | + such that Perspective = dot(Orthogonal, PseudoPerspective). | ||
469 | + | ||
470 | + >>> P = projection_matrix([0, 0, 0], [1, 0, 0]) | ||
471 | + >>> numpy.allclose(P[1:, 1:], numpy.identity(4)[1:, 1:]) | ||
472 | + True | ||
473 | + >>> point = numpy.random.random(3) - 0.5 | ||
474 | + >>> normal = numpy.random.random(3) - 0.5 | ||
475 | + >>> direct = numpy.random.random(3) - 0.5 | ||
476 | + >>> persp = numpy.random.random(3) - 0.5 | ||
477 | + >>> P0 = projection_matrix(point, normal) | ||
478 | + >>> P1 = projection_matrix(point, normal, direction=direct) | ||
479 | + >>> P2 = projection_matrix(point, normal, perspective=persp) | ||
480 | + >>> P3 = projection_matrix(point, normal, perspective=persp, pseudo=True) | ||
481 | + >>> is_same_transform(P2, numpy.dot(P0, P3)) | ||
482 | + True | ||
483 | + >>> P = projection_matrix([3, 0, 0], [1, 1, 0], [1, 0, 0]) | ||
484 | + >>> v0 = (numpy.random.rand(4, 5) - 0.5) * 20 | ||
485 | + >>> v0[3] = 1 | ||
486 | + >>> v1 = numpy.dot(P, v0) | ||
487 | + >>> numpy.allclose(v1[1], v0[1]) | ||
488 | + True | ||
489 | + >>> numpy.allclose(v1[0], 3-v1[1]) | ||
490 | + True | ||
491 | + | ||
492 | + """ | ||
493 | + M = numpy.identity(4) | ||
494 | + point = numpy.array(point[:3], dtype=numpy.float64, copy=False) | ||
495 | + normal = unit_vector(normal[:3]) | ||
496 | + if perspective is not None: | ||
497 | + # perspective projection | ||
498 | + perspective = numpy.array(perspective[:3], dtype=numpy.float64, | ||
499 | + copy=False) | ||
500 | + M[0, 0] = M[1, 1] = M[2, 2] = numpy.dot(perspective-point, normal) | ||
501 | + M[:3, :3] -= numpy.outer(perspective, normal) | ||
502 | + if pseudo: | ||
503 | + # preserve relative depth | ||
504 | + M[:3, :3] -= numpy.outer(normal, normal) | ||
505 | + M[:3, 3] = numpy.dot(point, normal) * (perspective+normal) | ||
506 | + else: | ||
507 | + M[:3, 3] = numpy.dot(point, normal) * perspective | ||
508 | + M[3, :3] = -normal | ||
509 | + M[3, 3] = numpy.dot(perspective, normal) | ||
510 | + elif direction is not None: | ||
511 | + # parallel projection | ||
512 | + direction = numpy.array(direction[:3], dtype=numpy.float64, copy=False) | ||
513 | + scale = numpy.dot(direction, normal) | ||
514 | + M[:3, :3] -= numpy.outer(direction, normal) / scale | ||
515 | + M[:3, 3] = direction * (numpy.dot(point, normal) / scale) | ||
516 | + else: | ||
517 | + # orthogonal projection | ||
518 | + M[:3, :3] -= numpy.outer(normal, normal) | ||
519 | + M[:3, 3] = numpy.dot(point, normal) * normal | ||
520 | + return M | ||
521 | + | ||
522 | + | ||
523 | +def projection_from_matrix(matrix, pseudo=False): | ||
524 | + """Return projection plane and perspective point from projection matrix. | ||
525 | + | ||
526 | + Return values are same as arguments for projection_matrix function: | ||
527 | + point, normal, direction, perspective, and pseudo. | ||
528 | + | ||
529 | + >>> point = numpy.random.random(3) - 0.5 | ||
530 | + >>> normal = numpy.random.random(3) - 0.5 | ||
531 | + >>> direct = numpy.random.random(3) - 0.5 | ||
532 | + >>> persp = numpy.random.random(3) - 0.5 | ||
533 | + >>> P0 = projection_matrix(point, normal) | ||
534 | + >>> result = projection_from_matrix(P0) | ||
535 | + >>> P1 = projection_matrix(*result) | ||
536 | + >>> is_same_transform(P0, P1) | ||
537 | + True | ||
538 | + >>> P0 = projection_matrix(point, normal, direct) | ||
539 | + >>> result = projection_from_matrix(P0) | ||
540 | + >>> P1 = projection_matrix(*result) | ||
541 | + >>> is_same_transform(P0, P1) | ||
542 | + True | ||
543 | + >>> P0 = projection_matrix(point, normal, perspective=persp, pseudo=False) | ||
544 | + >>> result = projection_from_matrix(P0, pseudo=False) | ||
545 | + >>> P1 = projection_matrix(*result) | ||
546 | + >>> is_same_transform(P0, P1) | ||
547 | + True | ||
548 | + >>> P0 = projection_matrix(point, normal, perspective=persp, pseudo=True) | ||
549 | + >>> result = projection_from_matrix(P0, pseudo=True) | ||
550 | + >>> P1 = projection_matrix(*result) | ||
551 | + >>> is_same_transform(P0, P1) | ||
552 | + True | ||
553 | + | ||
554 | + """ | ||
555 | + M = numpy.array(matrix, dtype=numpy.float64, copy=False) | ||
556 | + M33 = M[:3, :3] | ||
557 | + w, V = numpy.linalg.eig(M) | ||
558 | + i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0] | ||
559 | + if not pseudo and len(i): | ||
560 | + # point: any eigenvector corresponding to eigenvalue 1 | ||
561 | + point = numpy.real(V[:, i[-1]]).squeeze() | ||
562 | + point /= point[3] | ||
563 | + # direction: unit eigenvector corresponding to eigenvalue 0 | ||
564 | + w, V = numpy.linalg.eig(M33) | ||
565 | + i = numpy.where(abs(numpy.real(w)) < 1e-8)[0] | ||
566 | + if not len(i): | ||
567 | + raise ValueError("no eigenvector corresponding to eigenvalue 0") | ||
568 | + direction = numpy.real(V[:, i[0]]).squeeze() | ||
569 | + direction /= vector_norm(direction) | ||
570 | + # normal: unit eigenvector of M33.T corresponding to eigenvalue 0 | ||
571 | + w, V = numpy.linalg.eig(M33.T) | ||
572 | + i = numpy.where(abs(numpy.real(w)) < 1e-8)[0] | ||
573 | + if len(i): | ||
574 | + # parallel projection | ||
575 | + normal = numpy.real(V[:, i[0]]).squeeze() | ||
576 | + normal /= vector_norm(normal) | ||
577 | + return point, normal, direction, None, False | ||
578 | + else: | ||
579 | + # orthogonal projection, where normal equals direction vector | ||
580 | + return point, direction, None, None, False | ||
581 | + else: | ||
582 | + # perspective projection | ||
583 | + i = numpy.where(abs(numpy.real(w)) > 1e-8)[0] | ||
584 | + if not len(i): | ||
585 | + raise ValueError( | ||
586 | + "no eigenvector not corresponding to eigenvalue 0") | ||
587 | + point = numpy.real(V[:, i[-1]]).squeeze() | ||
588 | + point /= point[3] | ||
589 | + normal = - M[3, :3] | ||
590 | + perspective = M[:3, 3] / numpy.dot(point[:3], normal) | ||
591 | + if pseudo: | ||
592 | + perspective -= normal | ||
593 | + return point, normal, None, perspective, pseudo | ||
594 | + | ||
595 | + | ||
596 | +def clip_matrix(left, right, bottom, top, near, far, perspective=False): | ||
597 | + """Return matrix to obtain normalized device coordinates from frustum. | ||
598 | + | ||
599 | + The frustum bounds are axis-aligned along x (left, right), | ||
600 | + y (bottom, top) and z (near, far). | ||
601 | + | ||
602 | + Normalized device coordinates are in range [-1, 1] if coordinates are | ||
603 | + inside the frustum. | ||
604 | + | ||
605 | + If perspective is True the frustum is a truncated pyramid with the | ||
606 | + perspective point at origin and direction along z axis, otherwise an | ||
607 | + orthographic canonical view volume (a box). | ||
608 | + | ||
609 | + Homogeneous coordinates transformed by the perspective clip matrix | ||
610 | + need to be dehomogenized (divided by w coordinate). | ||
611 | + | ||
612 | + >>> frustum = numpy.random.rand(6) | ||
613 | + >>> frustum[1] += frustum[0] | ||
614 | + >>> frustum[3] += frustum[2] | ||
615 | + >>> frustum[5] += frustum[4] | ||
616 | + >>> M = clip_matrix(perspective=False, *frustum) | ||
617 | + >>> numpy.dot(M, [frustum[0], frustum[2], frustum[4], 1]) | ||
618 | + array([-1., -1., -1., 1.]) | ||
619 | + >>> numpy.dot(M, [frustum[1], frustum[3], frustum[5], 1]) | ||
620 | + array([ 1., 1., 1., 1.]) | ||
621 | + >>> M = clip_matrix(perspective=True, *frustum) | ||
622 | + >>> v = numpy.dot(M, [frustum[0], frustum[2], frustum[4], 1]) | ||
623 | + >>> v / v[3] | ||
624 | + array([-1., -1., -1., 1.]) | ||
625 | + >>> v = numpy.dot(M, [frustum[1], frustum[3], frustum[4], 1]) | ||
626 | + >>> v / v[3] | ||
627 | + array([ 1., 1., -1., 1.]) | ||
628 | + | ||
629 | + """ | ||
630 | + if left >= right or bottom >= top or near >= far: | ||
631 | + raise ValueError("invalid frustum") | ||
632 | + if perspective: | ||
633 | + if near <= _EPS: | ||
634 | + raise ValueError("invalid frustum: near <= 0") | ||
635 | + t = 2.0 * near | ||
636 | + M = [[t/(left-right), 0.0, (right+left)/(right-left), 0.0], | ||
637 | + [0.0, t/(bottom-top), (top+bottom)/(top-bottom), 0.0], | ||
638 | + [0.0, 0.0, (far+near)/(near-far), t*far/(far-near)], | ||
639 | + [0.0, 0.0, -1.0, 0.0]] | ||
640 | + else: | ||
641 | + M = [[2.0/(right-left), 0.0, 0.0, (right+left)/(left-right)], | ||
642 | + [0.0, 2.0/(top-bottom), 0.0, (top+bottom)/(bottom-top)], | ||
643 | + [0.0, 0.0, 2.0/(far-near), (far+near)/(near-far)], | ||
644 | + [0.0, 0.0, 0.0, 1.0]] | ||
645 | + return numpy.array(M) | ||
646 | + | ||
647 | + | ||
648 | +def shear_matrix(angle, direction, point, normal): | ||
649 | + """Return matrix to shear by angle along direction vector on shear plane. | ||
650 | + | ||
651 | + The shear plane is defined by a point and normal vector. The direction | ||
652 | + vector must be orthogonal to the plane's normal vector. | ||
653 | + | ||
654 | + A point P is transformed by the shear matrix into P" such that | ||
655 | + the vector P-P" is parallel to the direction vector and its extent is | ||
656 | + given by the angle of P-P'-P", where P' is the orthogonal projection | ||
657 | + of P onto the shear plane. | ||
658 | + | ||
659 | + >>> angle = (random.random() - 0.5) * 4*math.pi | ||
660 | + >>> direct = numpy.random.random(3) - 0.5 | ||
661 | + >>> point = numpy.random.random(3) - 0.5 | ||
662 | + >>> normal = numpy.cross(direct, numpy.random.random(3)) | ||
663 | + >>> S = shear_matrix(angle, direct, point, normal) | ||
664 | + >>> numpy.allclose(1, numpy.linalg.det(S)) | ||
665 | + True | ||
666 | + | ||
667 | + """ | ||
668 | + normal = unit_vector(normal[:3]) | ||
669 | + direction = unit_vector(direction[:3]) | ||
670 | + if abs(numpy.dot(normal, direction)) > 1e-6: | ||
671 | + raise ValueError("direction and normal vectors are not orthogonal") | ||
672 | + angle = math.tan(angle) | ||
673 | + M = numpy.identity(4) | ||
674 | + M[:3, :3] += angle * numpy.outer(direction, normal) | ||
675 | + M[:3, 3] = -angle * numpy.dot(point[:3], normal) * direction | ||
676 | + return M | ||
677 | + | ||
678 | + | ||
679 | +def shear_from_matrix(matrix): | ||
680 | + """Return shear angle, direction and plane from shear matrix. | ||
681 | + | ||
682 | + >>> angle = (random.random() - 0.5) * 4*math.pi | ||
683 | + >>> direct = numpy.random.random(3) - 0.5 | ||
684 | + >>> point = numpy.random.random(3) - 0.5 | ||
685 | + >>> normal = numpy.cross(direct, numpy.random.random(3)) | ||
686 | + >>> S0 = shear_matrix(angle, direct, point, normal) | ||
687 | + >>> angle, direct, point, normal = shear_from_matrix(S0) | ||
688 | + >>> S1 = shear_matrix(angle, direct, point, normal) | ||
689 | + >>> is_same_transform(S0, S1) | ||
690 | + True | ||
691 | + | ||
692 | + """ | ||
693 | + M = numpy.array(matrix, dtype=numpy.float64, copy=False) | ||
694 | + M33 = M[:3, :3] | ||
695 | + # normal: cross independent eigenvectors corresponding to the eigenvalue 1 | ||
696 | + w, V = numpy.linalg.eig(M33) | ||
697 | + i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-4)[0] | ||
698 | + if len(i) < 2: | ||
699 | + raise ValueError("no two linear independent eigenvectors found %s" % w) | ||
700 | + V = numpy.real(V[:, i]).squeeze().T | ||
701 | + lenorm = -1.0 | ||
702 | + for i0, i1 in ((0, 1), (0, 2), (1, 2)): | ||
703 | + n = numpy.cross(V[i0], V[i1]) | ||
704 | + w = vector_norm(n) | ||
705 | + if w > lenorm: | ||
706 | + lenorm = w | ||
707 | + normal = n | ||
708 | + normal /= lenorm | ||
709 | + # direction and angle | ||
710 | + direction = numpy.dot(M33 - numpy.identity(3), normal) | ||
711 | + angle = vector_norm(direction) | ||
712 | + direction /= angle | ||
713 | + angle = math.atan(angle) | ||
714 | + # point: eigenvector corresponding to eigenvalue 1 | ||
715 | + w, V = numpy.linalg.eig(M) | ||
716 | + i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0] | ||
717 | + if not len(i): | ||
718 | + raise ValueError("no eigenvector corresponding to eigenvalue 1") | ||
719 | + point = numpy.real(V[:, i[-1]]).squeeze() | ||
720 | + point /= point[3] | ||
721 | + return angle, direction, point, normal | ||
722 | + | ||
723 | + | ||
724 | +def decompose_matrix(matrix): | ||
725 | + """Return sequence of transformations from transformation matrix. | ||
726 | + | ||
727 | + matrix : array_like | ||
728 | + Non-degenerative homogeneous transformation matrix | ||
729 | + | ||
730 | + Return tuple of: | ||
731 | + scale : vector of 3 scaling factors | ||
732 | + shear : list of shear factors for x-y, x-z, y-z axes | ||
733 | + angles : list of Euler angles about static x, y, z axes | ||
734 | + translate : translation vector along x, y, z axes | ||
735 | + perspective : perspective partition of matrix | ||
736 | + | ||
737 | + Raise ValueError if matrix is of wrong type or degenerative. | ||
738 | + | ||
739 | + >>> T0 = translation_matrix([1, 2, 3]) | ||
740 | + >>> scale, shear, angles, trans, persp = decompose_matrix(T0) | ||
741 | + >>> T1 = translation_matrix(trans) | ||
742 | + >>> numpy.allclose(T0, T1) | ||
743 | + True | ||
744 | + >>> S = scale_matrix(0.123) | ||
745 | + >>> scale, shear, angles, trans, persp = decompose_matrix(S) | ||
746 | + >>> scale[0] | ||
747 | + 0.123 | ||
748 | + >>> R0 = euler_matrix(1, 2, 3) | ||
749 | + >>> scale, shear, angles, trans, persp = decompose_matrix(R0) | ||
750 | + >>> R1 = euler_matrix(*angles) | ||
751 | + >>> numpy.allclose(R0, R1) | ||
752 | + True | ||
753 | + | ||
754 | + """ | ||
755 | + M = numpy.array(matrix, dtype=numpy.float64, copy=True).T | ||
756 | + if abs(M[3, 3]) < _EPS: | ||
757 | + raise ValueError("M[3, 3] is zero") | ||
758 | + M /= M[3, 3] | ||
759 | + P = M.copy() | ||
760 | + P[:, 3] = 0.0, 0.0, 0.0, 1.0 | ||
761 | + if not numpy.linalg.det(P): | ||
762 | + raise ValueError("matrix is singular") | ||
763 | + | ||
764 | + scale = numpy.zeros((3, )) | ||
765 | + shear = [0.0, 0.0, 0.0] | ||
766 | + angles = [0.0, 0.0, 0.0] | ||
767 | + | ||
768 | + if any(abs(M[:3, 3]) > _EPS): | ||
769 | + perspective = numpy.dot(M[:, 3], numpy.linalg.inv(P.T)) | ||
770 | + M[:, 3] = 0.0, 0.0, 0.0, 1.0 | ||
771 | + else: | ||
772 | + perspective = numpy.array([0.0, 0.0, 0.0, 1.0]) | ||
773 | + | ||
774 | + translate = M[3, :3].copy() | ||
775 | + M[3, :3] = 0.0 | ||
776 | + | ||
777 | + row = M[:3, :3].copy() | ||
778 | + scale[0] = vector_norm(row[0]) | ||
779 | + row[0] /= scale[0] | ||
780 | + shear[0] = numpy.dot(row[0], row[1]) | ||
781 | + row[1] -= row[0] * shear[0] | ||
782 | + scale[1] = vector_norm(row[1]) | ||
783 | + row[1] /= scale[1] | ||
784 | + shear[0] /= scale[1] | ||
785 | + shear[1] = numpy.dot(row[0], row[2]) | ||
786 | + row[2] -= row[0] * shear[1] | ||
787 | + shear[2] = numpy.dot(row[1], row[2]) | ||
788 | + row[2] -= row[1] * shear[2] | ||
789 | + scale[2] = vector_norm(row[2]) | ||
790 | + row[2] /= scale[2] | ||
791 | + shear[1:] /= scale[2] | ||
792 | + | ||
793 | + if numpy.dot(row[0], numpy.cross(row[1], row[2])) < 0: | ||
794 | + numpy.negative(scale, scale) | ||
795 | + numpy.negative(row, row) | ||
796 | + | ||
797 | + angles[1] = math.asin(-row[0, 2]) | ||
798 | + if math.cos(angles[1]): | ||
799 | + angles[0] = math.atan2(row[1, 2], row[2, 2]) | ||
800 | + angles[2] = math.atan2(row[0, 1], row[0, 0]) | ||
801 | + else: | ||
802 | + #angles[0] = math.atan2(row[1, 0], row[1, 1]) | ||
803 | + angles[0] = math.atan2(-row[2, 1], row[1, 1]) | ||
804 | + angles[2] = 0.0 | ||
805 | + | ||
806 | + return scale, shear, angles, translate, perspective | ||
807 | + | ||
808 | + | ||
809 | +def compose_matrix(scale=None, shear=None, angles=None, translate=None, | ||
810 | + perspective=None): | ||
811 | + """Return transformation matrix from sequence of transformations. | ||
812 | + | ||
813 | + This is the inverse of the decompose_matrix function. | ||
814 | + | ||
815 | + Sequence of transformations: | ||
816 | + scale : vector of 3 scaling factors | ||
817 | + shear : list of shear factors for x-y, x-z, y-z axes | ||
818 | + angles : list of Euler angles about static x, y, z axes | ||
819 | + translate : translation vector along x, y, z axes | ||
820 | + perspective : perspective partition of matrix | ||
821 | + | ||
822 | + >>> scale = numpy.random.random(3) - 0.5 | ||
823 | + >>> shear = numpy.random.random(3) - 0.5 | ||
824 | + >>> angles = (numpy.random.random(3) - 0.5) * (2*math.pi) | ||
825 | + >>> trans = numpy.random.random(3) - 0.5 | ||
826 | + >>> persp = numpy.random.random(4) - 0.5 | ||
827 | + >>> M0 = compose_matrix(scale, shear, angles, trans, persp) | ||
828 | + >>> result = decompose_matrix(M0) | ||
829 | + >>> M1 = compose_matrix(*result) | ||
830 | + >>> is_same_transform(M0, M1) | ||
831 | + True | ||
832 | + | ||
833 | + """ | ||
834 | + M = numpy.identity(4) | ||
835 | + if perspective is not None: | ||
836 | + P = numpy.identity(4) | ||
837 | + P[3, :] = perspective[:4] | ||
838 | + M = numpy.dot(M, P) | ||
839 | + if translate is not None: | ||
840 | + T = numpy.identity(4) | ||
841 | + T[:3, 3] = translate[:3] | ||
842 | + M = numpy.dot(M, T) | ||
843 | + if angles is not None: | ||
844 | + R = euler_matrix(angles[0], angles[1], angles[2], 'sxyz') | ||
845 | + M = numpy.dot(M, R) | ||
846 | + if shear is not None: | ||
847 | + Z = numpy.identity(4) | ||
848 | + Z[1, 2] = shear[2] | ||
849 | + Z[0, 2] = shear[1] | ||
850 | + Z[0, 1] = shear[0] | ||
851 | + M = numpy.dot(M, Z) | ||
852 | + if scale is not None: | ||
853 | + S = numpy.identity(4) | ||
854 | + S[0, 0] = scale[0] | ||
855 | + S[1, 1] = scale[1] | ||
856 | + S[2, 2] = scale[2] | ||
857 | + M = numpy.dot(M, S) | ||
858 | + M /= M[3, 3] | ||
859 | + return M | ||
860 | + | ||
861 | + | ||
862 | +def orthogonalization_matrix(lengths, angles): | ||
863 | + """Return orthogonalization matrix for crystallographic cell coordinates. | ||
864 | + | ||
865 | + Angles are expected in degrees. | ||
866 | + | ||
867 | + The de-orthogonalization matrix is the inverse. | ||
868 | + | ||
869 | + >>> O = orthogonalization_matrix([10, 10, 10], [90, 90, 90]) | ||
870 | + >>> numpy.allclose(O[:3, :3], numpy.identity(3, float) * 10) | ||
871 | + True | ||
872 | + >>> O = orthogonalization_matrix([9.8, 12.0, 15.5], [87.2, 80.7, 69.7]) | ||
873 | + >>> numpy.allclose(numpy.sum(O), 43.063229) | ||
874 | + True | ||
875 | + | ||
876 | + """ | ||
877 | + a, b, c = lengths | ||
878 | + angles = numpy.radians(angles) | ||
879 | + sina, sinb, _ = numpy.sin(angles) | ||
880 | + cosa, cosb, cosg = numpy.cos(angles) | ||
881 | + co = (cosa * cosb - cosg) / (sina * sinb) | ||
882 | + return numpy.array([ | ||
883 | + [ a*sinb*math.sqrt(1.0-co*co), 0.0, 0.0, 0.0], | ||
884 | + [-a*sinb*co, b*sina, 0.0, 0.0], | ||
885 | + [ a*cosb, b*cosa, c, 0.0], | ||
886 | + [ 0.0, 0.0, 0.0, 1.0]]) | ||
887 | + | ||
888 | + | ||
889 | +def affine_matrix_from_points(v0, v1, shear=True, scale=True, usesvd=True): | ||
890 | + """Return affine transform matrix to register two point sets. | ||
891 | + | ||
892 | + v0 and v1 are shape (ndims, \*) arrays of at least ndims non-homogeneous | ||
893 | + coordinates, where ndims is the dimensionality of the coordinate space. | ||
894 | + | ||
895 | + If shear is False, a similarity transformation matrix is returned. | ||
896 | + If also scale is False, a rigid/Euclidean transformation matrix | ||
897 | + is returned. | ||
898 | + | ||
899 | + By default the algorithm by Hartley and Zissermann [15] is used. | ||
900 | + If usesvd is True, similarity and Euclidean transformation matrices | ||
901 | + are calculated by minimizing the weighted sum of squared deviations | ||
902 | + (RMSD) according to the algorithm by Kabsch [8]. | ||
903 | + Otherwise, and if ndims is 3, the quaternion based algorithm by Horn [9] | ||
904 | + is used, which is slower when using this Python implementation. | ||
905 | + | ||
906 | + The returned matrix performs rotation, translation and uniform scaling | ||
907 | + (if specified). | ||
908 | + | ||
909 | + >>> v0 = [[0, 1031, 1031, 0], [0, 0, 1600, 1600]] | ||
910 | + >>> v1 = [[675, 826, 826, 677], [55, 52, 281, 277]] | ||
911 | + >>> affine_matrix_from_points(v0, v1) | ||
912 | + array([[ 0.14549, 0.00062, 675.50008], | ||
913 | + [ 0.00048, 0.14094, 53.24971], | ||
914 | + [ 0. , 0. , 1. ]]) | ||
915 | + >>> T = translation_matrix(numpy.random.random(3)-0.5) | ||
916 | + >>> R = random_rotation_matrix(numpy.random.random(3)) | ||
917 | + >>> S = scale_matrix(random.random()) | ||
918 | + >>> M = concatenate_matrices(T, R, S) | ||
919 | + >>> v0 = (numpy.random.rand(4, 100) - 0.5) * 20 | ||
920 | + >>> v0[3] = 1 | ||
921 | + >>> v1 = numpy.dot(M, v0) | ||
922 | + >>> v0[:3] += numpy.random.normal(0, 1e-8, 300).reshape(3, -1) | ||
923 | + >>> M = affine_matrix_from_points(v0[:3], v1[:3]) | ||
924 | + >>> numpy.allclose(v1, numpy.dot(M, v0)) | ||
925 | + True | ||
926 | + | ||
927 | + More examples in superimposition_matrix() | ||
928 | + | ||
929 | + """ | ||
930 | + v0 = numpy.array(v0, dtype=numpy.float64, copy=True) | ||
931 | + v1 = numpy.array(v1, dtype=numpy.float64, copy=True) | ||
932 | + | ||
933 | + ndims = v0.shape[0] | ||
934 | + if ndims < 2 or v0.shape[1] < ndims or v0.shape != v1.shape: | ||
935 | + raise ValueError("input arrays are of wrong shape or type") | ||
936 | + | ||
937 | + # move centroids to origin | ||
938 | + t0 = -numpy.mean(v0, axis=1) | ||
939 | + M0 = numpy.identity(ndims+1) | ||
940 | + M0[:ndims, ndims] = t0 | ||
941 | + v0 += t0.reshape(ndims, 1) | ||
942 | + t1 = -numpy.mean(v1, axis=1) | ||
943 | + M1 = numpy.identity(ndims+1) | ||
944 | + M1[:ndims, ndims] = t1 | ||
945 | + v1 += t1.reshape(ndims, 1) | ||
946 | + | ||
947 | + if shear: | ||
948 | + # Affine transformation | ||
949 | + A = numpy.concatenate((v0, v1), axis=0) | ||
950 | + u, s, vh = numpy.linalg.svd(A.T) | ||
951 | + vh = vh[:ndims].T | ||
952 | + B = vh[:ndims] | ||
953 | + C = vh[ndims:2*ndims] | ||
954 | + t = numpy.dot(C, numpy.linalg.pinv(B)) | ||
955 | + t = numpy.concatenate((t, numpy.zeros((ndims, 1))), axis=1) | ||
956 | + M = numpy.vstack((t, ((0.0,)*ndims) + (1.0,))) | ||
957 | + elif usesvd or ndims != 3: | ||
958 | + # Rigid transformation via SVD of covariance matrix | ||
959 | + u, s, vh = numpy.linalg.svd(numpy.dot(v1, v0.T)) | ||
960 | + # rotation matrix from SVD orthonormal bases | ||
961 | + R = numpy.dot(u, vh) | ||
962 | + if numpy.linalg.det(R) < 0.0: | ||
963 | + # R does not constitute right handed system | ||
964 | + R -= numpy.outer(u[:, ndims-1], vh[ndims-1, :]*2.0) | ||
965 | + s[-1] *= -1.0 | ||
966 | + # homogeneous transformation matrix | ||
967 | + M = numpy.identity(ndims+1) | ||
968 | + M[:ndims, :ndims] = R | ||
969 | + else: | ||
970 | + # Rigid transformation matrix via quaternion | ||
971 | + # compute symmetric matrix N | ||
972 | + xx, yy, zz = numpy.sum(v0 * v1, axis=1) | ||
973 | + xy, yz, zx = numpy.sum(v0 * numpy.roll(v1, -1, axis=0), axis=1) | ||
974 | + xz, yx, zy = numpy.sum(v0 * numpy.roll(v1, -2, axis=0), axis=1) | ||
975 | + N = [[xx+yy+zz, 0.0, 0.0, 0.0], | ||
976 | + [yz-zy, xx-yy-zz, 0.0, 0.0], | ||
977 | + [zx-xz, xy+yx, yy-xx-zz, 0.0], | ||
978 | + [xy-yx, zx+xz, yz+zy, zz-xx-yy]] | ||
979 | + # quaternion: eigenvector corresponding to most positive eigenvalue | ||
980 | + w, V = numpy.linalg.eigh(N) | ||
981 | + q = V[:, numpy.argmax(w)] | ||
982 | + q /= vector_norm(q) # unit quaternion | ||
983 | + # homogeneous transformation matrix | ||
984 | + M = quaternion_matrix(q) | ||
985 | + | ||
986 | + if scale and not shear: | ||
987 | + # Affine transformation; scale is ratio of RMS deviations from centroid | ||
988 | + v0 *= v0 | ||
989 | + v1 *= v1 | ||
990 | + M[:ndims, :ndims] *= math.sqrt(numpy.sum(v1) / numpy.sum(v0)) | ||
991 | + | ||
992 | + # move centroids back | ||
993 | + M = numpy.dot(numpy.linalg.inv(M1), numpy.dot(M, M0)) | ||
994 | + M /= M[ndims, ndims] | ||
995 | + return M | ||
996 | + | ||
997 | + | ||
998 | +def superimposition_matrix(v0, v1, scale=False, usesvd=True): | ||
999 | + """Return matrix to transform given 3D point set into second point set. | ||
1000 | + | ||
1001 | + v0 and v1 are shape (3, \*) or (4, \*) arrays of at least 3 points. | ||
1002 | + | ||
1003 | + The parameters scale and usesvd are explained in the more general | ||
1004 | + affine_matrix_from_points function. | ||
1005 | + | ||
1006 | + The returned matrix is a similarity or Euclidean transformation matrix. | ||
1007 | + This function has a fast C implementation in transformations.c. | ||
1008 | + | ||
1009 | + >>> v0 = numpy.random.rand(3, 10) | ||
1010 | + >>> M = superimposition_matrix(v0, v0) | ||
1011 | + >>> numpy.allclose(M, numpy.identity(4)) | ||
1012 | + True | ||
1013 | + >>> R = random_rotation_matrix(numpy.random.random(3)) | ||
1014 | + >>> v0 = [[1,0,0], [0,1,0], [0,0,1], [1,1,1]] | ||
1015 | + >>> v1 = numpy.dot(R, v0) | ||
1016 | + >>> M = superimposition_matrix(v0, v1) | ||
1017 | + >>> numpy.allclose(v1, numpy.dot(M, v0)) | ||
1018 | + True | ||
1019 | + >>> v0 = (numpy.random.rand(4, 100) - 0.5) * 20 | ||
1020 | + >>> v0[3] = 1 | ||
1021 | + >>> v1 = numpy.dot(R, v0) | ||
1022 | + >>> M = superimposition_matrix(v0, v1) | ||
1023 | + >>> numpy.allclose(v1, numpy.dot(M, v0)) | ||
1024 | + True | ||
1025 | + >>> S = scale_matrix(random.random()) | ||
1026 | + >>> T = translation_matrix(numpy.random.random(3)-0.5) | ||
1027 | + >>> M = concatenate_matrices(T, R, S) | ||
1028 | + >>> v1 = numpy.dot(M, v0) | ||
1029 | + >>> v0[:3] += numpy.random.normal(0, 1e-9, 300).reshape(3, -1) | ||
1030 | + >>> M = superimposition_matrix(v0, v1, scale=True) | ||
1031 | + >>> numpy.allclose(v1, numpy.dot(M, v0)) | ||
1032 | + True | ||
1033 | + >>> M = superimposition_matrix(v0, v1, scale=True, usesvd=False) | ||
1034 | + >>> numpy.allclose(v1, numpy.dot(M, v0)) | ||
1035 | + True | ||
1036 | + >>> v = numpy.empty((4, 100, 3)) | ||
1037 | + >>> v[:, :, 0] = v0 | ||
1038 | + >>> M = superimposition_matrix(v0, v1, scale=True, usesvd=False) | ||
1039 | + >>> numpy.allclose(v1, numpy.dot(M, v[:, :, 0])) | ||
1040 | + True | ||
1041 | + | ||
1042 | + """ | ||
1043 | + v0 = numpy.array(v0, dtype=numpy.float64, copy=False)[:3] | ||
1044 | + v1 = numpy.array(v1, dtype=numpy.float64, copy=False)[:3] | ||
1045 | + return affine_matrix_from_points(v0, v1, shear=False, | ||
1046 | + scale=scale, usesvd=usesvd) | ||
1047 | + | ||
1048 | + | ||
1049 | +def euler_matrix(ai, aj, ak, axes='sxyz'): | ||
1050 | + """Return homogeneous rotation matrix from Euler angles and axis sequence. | ||
1051 | + | ||
1052 | + ai, aj, ak : Euler's roll, pitch and yaw angles | ||
1053 | + axes : One of 24 axis sequences as string or encoded tuple | ||
1054 | + | ||
1055 | + >>> R = euler_matrix(1, 2, 3, 'syxz') | ||
1056 | + >>> numpy.allclose(numpy.sum(R[0]), -1.34786452) | ||
1057 | + True | ||
1058 | + >>> R = euler_matrix(1, 2, 3, (0, 1, 0, 1)) | ||
1059 | + >>> numpy.allclose(numpy.sum(R[0]), -0.383436184) | ||
1060 | + True | ||
1061 | + >>> ai, aj, ak = (4*math.pi) * (numpy.random.random(3) - 0.5) | ||
1062 | + >>> for axes in _AXES2TUPLE.keys(): | ||
1063 | + ... R = euler_matrix(ai, aj, ak, axes) | ||
1064 | + >>> for axes in _TUPLE2AXES.keys(): | ||
1065 | + ... R = euler_matrix(ai, aj, ak, axes) | ||
1066 | + | ||
1067 | + """ | ||
1068 | + try: | ||
1069 | + firstaxis, parity, repetition, frame = _AXES2TUPLE[axes] | ||
1070 | + except (AttributeError, KeyError): | ||
1071 | + _TUPLE2AXES[axes] # validation | ||
1072 | + firstaxis, parity, repetition, frame = axes | ||
1073 | + | ||
1074 | + i = firstaxis | ||
1075 | + j = _NEXT_AXIS[i+parity] | ||
1076 | + k = _NEXT_AXIS[i-parity+1] | ||
1077 | + | ||
1078 | + if frame: | ||
1079 | + ai, ak = ak, ai | ||
1080 | + if parity: | ||
1081 | + ai, aj, ak = -ai, -aj, -ak | ||
1082 | + | ||
1083 | + si, sj, sk = math.sin(ai), math.sin(aj), math.sin(ak) | ||
1084 | + ci, cj, ck = math.cos(ai), math.cos(aj), math.cos(ak) | ||
1085 | + cc, cs = ci*ck, ci*sk | ||
1086 | + sc, ss = si*ck, si*sk | ||
1087 | + | ||
1088 | + M = numpy.identity(4) | ||
1089 | + if repetition: | ||
1090 | + M[i, i] = cj | ||
1091 | + M[i, j] = sj*si | ||
1092 | + M[i, k] = sj*ci | ||
1093 | + M[j, i] = sj*sk | ||
1094 | + M[j, j] = -cj*ss+cc | ||
1095 | + M[j, k] = -cj*cs-sc | ||
1096 | + M[k, i] = -sj*ck | ||
1097 | + M[k, j] = cj*sc+cs | ||
1098 | + M[k, k] = cj*cc-ss | ||
1099 | + else: | ||
1100 | + M[i, i] = cj*ck | ||
1101 | + M[i, j] = sj*sc-cs | ||
1102 | + M[i, k] = sj*cc+ss | ||
1103 | + M[j, i] = cj*sk | ||
1104 | + M[j, j] = sj*ss+cc | ||
1105 | + M[j, k] = sj*cs-sc | ||
1106 | + M[k, i] = -sj | ||
1107 | + M[k, j] = cj*si | ||
1108 | + M[k, k] = cj*ci | ||
1109 | + return M | ||
1110 | + | ||
1111 | + | ||
1112 | +def euler_from_matrix(matrix, axes='sxyz'): | ||
1113 | + """Return Euler angles from rotation matrix for specified axis sequence. | ||
1114 | + | ||
1115 | + axes : One of 24 axis sequences as string or encoded tuple | ||
1116 | + | ||
1117 | + Note that many Euler angle triplets can describe one matrix. | ||
1118 | + | ||
1119 | + >>> R0 = euler_matrix(1, 2, 3, 'syxz') | ||
1120 | + >>> al, be, ga = euler_from_matrix(R0, 'syxz') | ||
1121 | + >>> R1 = euler_matrix(al, be, ga, 'syxz') | ||
1122 | + >>> numpy.allclose(R0, R1) | ||
1123 | + True | ||
1124 | + >>> angles = (4*math.pi) * (numpy.random.random(3) - 0.5) | ||
1125 | + >>> for axes in _AXES2TUPLE.keys(): | ||
1126 | + ... R0 = euler_matrix(axes=axes, *angles) | ||
1127 | + ... R1 = euler_matrix(axes=axes, *euler_from_matrix(R0, axes)) | ||
1128 | + ... if not numpy.allclose(R0, R1): print(axes, "failed") | ||
1129 | + | ||
1130 | + """ | ||
1131 | + try: | ||
1132 | + firstaxis, parity, repetition, frame = _AXES2TUPLE[axes.lower()] | ||
1133 | + except (AttributeError, KeyError): | ||
1134 | + _TUPLE2AXES[axes] # validation | ||
1135 | + firstaxis, parity, repetition, frame = axes | ||
1136 | + | ||
1137 | + i = firstaxis | ||
1138 | + j = _NEXT_AXIS[i+parity] | ||
1139 | + k = _NEXT_AXIS[i-parity+1] | ||
1140 | + | ||
1141 | + M = numpy.array(matrix, dtype=numpy.float64, copy=False)[:3, :3] | ||
1142 | + if repetition: | ||
1143 | + sy = math.sqrt(M[i, j]*M[i, j] + M[i, k]*M[i, k]) | ||
1144 | + if sy > _EPS: | ||
1145 | + ax = math.atan2( M[i, j], M[i, k]) | ||
1146 | + ay = math.atan2( sy, M[i, i]) | ||
1147 | + az = math.atan2( M[j, i], -M[k, i]) | ||
1148 | + else: | ||
1149 | + ax = math.atan2(-M[j, k], M[j, j]) | ||
1150 | + ay = math.atan2( sy, M[i, i]) | ||
1151 | + az = 0.0 | ||
1152 | + else: | ||
1153 | + cy = math.sqrt(M[i, i]*M[i, i] + M[j, i]*M[j, i]) | ||
1154 | + if cy > _EPS: | ||
1155 | + ax = math.atan2( M[k, j], M[k, k]) | ||
1156 | + ay = math.atan2(-M[k, i], cy) | ||
1157 | + az = math.atan2( M[j, i], M[i, i]) | ||
1158 | + else: | ||
1159 | + ax = math.atan2(-M[j, k], M[j, j]) | ||
1160 | + ay = math.atan2(-M[k, i], cy) | ||
1161 | + az = 0.0 | ||
1162 | + | ||
1163 | + if parity: | ||
1164 | + ax, ay, az = -ax, -ay, -az | ||
1165 | + if frame: | ||
1166 | + ax, az = az, ax | ||
1167 | + return ax, ay, az | ||
1168 | + | ||
1169 | + | ||
1170 | +def euler_from_quaternion(quaternion, axes='sxyz'): | ||
1171 | + """Return Euler angles from quaternion for specified axis sequence. | ||
1172 | + | ||
1173 | + >>> angles = euler_from_quaternion([0.99810947, 0.06146124, 0, 0]) | ||
1174 | + >>> numpy.allclose(angles, [0.123, 0, 0]) | ||
1175 | + True | ||
1176 | + | ||
1177 | + """ | ||
1178 | + return euler_from_matrix(quaternion_matrix(quaternion), axes) | ||
1179 | + | ||
1180 | + | ||
1181 | +def quaternion_from_euler(ai, aj, ak, axes='sxyz'): | ||
1182 | + """Return quaternion from Euler angles and axis sequence. | ||
1183 | + | ||
1184 | + ai, aj, ak : Euler's roll, pitch and yaw angles | ||
1185 | + axes : One of 24 axis sequences as string or encoded tuple | ||
1186 | + | ||
1187 | + >>> q = quaternion_from_euler(1, 2, 3, 'ryxz') | ||
1188 | + >>> numpy.allclose(q, [0.435953, 0.310622, -0.718287, 0.444435]) | ||
1189 | + True | ||
1190 | + | ||
1191 | + """ | ||
1192 | + try: | ||
1193 | + firstaxis, parity, repetition, frame = _AXES2TUPLE[axes.lower()] | ||
1194 | + except (AttributeError, KeyError): | ||
1195 | + _TUPLE2AXES[axes] # validation | ||
1196 | + firstaxis, parity, repetition, frame = axes | ||
1197 | + | ||
1198 | + i = firstaxis + 1 | ||
1199 | + j = _NEXT_AXIS[i+parity-1] + 1 | ||
1200 | + k = _NEXT_AXIS[i-parity] + 1 | ||
1201 | + | ||
1202 | + if frame: | ||
1203 | + ai, ak = ak, ai | ||
1204 | + if parity: | ||
1205 | + aj = -aj | ||
1206 | + | ||
1207 | + ai /= 2.0 | ||
1208 | + aj /= 2.0 | ||
1209 | + ak /= 2.0 | ||
1210 | + ci = math.cos(ai) | ||
1211 | + si = math.sin(ai) | ||
1212 | + cj = math.cos(aj) | ||
1213 | + sj = math.sin(aj) | ||
1214 | + ck = math.cos(ak) | ||
1215 | + sk = math.sin(ak) | ||
1216 | + cc = ci*ck | ||
1217 | + cs = ci*sk | ||
1218 | + sc = si*ck | ||
1219 | + ss = si*sk | ||
1220 | + | ||
1221 | + q = numpy.empty((4, )) | ||
1222 | + if repetition: | ||
1223 | + q[0] = cj*(cc - ss) | ||
1224 | + q[i] = cj*(cs + sc) | ||
1225 | + q[j] = sj*(cc + ss) | ||
1226 | + q[k] = sj*(cs - sc) | ||
1227 | + else: | ||
1228 | + q[0] = cj*cc + sj*ss | ||
1229 | + q[i] = cj*sc - sj*cs | ||
1230 | + q[j] = cj*ss + sj*cc | ||
1231 | + q[k] = cj*cs - sj*sc | ||
1232 | + if parity: | ||
1233 | + q[j] *= -1.0 | ||
1234 | + | ||
1235 | + return q | ||
1236 | + | ||
1237 | + | ||
1238 | +def quaternion_about_axis(angle, axis): | ||
1239 | + """Return quaternion for rotation about axis. | ||
1240 | + | ||
1241 | + >>> q = quaternion_about_axis(0.123, [1, 0, 0]) | ||
1242 | + >>> numpy.allclose(q, [0.99810947, 0.06146124, 0, 0]) | ||
1243 | + True | ||
1244 | + | ||
1245 | + """ | ||
1246 | + q = numpy.array([0.0, axis[0], axis[1], axis[2]]) | ||
1247 | + qlen = vector_norm(q) | ||
1248 | + if qlen > _EPS: | ||
1249 | + q *= math.sin(angle/2.0) / qlen | ||
1250 | + q[0] = math.cos(angle/2.0) | ||
1251 | + return q | ||
1252 | + | ||
1253 | + | ||
1254 | +def quaternion_matrix(quaternion): | ||
1255 | + """Return homogeneous rotation matrix from quaternion. | ||
1256 | + | ||
1257 | + >>> M = quaternion_matrix([0.99810947, 0.06146124, 0, 0]) | ||
1258 | + >>> numpy.allclose(M, rotation_matrix(0.123, [1, 0, 0])) | ||
1259 | + True | ||
1260 | + >>> M = quaternion_matrix([1, 0, 0, 0]) | ||
1261 | + >>> numpy.allclose(M, numpy.identity(4)) | ||
1262 | + True | ||
1263 | + >>> M = quaternion_matrix([0, 1, 0, 0]) | ||
1264 | + >>> numpy.allclose(M, numpy.diag([1, -1, -1, 1])) | ||
1265 | + True | ||
1266 | + | ||
1267 | + """ | ||
1268 | + q = numpy.array(quaternion, dtype=numpy.float64, copy=True) | ||
1269 | + n = numpy.dot(q, q) | ||
1270 | + if n < _EPS: | ||
1271 | + return numpy.identity(4) | ||
1272 | + q *= math.sqrt(2.0 / n) | ||
1273 | + q = numpy.outer(q, q) | ||
1274 | + return numpy.array([ | ||
1275 | + [1.0-q[2, 2]-q[3, 3], q[1, 2]-q[3, 0], q[1, 3]+q[2, 0], 0.0], | ||
1276 | + [ q[1, 2]+q[3, 0], 1.0-q[1, 1]-q[3, 3], q[2, 3]-q[1, 0], 0.0], | ||
1277 | + [ q[1, 3]-q[2, 0], q[2, 3]+q[1, 0], 1.0-q[1, 1]-q[2, 2], 0.0], | ||
1278 | + [ 0.0, 0.0, 0.0, 1.0]]) | ||
1279 | + | ||
1280 | + | ||
1281 | +def quaternion_from_matrix(matrix, isprecise=False): | ||
1282 | + """Return quaternion from rotation matrix. | ||
1283 | + | ||
1284 | + If isprecise is True, the input matrix is assumed to be a precise rotation | ||
1285 | + matrix and a faster algorithm is used. | ||
1286 | + | ||
1287 | + >>> q = quaternion_from_matrix(numpy.identity(4), True) | ||
1288 | + >>> numpy.allclose(q, [1, 0, 0, 0]) | ||
1289 | + True | ||
1290 | + >>> q = quaternion_from_matrix(numpy.diag([1, -1, -1, 1])) | ||
1291 | + >>> numpy.allclose(q, [0, 1, 0, 0]) or numpy.allclose(q, [0, -1, 0, 0]) | ||
1292 | + True | ||
1293 | + >>> R = rotation_matrix(0.123, (1, 2, 3)) | ||
1294 | + >>> q = quaternion_from_matrix(R, True) | ||
1295 | + >>> numpy.allclose(q, [0.9981095, 0.0164262, 0.0328524, 0.0492786]) | ||
1296 | + True | ||
1297 | + >>> R = [[-0.545, 0.797, 0.260, 0], [0.733, 0.603, -0.313, 0], | ||
1298 | + ... [-0.407, 0.021, -0.913, 0], [0, 0, 0, 1]] | ||
1299 | + >>> q = quaternion_from_matrix(R) | ||
1300 | + >>> numpy.allclose(q, [0.19069, 0.43736, 0.87485, -0.083611]) | ||
1301 | + True | ||
1302 | + >>> R = [[0.395, 0.362, 0.843, 0], [-0.626, 0.796, -0.056, 0], | ||
1303 | + ... [-0.677, -0.498, 0.529, 0], [0, 0, 0, 1]] | ||
1304 | + >>> q = quaternion_from_matrix(R) | ||
1305 | + >>> numpy.allclose(q, [0.82336615, -0.13610694, 0.46344705, -0.29792603]) | ||
1306 | + True | ||
1307 | + >>> R = random_rotation_matrix() | ||
1308 | + >>> q = quaternion_from_matrix(R) | ||
1309 | + >>> is_same_transform(R, quaternion_matrix(q)) | ||
1310 | + True | ||
1311 | + >>> R = euler_matrix(0.0, 0.0, numpy.pi/2.0) | ||
1312 | + >>> numpy.allclose(quaternion_from_matrix(R, isprecise=False), | ||
1313 | + ... quaternion_from_matrix(R, isprecise=True)) | ||
1314 | + True | ||
1315 | + | ||
1316 | + """ | ||
1317 | + M = numpy.array(matrix, dtype=numpy.float64, copy=False)[:4, :4] | ||
1318 | + if isprecise: | ||
1319 | + q = numpy.empty((4, )) | ||
1320 | + t = numpy.trace(M) | ||
1321 | + if t > M[3, 3]: | ||
1322 | + q[0] = t | ||
1323 | + q[3] = M[1, 0] - M[0, 1] | ||
1324 | + q[2] = M[0, 2] - M[2, 0] | ||
1325 | + q[1] = M[2, 1] - M[1, 2] | ||
1326 | + else: | ||
1327 | + i, j, k = 1, 2, 3 | ||
1328 | + if M[1, 1] > M[0, 0]: | ||
1329 | + i, j, k = 2, 3, 1 | ||
1330 | + if M[2, 2] > M[i, i]: | ||
1331 | + i, j, k = 3, 1, 2 | ||
1332 | + t = M[i, i] - (M[j, j] + M[k, k]) + M[3, 3] | ||
1333 | + q[i] = t | ||
1334 | + q[j] = M[i, j] + M[j, i] | ||
1335 | + q[k] = M[k, i] + M[i, k] | ||
1336 | + q[3] = M[k, j] - M[j, k] | ||
1337 | + q *= 0.5 / math.sqrt(t * M[3, 3]) | ||
1338 | + else: | ||
1339 | + m00 = M[0, 0] | ||
1340 | + m01 = M[0, 1] | ||
1341 | + m02 = M[0, 2] | ||
1342 | + m10 = M[1, 0] | ||
1343 | + m11 = M[1, 1] | ||
1344 | + m12 = M[1, 2] | ||
1345 | + m20 = M[2, 0] | ||
1346 | + m21 = M[2, 1] | ||
1347 | + m22 = M[2, 2] | ||
1348 | + # symmetric matrix K | ||
1349 | + K = numpy.array([[m00-m11-m22, 0.0, 0.0, 0.0], | ||
1350 | + [m01+m10, m11-m00-m22, 0.0, 0.0], | ||
1351 | + [m02+m20, m12+m21, m22-m00-m11, 0.0], | ||
1352 | + [m21-m12, m02-m20, m10-m01, m00+m11+m22]]) | ||
1353 | + K /= 3.0 | ||
1354 | + # quaternion is eigenvector of K that corresponds to largest eigenvalue | ||
1355 | + w, V = numpy.linalg.eigh(K) | ||
1356 | + q = V[[3, 0, 1, 2], numpy.argmax(w)] | ||
1357 | + if q[0] < 0.0: | ||
1358 | + numpy.negative(q, q) | ||
1359 | + return q | ||
1360 | + | ||
1361 | + | ||
1362 | +def quaternion_multiply(quaternion1, quaternion0): | ||
1363 | + """Return multiplication of two quaternions. | ||
1364 | + | ||
1365 | + >>> q = quaternion_multiply([4, 1, -2, 3], [8, -5, 6, 7]) | ||
1366 | + >>> numpy.allclose(q, [28, -44, -14, 48]) | ||
1367 | + True | ||
1368 | + | ||
1369 | + """ | ||
1370 | + w0, x0, y0, z0 = quaternion0 | ||
1371 | + w1, x1, y1, z1 = quaternion1 | ||
1372 | + return numpy.array([-x1*x0 - y1*y0 - z1*z0 + w1*w0, | ||
1373 | + x1*w0 + y1*z0 - z1*y0 + w1*x0, | ||
1374 | + -x1*z0 + y1*w0 + z1*x0 + w1*y0, | ||
1375 | + x1*y0 - y1*x0 + z1*w0 + w1*z0], dtype=numpy.float64) | ||
1376 | + | ||
1377 | + | ||
1378 | +def quaternion_conjugate(quaternion): | ||
1379 | + """Return conjugate of quaternion. | ||
1380 | + | ||
1381 | + >>> q0 = random_quaternion() | ||
1382 | + >>> q1 = quaternion_conjugate(q0) | ||
1383 | + >>> q1[0] == q0[0] and all(q1[1:] == -q0[1:]) | ||
1384 | + True | ||
1385 | + | ||
1386 | + """ | ||
1387 | + q = numpy.array(quaternion, dtype=numpy.float64, copy=True) | ||
1388 | + numpy.negative(q[1:], q[1:]) | ||
1389 | + return q | ||
1390 | + | ||
1391 | + | ||
1392 | +def quaternion_inverse(quaternion): | ||
1393 | + """Return inverse of quaternion. | ||
1394 | + | ||
1395 | + >>> q0 = random_quaternion() | ||
1396 | + >>> q1 = quaternion_inverse(q0) | ||
1397 | + >>> numpy.allclose(quaternion_multiply(q0, q1), [1, 0, 0, 0]) | ||
1398 | + True | ||
1399 | + | ||
1400 | + """ | ||
1401 | + q = numpy.array(quaternion, dtype=numpy.float64, copy=True) | ||
1402 | + numpy.negative(q[1:], q[1:]) | ||
1403 | + return q / numpy.dot(q, q) | ||
1404 | + | ||
1405 | + | ||
1406 | +def quaternion_real(quaternion): | ||
1407 | + """Return real part of quaternion. | ||
1408 | + | ||
1409 | + >>> quaternion_real([3, 0, 1, 2]) | ||
1410 | + 3.0 | ||
1411 | + | ||
1412 | + """ | ||
1413 | + return float(quaternion[0]) | ||
1414 | + | ||
1415 | + | ||
1416 | +def quaternion_imag(quaternion): | ||
1417 | + """Return imaginary part of quaternion. | ||
1418 | + | ||
1419 | + >>> quaternion_imag([3, 0, 1, 2]) | ||
1420 | + array([ 0., 1., 2.]) | ||
1421 | + | ||
1422 | + """ | ||
1423 | + return numpy.array(quaternion[1:4], dtype=numpy.float64, copy=True) | ||
1424 | + | ||
1425 | + | ||
1426 | +def quaternion_slerp(quat0, quat1, fraction, spin=0, shortestpath=True): | ||
1427 | + """Return spherical linear interpolation between two quaternions. | ||
1428 | + | ||
1429 | + >>> q0 = random_quaternion() | ||
1430 | + >>> q1 = random_quaternion() | ||
1431 | + >>> q = quaternion_slerp(q0, q1, 0) | ||
1432 | + >>> numpy.allclose(q, q0) | ||
1433 | + True | ||
1434 | + >>> q = quaternion_slerp(q0, q1, 1, 1) | ||
1435 | + >>> numpy.allclose(q, q1) | ||
1436 | + True | ||
1437 | + >>> q = quaternion_slerp(q0, q1, 0.5) | ||
1438 | + >>> angle = math.acos(numpy.dot(q0, q)) | ||
1439 | + >>> numpy.allclose(2, math.acos(numpy.dot(q0, q1)) / angle) or \ | ||
1440 | + numpy.allclose(2, math.acos(-numpy.dot(q0, q1)) / angle) | ||
1441 | + True | ||
1442 | + | ||
1443 | + """ | ||
1444 | + q0 = unit_vector(quat0[:4]) | ||
1445 | + q1 = unit_vector(quat1[:4]) | ||
1446 | + if fraction == 0.0: | ||
1447 | + return q0 | ||
1448 | + elif fraction == 1.0: | ||
1449 | + return q1 | ||
1450 | + d = numpy.dot(q0, q1) | ||
1451 | + if abs(abs(d) - 1.0) < _EPS: | ||
1452 | + return q0 | ||
1453 | + if shortestpath and d < 0.0: | ||
1454 | + # invert rotation | ||
1455 | + d = -d | ||
1456 | + numpy.negative(q1, q1) | ||
1457 | + angle = math.acos(d) + spin * math.pi | ||
1458 | + if abs(angle) < _EPS: | ||
1459 | + return q0 | ||
1460 | + isin = 1.0 / math.sin(angle) | ||
1461 | + q0 *= math.sin((1.0 - fraction) * angle) * isin | ||
1462 | + q1 *= math.sin(fraction * angle) * isin | ||
1463 | + q0 += q1 | ||
1464 | + return q0 | ||
1465 | + | ||
1466 | + | ||
1467 | +def random_quaternion(rand=None): | ||
1468 | + """Return uniform random unit quaternion. | ||
1469 | + | ||
1470 | + rand: array like or None | ||
1471 | + Three independent random variables that are uniformly distributed | ||
1472 | + between 0 and 1. | ||
1473 | + | ||
1474 | + >>> q = random_quaternion() | ||
1475 | + >>> numpy.allclose(1, vector_norm(q)) | ||
1476 | + True | ||
1477 | + >>> q = random_quaternion(numpy.random.random(3)) | ||
1478 | + >>> len(q.shape), q.shape[0]==4 | ||
1479 | + (1, True) | ||
1480 | + | ||
1481 | + """ | ||
1482 | + if rand is None: | ||
1483 | + rand = numpy.random.rand(3) | ||
1484 | + else: | ||
1485 | + assert len(rand) == 3 | ||
1486 | + r1 = numpy.sqrt(1.0 - rand[0]) | ||
1487 | + r2 = numpy.sqrt(rand[0]) | ||
1488 | + pi2 = math.pi * 2.0 | ||
1489 | + t1 = pi2 * rand[1] | ||
1490 | + t2 = pi2 * rand[2] | ||
1491 | + return numpy.array([numpy.cos(t2)*r2, numpy.sin(t1)*r1, | ||
1492 | + numpy.cos(t1)*r1, numpy.sin(t2)*r2]) | ||
1493 | + | ||
1494 | + | ||
1495 | +def random_rotation_matrix(rand=None): | ||
1496 | + """Return uniform random rotation matrix. | ||
1497 | + | ||
1498 | + rand: array like | ||
1499 | + Three independent random variables that are uniformly distributed | ||
1500 | + between 0 and 1 for each returned quaternion. | ||
1501 | + | ||
1502 | + >>> R = random_rotation_matrix() | ||
1503 | + >>> numpy.allclose(numpy.dot(R.T, R), numpy.identity(4)) | ||
1504 | + True | ||
1505 | + | ||
1506 | + """ | ||
1507 | + return quaternion_matrix(random_quaternion(rand)) | ||
1508 | + | ||
1509 | + | ||
1510 | +class Arcball(object): | ||
1511 | + """Virtual Trackball Control. | ||
1512 | + | ||
1513 | + >>> ball = Arcball() | ||
1514 | + >>> ball = Arcball(initial=numpy.identity(4)) | ||
1515 | + >>> ball.place([320, 320], 320) | ||
1516 | + >>> ball.down([500, 250]) | ||
1517 | + >>> ball.drag([475, 275]) | ||
1518 | + >>> R = ball.matrix() | ||
1519 | + >>> numpy.allclose(numpy.sum(R), 3.90583455) | ||
1520 | + True | ||
1521 | + >>> ball = Arcball(initial=[1, 0, 0, 0]) | ||
1522 | + >>> ball.place([320, 320], 320) | ||
1523 | + >>> ball.setaxes([1, 1, 0], [-1, 1, 0]) | ||
1524 | + >>> ball.constrain = True | ||
1525 | + >>> ball.down([400, 200]) | ||
1526 | + >>> ball.drag([200, 400]) | ||
1527 | + >>> R = ball.matrix() | ||
1528 | + >>> numpy.allclose(numpy.sum(R), 0.2055924) | ||
1529 | + True | ||
1530 | + >>> ball.next() | ||
1531 | + | ||
1532 | + """ | ||
1533 | + def __init__(self, initial=None): | ||
1534 | + """Initialize virtual trackball control. | ||
1535 | + | ||
1536 | + initial : quaternion or rotation matrix | ||
1537 | + | ||
1538 | + """ | ||
1539 | + self._axis = None | ||
1540 | + self._axes = None | ||
1541 | + self._radius = 1.0 | ||
1542 | + self._center = [0.0, 0.0] | ||
1543 | + self._vdown = numpy.array([0.0, 0.0, 1.0]) | ||
1544 | + self._constrain = False | ||
1545 | + if initial is None: | ||
1546 | + self._qdown = numpy.array([1.0, 0.0, 0.0, 0.0]) | ||
1547 | + else: | ||
1548 | + initial = numpy.array(initial, dtype=numpy.float64) | ||
1549 | + if initial.shape == (4, 4): | ||
1550 | + self._qdown = quaternion_from_matrix(initial) | ||
1551 | + elif initial.shape == (4, ): | ||
1552 | + initial /= vector_norm(initial) | ||
1553 | + self._qdown = initial | ||
1554 | + else: | ||
1555 | + raise ValueError("initial not a quaternion or matrix") | ||
1556 | + self._qnow = self._qpre = self._qdown | ||
1557 | + | ||
1558 | + def place(self, center, radius): | ||
1559 | + """Place Arcball, e.g. when window size changes. | ||
1560 | + | ||
1561 | + center : sequence[2] | ||
1562 | + Window coordinates of trackball center. | ||
1563 | + radius : float | ||
1564 | + Radius of trackball in window coordinates. | ||
1565 | + | ||
1566 | + """ | ||
1567 | + self._radius = float(radius) | ||
1568 | + self._center[0] = center[0] | ||
1569 | + self._center[1] = center[1] | ||
1570 | + | ||
1571 | + def setaxes(self, *axes): | ||
1572 | + """Set axes to constrain rotations.""" | ||
1573 | + if axes is None: | ||
1574 | + self._axes = None | ||
1575 | + else: | ||
1576 | + self._axes = [unit_vector(axis) for axis in axes] | ||
1577 | + | ||
1578 | + @property | ||
1579 | + def constrain(self): | ||
1580 | + """Return state of constrain to axis mode.""" | ||
1581 | + return self._constrain | ||
1582 | + | ||
1583 | + @constrain.setter | ||
1584 | + def constrain(self, value): | ||
1585 | + """Set state of constrain to axis mode.""" | ||
1586 | + self._constrain = bool(value) | ||
1587 | + | ||
1588 | + def down(self, point): | ||
1589 | + """Set initial cursor window coordinates and pick constrain-axis.""" | ||
1590 | + self._vdown = arcball_map_to_sphere(point, self._center, self._radius) | ||
1591 | + self._qdown = self._qpre = self._qnow | ||
1592 | + if self._constrain and self._axes is not None: | ||
1593 | + self._axis = arcball_nearest_axis(self._vdown, self._axes) | ||
1594 | + self._vdown = arcball_constrain_to_axis(self._vdown, self._axis) | ||
1595 | + else: | ||
1596 | + self._axis = None | ||
1597 | + | ||
1598 | + def drag(self, point): | ||
1599 | + """Update current cursor window coordinates.""" | ||
1600 | + vnow = arcball_map_to_sphere(point, self._center, self._radius) | ||
1601 | + if self._axis is not None: | ||
1602 | + vnow = arcball_constrain_to_axis(vnow, self._axis) | ||
1603 | + self._qpre = self._qnow | ||
1604 | + t = numpy.cross(self._vdown, vnow) | ||
1605 | + if numpy.dot(t, t) < _EPS: | ||
1606 | + self._qnow = self._qdown | ||
1607 | + else: | ||
1608 | + q = [numpy.dot(self._vdown, vnow), t[0], t[1], t[2]] | ||
1609 | + self._qnow = quaternion_multiply(q, self._qdown) | ||
1610 | + | ||
1611 | + def next(self, acceleration=0.0): | ||
1612 | + """Continue rotation in direction of last drag.""" | ||
1613 | + q = quaternion_slerp(self._qpre, self._qnow, 2.0+acceleration, False) | ||
1614 | + self._qpre, self._qnow = self._qnow, q | ||
1615 | + | ||
1616 | + def matrix(self): | ||
1617 | + """Return homogeneous rotation matrix.""" | ||
1618 | + return quaternion_matrix(self._qnow) | ||
1619 | + | ||
1620 | + | ||
1621 | +def arcball_map_to_sphere(point, center, radius): | ||
1622 | + """Return unit sphere coordinates from window coordinates.""" | ||
1623 | + v0 = (point[0] - center[0]) / radius | ||
1624 | + v1 = (center[1] - point[1]) / radius | ||
1625 | + n = v0*v0 + v1*v1 | ||
1626 | + if n > 1.0: | ||
1627 | + # position outside of sphere | ||
1628 | + n = math.sqrt(n) | ||
1629 | + return numpy.array([v0/n, v1/n, 0.0]) | ||
1630 | + else: | ||
1631 | + return numpy.array([v0, v1, math.sqrt(1.0 - n)]) | ||
1632 | + | ||
1633 | + | ||
1634 | +def arcball_constrain_to_axis(point, axis): | ||
1635 | + """Return sphere point perpendicular to axis.""" | ||
1636 | + v = numpy.array(point, dtype=numpy.float64, copy=True) | ||
1637 | + a = numpy.array(axis, dtype=numpy.float64, copy=True) | ||
1638 | + v -= a * numpy.dot(a, v) # on plane | ||
1639 | + n = vector_norm(v) | ||
1640 | + if n > _EPS: | ||
1641 | + if v[2] < 0.0: | ||
1642 | + numpy.negative(v, v) | ||
1643 | + v /= n | ||
1644 | + return v | ||
1645 | + if a[2] == 1.0: | ||
1646 | + return numpy.array([1.0, 0.0, 0.0]) | ||
1647 | + return unit_vector([-a[1], a[0], 0.0]) | ||
1648 | + | ||
1649 | + | ||
1650 | +def arcball_nearest_axis(point, axes): | ||
1651 | + """Return axis, which arc is nearest to point.""" | ||
1652 | + point = numpy.array(point, dtype=numpy.float64, copy=False) | ||
1653 | + nearest = None | ||
1654 | + mx = -1.0 | ||
1655 | + for axis in axes: | ||
1656 | + t = numpy.dot(arcball_constrain_to_axis(point, axis), point) | ||
1657 | + if t > mx: | ||
1658 | + nearest = axis | ||
1659 | + mx = t | ||
1660 | + return nearest | ||
1661 | + | ||
1662 | + | ||
1663 | +# epsilon for testing whether a number is close to zero | ||
1664 | +_EPS = numpy.finfo(float).eps * 4.0 | ||
1665 | + | ||
1666 | +# axis sequences for Euler angles | ||
1667 | +_NEXT_AXIS = [1, 2, 0, 1] | ||
1668 | + | ||
1669 | +# map axes strings to/from tuples of inner axis, parity, repetition, frame | ||
1670 | +_AXES2TUPLE = { | ||
1671 | + 'sxyz': (0, 0, 0, 0), 'sxyx': (0, 0, 1, 0), 'sxzy': (0, 1, 0, 0), | ||
1672 | + 'sxzx': (0, 1, 1, 0), 'syzx': (1, 0, 0, 0), 'syzy': (1, 0, 1, 0), | ||
1673 | + 'syxz': (1, 1, 0, 0), 'syxy': (1, 1, 1, 0), 'szxy': (2, 0, 0, 0), | ||
1674 | + 'szxz': (2, 0, 1, 0), 'szyx': (2, 1, 0, 0), 'szyz': (2, 1, 1, 0), | ||
1675 | + 'rzyx': (0, 0, 0, 1), 'rxyx': (0, 0, 1, 1), 'ryzx': (0, 1, 0, 1), | ||
1676 | + 'rxzx': (0, 1, 1, 1), 'rxzy': (1, 0, 0, 1), 'ryzy': (1, 0, 1, 1), | ||
1677 | + 'rzxy': (1, 1, 0, 1), 'ryxy': (1, 1, 1, 1), 'ryxz': (2, 0, 0, 1), | ||
1678 | + 'rzxz': (2, 0, 1, 1), 'rxyz': (2, 1, 0, 1), 'rzyz': (2, 1, 1, 1)} | ||
1679 | + | ||
1680 | +_TUPLE2AXES = dict((v, k) for k, v in _AXES2TUPLE.items()) | ||
1681 | + | ||
1682 | + | ||
1683 | +def vector_norm(data, axis=None, out=None): | ||
1684 | + """Return length, i.e. Euclidean norm, of ndarray along axis. | ||
1685 | + | ||
1686 | + >>> v = numpy.random.random(3) | ||
1687 | + >>> n = vector_norm(v) | ||
1688 | + >>> numpy.allclose(n, numpy.linalg.norm(v)) | ||
1689 | + True | ||
1690 | + >>> v = numpy.random.rand(6, 5, 3) | ||
1691 | + >>> n = vector_norm(v, axis=-1) | ||
1692 | + >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=2))) | ||
1693 | + True | ||
1694 | + >>> n = vector_norm(v, axis=1) | ||
1695 | + >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=1))) | ||
1696 | + True | ||
1697 | + >>> v = numpy.random.rand(5, 4, 3) | ||
1698 | + >>> n = numpy.empty((5, 3)) | ||
1699 | + >>> vector_norm(v, axis=1, out=n) | ||
1700 | + >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=1))) | ||
1701 | + True | ||
1702 | + >>> vector_norm([]) | ||
1703 | + 0.0 | ||
1704 | + >>> vector_norm([1]) | ||
1705 | + 1.0 | ||
1706 | + | ||
1707 | + """ | ||
1708 | + data = numpy.array(data, dtype=numpy.float64, copy=True) | ||
1709 | + if out is None: | ||
1710 | + if data.ndim == 1: | ||
1711 | + return math.sqrt(numpy.dot(data, data)) | ||
1712 | + data *= data | ||
1713 | + out = numpy.atleast_1d(numpy.sum(data, axis=axis)) | ||
1714 | + numpy.sqrt(out, out) | ||
1715 | + return out | ||
1716 | + else: | ||
1717 | + data *= data | ||
1718 | + numpy.sum(data, axis=axis, out=out) | ||
1719 | + numpy.sqrt(out, out) | ||
1720 | + | ||
1721 | + | ||
1722 | +def unit_vector(data, axis=None, out=None): | ||
1723 | + """Return ndarray normalized by length, i.e. Euclidean norm, along axis. | ||
1724 | + | ||
1725 | + >>> v0 = numpy.random.random(3) | ||
1726 | + >>> v1 = unit_vector(v0) | ||
1727 | + >>> numpy.allclose(v1, v0 / numpy.linalg.norm(v0)) | ||
1728 | + True | ||
1729 | + >>> v0 = numpy.random.rand(5, 4, 3) | ||
1730 | + >>> v1 = unit_vector(v0, axis=-1) | ||
1731 | + >>> v2 = v0 / numpy.expand_dims(numpy.sqrt(numpy.sum(v0*v0, axis=2)), 2) | ||
1732 | + >>> numpy.allclose(v1, v2) | ||
1733 | + True | ||
1734 | + >>> v1 = unit_vector(v0, axis=1) | ||
1735 | + >>> v2 = v0 / numpy.expand_dims(numpy.sqrt(numpy.sum(v0*v0, axis=1)), 1) | ||
1736 | + >>> numpy.allclose(v1, v2) | ||
1737 | + True | ||
1738 | + >>> v1 = numpy.empty((5, 4, 3)) | ||
1739 | + >>> unit_vector(v0, axis=1, out=v1) | ||
1740 | + >>> numpy.allclose(v1, v2) | ||
1741 | + True | ||
1742 | + >>> list(unit_vector([])) | ||
1743 | + [] | ||
1744 | + >>> list(unit_vector([1])) | ||
1745 | + [1.0] | ||
1746 | + | ||
1747 | + """ | ||
1748 | + if out is None: | ||
1749 | + data = numpy.array(data, dtype=numpy.float64, copy=True) | ||
1750 | + if data.ndim == 1: | ||
1751 | + data /= math.sqrt(numpy.dot(data, data)) | ||
1752 | + return data | ||
1753 | + else: | ||
1754 | + if out is not data: | ||
1755 | + out[:] = numpy.array(data, copy=False) | ||
1756 | + data = out | ||
1757 | + length = numpy.atleast_1d(numpy.sum(data*data, axis)) | ||
1758 | + numpy.sqrt(length, length) | ||
1759 | + if axis is not None: | ||
1760 | + length = numpy.expand_dims(length, axis) | ||
1761 | + data /= length | ||
1762 | + if out is None: | ||
1763 | + return data | ||
1764 | + | ||
1765 | + | ||
1766 | +def random_vector(size): | ||
1767 | + """Return array of random doubles in the half-open interval [0.0, 1.0). | ||
1768 | + | ||
1769 | + >>> v = random_vector(10000) | ||
1770 | + >>> numpy.all(v >= 0) and numpy.all(v < 1) | ||
1771 | + True | ||
1772 | + >>> v0 = random_vector(10) | ||
1773 | + >>> v1 = random_vector(10) | ||
1774 | + >>> numpy.any(v0 == v1) | ||
1775 | + False | ||
1776 | + | ||
1777 | + """ | ||
1778 | + return numpy.random.random(size) | ||
1779 | + | ||
1780 | + | ||
1781 | +def vector_product(v0, v1, axis=0): | ||
1782 | + """Return vector perpendicular to vectors. | ||
1783 | + | ||
1784 | + >>> v = vector_product([2, 0, 0], [0, 3, 0]) | ||
1785 | + >>> numpy.allclose(v, [0, 0, 6]) | ||
1786 | + True | ||
1787 | + >>> v0 = [[2, 0, 0, 2], [0, 2, 0, 2], [0, 0, 2, 2]] | ||
1788 | + >>> v1 = [[3], [0], [0]] | ||
1789 | + >>> v = vector_product(v0, v1) | ||
1790 | + >>> numpy.allclose(v, [[0, 0, 0, 0], [0, 0, 6, 6], [0, -6, 0, -6]]) | ||
1791 | + True | ||
1792 | + >>> v0 = [[2, 0, 0], [2, 0, 0], [0, 2, 0], [2, 0, 0]] | ||
1793 | + >>> v1 = [[0, 3, 0], [0, 0, 3], [0, 0, 3], [3, 3, 3]] | ||
1794 | + >>> v = vector_product(v0, v1, axis=1) | ||
1795 | + >>> numpy.allclose(v, [[0, 0, 6], [0, -6, 0], [6, 0, 0], [0, -6, 6]]) | ||
1796 | + True | ||
1797 | + | ||
1798 | + """ | ||
1799 | + return numpy.cross(v0, v1, axis=axis) | ||
1800 | + | ||
1801 | + | ||
1802 | +def angle_between_vectors(v0, v1, directed=True, axis=0): | ||
1803 | + """Return angle between vectors. | ||
1804 | + | ||
1805 | + If directed is False, the input vectors are interpreted as undirected axes, | ||
1806 | + i.e. the maximum angle is pi/2. | ||
1807 | + | ||
1808 | + >>> a = angle_between_vectors([1, -2, 3], [-1, 2, -3]) | ||
1809 | + >>> numpy.allclose(a, math.pi) | ||
1810 | + True | ||
1811 | + >>> a = angle_between_vectors([1, -2, 3], [-1, 2, -3], directed=False) | ||
1812 | + >>> numpy.allclose(a, 0) | ||
1813 | + True | ||
1814 | + >>> v0 = [[2, 0, 0, 2], [0, 2, 0, 2], [0, 0, 2, 2]] | ||
1815 | + >>> v1 = [[3], [0], [0]] | ||
1816 | + >>> a = angle_between_vectors(v0, v1) | ||
1817 | + >>> numpy.allclose(a, [0, 1.5708, 1.5708, 0.95532]) | ||
1818 | + True | ||
1819 | + >>> v0 = [[2, 0, 0], [2, 0, 0], [0, 2, 0], [2, 0, 0]] | ||
1820 | + >>> v1 = [[0, 3, 0], [0, 0, 3], [0, 0, 3], [3, 3, 3]] | ||
1821 | + >>> a = angle_between_vectors(v0, v1, axis=1) | ||
1822 | + >>> numpy.allclose(a, [1.5708, 1.5708, 1.5708, 0.95532]) | ||
1823 | + True | ||
1824 | + | ||
1825 | + """ | ||
1826 | + v0 = numpy.array(v0, dtype=numpy.float64, copy=False) | ||
1827 | + v1 = numpy.array(v1, dtype=numpy.float64, copy=False) | ||
1828 | + dot = numpy.sum(v0 * v1, axis=axis) | ||
1829 | + dot /= vector_norm(v0, axis=axis) * vector_norm(v1, axis=axis) | ||
1830 | + return numpy.arccos(dot if directed else numpy.fabs(dot)) | ||
1831 | + | ||
1832 | + | ||
1833 | +def inverse_matrix(matrix): | ||
1834 | + """Return inverse of square transformation matrix. | ||
1835 | + | ||
1836 | + >>> M0 = random_rotation_matrix() | ||
1837 | + >>> M1 = inverse_matrix(M0.T) | ||
1838 | + >>> numpy.allclose(M1, numpy.linalg.inv(M0.T)) | ||
1839 | + True | ||
1840 | + >>> for size in range(1, 7): | ||
1841 | + ... M0 = numpy.random.rand(size, size) | ||
1842 | + ... M1 = inverse_matrix(M0) | ||
1843 | + ... if not numpy.allclose(M1, numpy.linalg.inv(M0)): print(size) | ||
1844 | + | ||
1845 | + """ | ||
1846 | + return numpy.linalg.inv(matrix) | ||
1847 | + | ||
1848 | + | ||
1849 | +def concatenate_matrices(*matrices): | ||
1850 | + """Return concatenation of series of transformation matrices. | ||
1851 | + | ||
1852 | + >>> M = numpy.random.rand(16).reshape((4, 4)) - 0.5 | ||
1853 | + >>> numpy.allclose(M, concatenate_matrices(M)) | ||
1854 | + True | ||
1855 | + >>> numpy.allclose(numpy.dot(M, M.T), concatenate_matrices(M, M.T)) | ||
1856 | + True | ||
1857 | + | ||
1858 | + """ | ||
1859 | + M = numpy.identity(4) | ||
1860 | + for i in matrices: | ||
1861 | + M = numpy.dot(M, i) | ||
1862 | + return M | ||
1863 | + | ||
1864 | + | ||
1865 | +def is_same_transform(matrix0, matrix1): | ||
1866 | + """Return True if two matrices perform same transformation. | ||
1867 | + | ||
1868 | + >>> is_same_transform(numpy.identity(4), numpy.identity(4)) | ||
1869 | + True | ||
1870 | + >>> is_same_transform(numpy.identity(4), random_rotation_matrix()) | ||
1871 | + False | ||
1872 | + | ||
1873 | + """ | ||
1874 | + matrix0 = numpy.array(matrix0, dtype=numpy.float64, copy=True) | ||
1875 | + matrix0 /= matrix0[3, 3] | ||
1876 | + matrix1 = numpy.array(matrix1, dtype=numpy.float64, copy=True) | ||
1877 | + matrix1 /= matrix1[3, 3] | ||
1878 | + return numpy.allclose(matrix0, matrix1) | ||
1879 | + | ||
1880 | + | ||
1881 | +def _import_module(name, package=None, warn=True, prefix='_py_', ignore='_'): | ||
1882 | + """Try import all public attributes from module into global namespace. | ||
1883 | + | ||
1884 | + Existing attributes with name clashes are renamed with prefix. | ||
1885 | + Attributes starting with underscore are ignored by default. | ||
1886 | + | ||
1887 | + Return True on successful import. | ||
1888 | + | ||
1889 | + """ | ||
1890 | + import warnings | ||
1891 | + from importlib import import_module | ||
1892 | + try: | ||
1893 | + if not package: | ||
1894 | + module = import_module(name) | ||
1895 | + else: | ||
1896 | + module = import_module('.' + name, package=package) | ||
1897 | + except ImportError: | ||
1898 | + if warn: | ||
1899 | + warnings.warn("failed to import module %s" % name) | ||
1900 | + else: | ||
1901 | + for attr in dir(module): | ||
1902 | + if ignore and attr.startswith(ignore): | ||
1903 | + continue | ||
1904 | + if prefix: | ||
1905 | + if attr in globals(): | ||
1906 | + globals()[prefix + attr] = globals()[attr] | ||
1907 | + elif warn: | ||
1908 | + warnings.warn("no Python implementation of " + attr) | ||
1909 | + globals()[attr] = getattr(module, attr) | ||
1910 | + return True | ||
1911 | + | ||
1912 | + | ||
1913 | +_import_module('_transformations') | ||
1914 | + | ||
1915 | +if __name__ == "__main__": | ||
1916 | + import doctest | ||
1917 | + import random # used in doctests | ||
1918 | + numpy.set_printoptions(suppress=True, precision=5) | ||
1919 | + doctest.testmod() | ||
1920 | + |
@@ -0,0 +1,117 @@ | @@ -0,0 +1,117 @@ | ||
1 | +import numpy as np | ||
2 | +cimport numpy as np | ||
3 | +cimport cython | ||
4 | + | ||
5 | +from .cy_my_types cimport image_t | ||
6 | +from .interpolation cimport interpolate, tricub_interpolate, tricubicInterpolate | ||
7 | + | ||
8 | +from libc.math cimport floor, ceil, sqrt, fabs, round | ||
9 | +from cython.parallel import prange | ||
10 | + | ||
11 | + | ||
12 | +@cython.boundscheck(False) # turn of bounds-checking for entire function | ||
13 | +@cython.cdivision(True) | ||
14 | +@cython.wraparound(False) | ||
15 | +cdef inline void mul_mat4_vec4(np.float64_t[:, :] M, | ||
16 | + double* coord, | ||
17 | + double* out) nogil: | ||
18 | + | ||
19 | + out[0] = coord[0] * M[0, 0] + coord[1] * M[0, 1] + coord[2] * M[0, 2] + coord[3] * M[0, 3] | ||
20 | + out[1] = coord[0] * M[1, 0] + coord[1] * M[1, 1] + coord[2] * M[1, 2] + coord[3] * M[1, 3] | ||
21 | + out[2] = coord[0] * M[2, 0] + coord[1] * M[2, 1] + coord[2] * M[2, 2] + coord[3] * M[2, 3] | ||
22 | + out[3] = coord[0] * M[3, 0] + coord[1] * M[3, 1] + coord[2] * M[3, 2] + coord[3] * M[3, 3] | ||
23 | + | ||
24 | + | ||
25 | +@cython.boundscheck(False) # turn of bounds-checking for entire function | ||
26 | +@cython.cdivision(True) | ||
27 | +@cython.wraparound(False) | ||
28 | +cdef image_t coord_transform(image_t[:, :, :] volume, np.float64_t[:, :] M, int x, int y, int z, double sx, double sy, double sz, short minterpol, image_t cval) nogil: | ||
29 | + | ||
30 | + cdef double coord[4] | ||
31 | + coord[0] = z*sz | ||
32 | + coord[1] = y*sy | ||
33 | + coord[2] = x*sx | ||
34 | + coord[3] = 1.0 | ||
35 | + | ||
36 | + cdef double _ncoord[4] | ||
37 | + _ncoord[3] = 1 | ||
38 | + # _ncoord[:] = [0.0, 0.0, 0.0, 1.0] | ||
39 | + | ||
40 | + cdef unsigned int dz, dy, dx | ||
41 | + dz = volume.shape[0] | ||
42 | + dy = volume.shape[1] | ||
43 | + dx = volume.shape[2] | ||
44 | + | ||
45 | + | ||
46 | + mul_mat4_vec4(M, coord, _ncoord) | ||
47 | + | ||
48 | + cdef double nz, ny, nx | ||
49 | + nz = (_ncoord[0]/_ncoord[3])/sz | ||
50 | + ny = (_ncoord[1]/_ncoord[3])/sy | ||
51 | + nx = (_ncoord[2]/_ncoord[3])/sx | ||
52 | + | ||
53 | + cdef double v | ||
54 | + | ||
55 | + if 0 <= nz <= (dz-1) and 0 <= ny <= (dy-1) and 0 <= nx <= (dx-1): | ||
56 | + if minterpol == 0: | ||
57 | + return volume[<int>round(nz), <int>round(ny), <int>round(nx)] | ||
58 | + elif minterpol == 1: | ||
59 | + return <image_t>interpolate(volume, nx, ny, nz) | ||
60 | + else: | ||
61 | + v = tricubicInterpolate(volume, nx, ny, nz) | ||
62 | + if (v < cval): | ||
63 | + v = cval | ||
64 | + return <image_t>v | ||
65 | + else: | ||
66 | + return cval | ||
67 | + | ||
68 | + | ||
69 | +@cython.boundscheck(False) # turn of bounds-checking for entire function | ||
70 | +@cython.cdivision(True) | ||
71 | +@cython.wraparound(False) | ||
72 | +def apply_view_matrix_transform(image_t[:, :, :] volume, | ||
73 | + spacing, | ||
74 | + np.float64_t[:, :] M, | ||
75 | + unsigned int n, str orientation, | ||
76 | + int minterpol, | ||
77 | + image_t cval, | ||
78 | + image_t[:, :, :] out): | ||
79 | + | ||
80 | + cdef unsigned int dz, dy, dx | ||
81 | + cdef int z, y, x | ||
82 | + dz = volume.shape[0] | ||
83 | + dy = volume.shape[1] | ||
84 | + dx = volume.shape[2] | ||
85 | + | ||
86 | + cdef unsigned int odz, ody, odx | ||
87 | + odz = out.shape[0] | ||
88 | + ody = out.shape[1] | ||
89 | + odx = out.shape[2] | ||
90 | + | ||
91 | + cdef unsigned int count = 0 | ||
92 | + | ||
93 | + cdef double sx, sy, sz | ||
94 | + sx = spacing[0] | ||
95 | + sy = spacing[1] | ||
96 | + sz = spacing[2] | ||
97 | + | ||
98 | + if orientation == 'AXIAL': | ||
99 | + for z in xrange(n, n+odz): | ||
100 | + for y in prange(dy, nogil=True): | ||
101 | + for x in xrange(dx): | ||
102 | + out[count, y, x] = coord_transform(volume, M, x, y, z, sx, sy, sz, minterpol, cval) | ||
103 | + count += 1 | ||
104 | + | ||
105 | + elif orientation == 'CORONAL': | ||
106 | + for y in xrange(n, n+ody): | ||
107 | + for z in prange(dz, nogil=True): | ||
108 | + for x in xrange(dx): | ||
109 | + out[z, count, x] = coord_transform(volume, M, x, y, z, sx, sy, sz, minterpol, cval) | ||
110 | + count += 1 | ||
111 | + | ||
112 | + elif orientation == 'SAGITAL': | ||
113 | + for x in xrange(n, n+odx): | ||
114 | + for z in prange(dz, nogil=True): | ||
115 | + for y in xrange(dy): | ||
116 | + out[z, y, count] = coord_transform(volume, M, x, y, z, sx, sy, sz, minterpol,cval) | ||
117 | + count += 1 |
invesalius/data/viewer_slice.py
@@ -706,6 +706,7 @@ class Viewer(wx.Panel): | @@ -706,6 +706,7 @@ class Viewer(wx.Panel): | ||
706 | Publisher.subscribe(self.OnSwapVolumeAxes, 'Swap volume axes') | 706 | Publisher.subscribe(self.OnSwapVolumeAxes, 'Swap volume axes') |
707 | 707 | ||
708 | Publisher.subscribe(self.ReloadActualSlice, 'Reload actual slice') | 708 | Publisher.subscribe(self.ReloadActualSlice, 'Reload actual slice') |
709 | + Publisher.subscribe(self.ReloadActualSlice, 'Reload actual slice %s' % self.orientation) | ||
709 | Publisher.subscribe(self.OnUpdateScroll, 'Update scroll') | 710 | Publisher.subscribe(self.OnUpdateScroll, 'Update scroll') |
710 | 711 | ||
711 | 712 |
invesalius/gui/data_notebook.py
@@ -364,6 +364,7 @@ class MasksListCtrlPanel(wx.ListCtrl, listmix.TextEditMixin): | @@ -364,6 +364,7 @@ class MasksListCtrlPanel(wx.ListCtrl, listmix.TextEditMixin): | ||
364 | 364 | ||
365 | Publisher.subscribe(self.OnChangeCurrentMask, 'Change mask selected') | 365 | Publisher.subscribe(self.OnChangeCurrentMask, 'Change mask selected') |
366 | Publisher.subscribe(self.__hide_current_mask, 'Hide current mask') | 366 | Publisher.subscribe(self.__hide_current_mask, 'Hide current mask') |
367 | + Publisher.subscribe(self.__show_current_mask, 'Show current mask') | ||
367 | Publisher.subscribe(self.OnCloseProject, 'Close project data') | 368 | Publisher.subscribe(self.OnCloseProject, 'Close project data') |
368 | 369 | ||
369 | def OnKeyEvent(self, event): | 370 | def OnKeyEvent(self, event): |
@@ -435,6 +436,9 @@ class MasksListCtrlPanel(wx.ListCtrl, listmix.TextEditMixin): | @@ -435,6 +436,9 @@ class MasksListCtrlPanel(wx.ListCtrl, listmix.TextEditMixin): | ||
435 | def __hide_current_mask(self, pubsub_evt): | 436 | def __hide_current_mask(self, pubsub_evt): |
436 | self.SetItemImage(self.current_index, 0) | 437 | self.SetItemImage(self.current_index, 0) |
437 | 438 | ||
439 | + def __show_current_mask(self, pubsub_evt): | ||
440 | + self.SetItemImage(self.current_index, 1) | ||
441 | + | ||
438 | def __init_columns(self): | 442 | def __init_columns(self): |
439 | 443 | ||
440 | self.InsertColumn(0, "", wx.LIST_FORMAT_CENTER) | 444 | self.InsertColumn(0, "", wx.LIST_FORMAT_CENTER) |
invesalius/gui/dialogs.py
@@ -1566,3 +1566,67 @@ class MaskBooleanDialog(wx.Dialog): | @@ -1566,3 +1566,67 @@ class MaskBooleanDialog(wx.Dialog): | ||
1566 | 1566 | ||
1567 | self.Close() | 1567 | self.Close() |
1568 | self.Destroy() | 1568 | self.Destroy() |
1569 | + | ||
1570 | + | ||
1571 | +class ReorientImageDialog(wx.Dialog): | ||
1572 | + def __init__(self): | ||
1573 | + pre = wx.PreDialog() | ||
1574 | + pre.Create(wx.GetApp().GetTopWindow(), -1, _(u'Image reorientation'), style=wx.DEFAULT_DIALOG_STYLE|wx.FRAME_FLOAT_ON_PARENT) | ||
1575 | + self.PostCreate(pre) | ||
1576 | + | ||
1577 | + self._init_gui() | ||
1578 | + self._bind_events() | ||
1579 | + self._bind_events_wx() | ||
1580 | + | ||
1581 | + def _init_gui(self): | ||
1582 | + self.anglex = wx.TextCtrl(self, -1, "0.0", style=wx.TE_READONLY) | ||
1583 | + self.angley = wx.TextCtrl(self, -1, "0.0", style=wx.TE_READONLY) | ||
1584 | + self.anglez = wx.TextCtrl(self, -1, "0.0", style=wx.TE_READONLY) | ||
1585 | + | ||
1586 | + self.btnapply = wx.Button(self, -1, _("Apply")) | ||
1587 | + | ||
1588 | + sizer = wx.BoxSizer(wx.HORIZONTAL) | ||
1589 | + | ||
1590 | + sizer.Add(wx.StaticText(self, -1, _("Angle X")), 0, wx.EXPAND | wx.ALIGN_CENTER_VERTICAL | wx.ALL, 5) | ||
1591 | + sizer.Add(self.anglex, 0, wx.EXPAND | wx.ALL, 5) | ||
1592 | + sizer.AddSpacer(5) | ||
1593 | + | ||
1594 | + sizer.Add(wx.StaticText(self, -1, _("Angle Y")), 0, wx.EXPAND | wx.ALIGN_CENTER_VERTICAL | wx.ALL, 5) | ||
1595 | + sizer.Add(self.angley, 0, wx.EXPAND | wx.ALL, 5) | ||
1596 | + sizer.AddSpacer(5) | ||
1597 | + | ||
1598 | + sizer.Add(wx.StaticText(self, -1, _("Angle Z")), 0, wx.EXPAND | wx.ALIGN_CENTER_VERTICAL | wx.ALL, 5) | ||
1599 | + sizer.Add(self.anglez, 0, wx.EXPAND | wx.ALL, 5) | ||
1600 | + sizer.AddSpacer(5) | ||
1601 | + | ||
1602 | + sizer.Add(self.btnapply, 0, wx.EXPAND | wx.ALL, 5) | ||
1603 | + sizer.AddSpacer(5) | ||
1604 | + | ||
1605 | + self.SetSizer(sizer) | ||
1606 | + self.Fit() | ||
1607 | + | ||
1608 | + def _bind_events(self): | ||
1609 | + Publisher.subscribe(self._update_angles, 'Update reorient angles') | ||
1610 | + Publisher.subscribe(self._close_dialog, 'Close reorient dialog') | ||
1611 | + | ||
1612 | + def _bind_events_wx(self): | ||
1613 | + self.btnapply.Bind(wx.EVT_BUTTON, self.apply_reorientation) | ||
1614 | + self.Bind(wx.EVT_CLOSE, self.OnClose) | ||
1615 | + | ||
1616 | + def _update_angles(self, pubsub_evt): | ||
1617 | + anglex, angley, anglez = pubsub_evt.data | ||
1618 | + self.anglex.SetValue("%.2f" % np.rad2deg(anglex)) | ||
1619 | + self.angley.SetValue("%.2f" % np.rad2deg(angley)) | ||
1620 | + self.anglez.SetValue("%.2f" % np.rad2deg(anglez)) | ||
1621 | + | ||
1622 | + def _close_dialog(self, pubsub_evt): | ||
1623 | + self.Destroy() | ||
1624 | + | ||
1625 | + def apply_reorientation(self, evt): | ||
1626 | + Publisher.sendMessage('Apply reorientation') | ||
1627 | + self.Close() | ||
1628 | + | ||
1629 | + def OnClose(self, evt): | ||
1630 | + Publisher.sendMessage('Disable style', const.SLICE_STATE_REORIENT) | ||
1631 | + Publisher.sendMessage('Enable style', const.STATE_DEFAULT) | ||
1632 | + self.Destroy() |
invesalius/gui/frame.py
@@ -411,6 +411,9 @@ class Frame(wx.Frame): | @@ -411,6 +411,9 @@ class Frame(wx.Frame): | ||
411 | elif id == const.ID_CLEAN_MASK: | 411 | elif id == const.ID_CLEAN_MASK: |
412 | self.OnCleanMask() | 412 | self.OnCleanMask() |
413 | 413 | ||
414 | + elif id == const.ID_REORIENT_IMG: | ||
415 | + self.OnReorientImg() | ||
416 | + | ||
414 | def OnSize(self, evt): | 417 | def OnSize(self, evt): |
415 | """ | 418 | """ |
416 | Refresh GUI when frame is resized. | 419 | Refresh GUI when frame is resized. |
@@ -520,6 +523,11 @@ class Frame(wx.Frame): | @@ -520,6 +523,11 @@ class Frame(wx.Frame): | ||
520 | Publisher.sendMessage('Clean current mask') | 523 | Publisher.sendMessage('Clean current mask') |
521 | Publisher.sendMessage('Reload actual slice') | 524 | Publisher.sendMessage('Reload actual slice') |
522 | 525 | ||
526 | + def OnReorientImg(self): | ||
527 | + Publisher.sendMessage('Enable style', const.SLICE_STATE_REORIENT) | ||
528 | + rdlg = dlg.ReorientImageDialog() | ||
529 | + rdlg.Show() | ||
530 | + | ||
523 | # ------------------------------------------------------------------ | 531 | # ------------------------------------------------------------------ |
524 | # ------------------------------------------------------------------ | 532 | # ------------------------------------------------------------------ |
525 | # ------------------------------------------------------------------ | 533 | # ------------------------------------------------------------------ |
@@ -538,7 +546,8 @@ class MenuBar(wx.MenuBar): | @@ -538,7 +546,8 @@ class MenuBar(wx.MenuBar): | ||
538 | # not. Eg. save should only be available if a project is open | 546 | # not. Eg. save should only be available if a project is open |
539 | self.enable_items = [const.ID_PROJECT_SAVE, | 547 | self.enable_items = [const.ID_PROJECT_SAVE, |
540 | const.ID_PROJECT_SAVE_AS, | 548 | const.ID_PROJECT_SAVE_AS, |
541 | - const.ID_PROJECT_CLOSE] | 549 | + const.ID_PROJECT_CLOSE, |
550 | + const.ID_REORIENT_IMG] | ||
542 | self.__init_items() | 551 | self.__init_items() |
543 | self.__bind_events() | 552 | self.__bind_events() |
544 | 553 | ||
@@ -650,6 +659,12 @@ class MenuBar(wx.MenuBar): | @@ -650,6 +659,12 @@ class MenuBar(wx.MenuBar): | ||
650 | 659 | ||
651 | tools_menu.AppendMenu(-1, _(u"Mask"), mask_menu) | 660 | tools_menu.AppendMenu(-1, _(u"Mask"), mask_menu) |
652 | 661 | ||
662 | + # Image menu | ||
663 | + image_menu = wx.Menu() | ||
664 | + reorient_menu = image_menu.Append(const.ID_REORIENT_IMG, _(u'Reorient image\tCtrl+Shift+R')) | ||
665 | + reorient_menu.Enable(False) | ||
666 | + tools_menu.AppendMenu(-1, _(u'Image'), image_menu) | ||
667 | + | ||
653 | 668 | ||
654 | # VIEW | 669 | # VIEW |
655 | #view_tool_menu = wx.Menu() | 670 | #view_tool_menu = wx.Menu() |
@@ -1278,7 +1293,7 @@ class SliceToolBar(AuiToolBar): | @@ -1278,7 +1293,7 @@ class SliceToolBar(AuiToolBar): | ||
1278 | 1293 | ||
1279 | self.parent = parent | 1294 | self.parent = parent |
1280 | self.enable_items = [const.SLICE_STATE_SCROLL, | 1295 | self.enable_items = [const.SLICE_STATE_SCROLL, |
1281 | - const.SLICE_STATE_CROSS] | 1296 | + const.SLICE_STATE_CROSS,] |
1282 | self.__init_items() | 1297 | self.__init_items() |
1283 | self.__bind_events() | 1298 | self.__bind_events() |
1284 | self.__bind_events_wx() | 1299 | self.__bind_events_wx() |
invesalius/invesalius.py
@@ -311,6 +311,7 @@ if __name__ == '__main__': | @@ -311,6 +311,7 @@ if __name__ == '__main__': | ||
311 | 311 | ||
312 | # Add current directory to PYTHONPATH, so other classes can | 312 | # Add current directory to PYTHONPATH, so other classes can |
313 | # import modules as they were on root invesalius folder | 313 | # import modules as they were on root invesalius folder |
314 | + sys.path.insert(0, '..') | ||
314 | sys.path.append(".") | 315 | sys.path.append(".") |
315 | 316 | ||
316 | 317 |
setup.py
1 | from distutils.core import setup | 1 | from distutils.core import setup |
2 | from distutils.extension import Extension | 2 | from distutils.extension import Extension |
3 | from Cython.Distutils import build_ext | 3 | from Cython.Distutils import build_ext |
4 | +from Cython.Build import cythonize | ||
4 | 5 | ||
6 | +import os | ||
5 | import sys | 7 | import sys |
6 | 8 | ||
7 | import numpy | 9 | import numpy |
@@ -9,24 +11,57 @@ import numpy | @@ -9,24 +11,57 @@ import numpy | ||
9 | if sys.platform == 'linux2': | 11 | if sys.platform == 'linux2': |
10 | setup( | 12 | setup( |
11 | cmdclass = {'build_ext': build_ext}, | 13 | cmdclass = {'build_ext': build_ext}, |
12 | - ext_modules = [ Extension("invesalius.data.mips", ["invesalius/data/mips.pyx"], | 14 | + ext_modules = cythonize([ Extension("invesalius.data.mips", ["invesalius/data/mips.pyx"], |
13 | include_dirs = [numpy.get_include()], | 15 | include_dirs = [numpy.get_include()], |
14 | extra_compile_args=['-fopenmp'], | 16 | extra_compile_args=['-fopenmp'], |
15 | - extra_link_args=['-fopenmp'],)] | 17 | + extra_link_args=['-fopenmp']), |
18 | + | ||
19 | + Extension("invesalius.data.interpolation", ["invesalius/data/interpolation.pyx"], | ||
20 | + include_dirs=[numpy.get_include()], | ||
21 | + extra_compile_args=['-fopenmp',], | ||
22 | + extra_link_args=['-fopenmp',]), | ||
23 | + | ||
24 | + Extension("invesalius.data.transforms", ["invesalius/data/transforms.pyx"], | ||
25 | + include_dirs=[numpy.get_include()], | ||
26 | + extra_compile_args=['-fopenmp',], | ||
27 | + extra_link_args=['-fopenmp',]), | ||
28 | + ]) | ||
16 | ) | 29 | ) |
17 | 30 | ||
18 | elif sys.platform == 'win32': | 31 | elif sys.platform == 'win32': |
19 | setup( | 32 | setup( |
20 | cmdclass = {'build_ext': build_ext}, | 33 | cmdclass = {'build_ext': build_ext}, |
21 | - ext_modules = [ Extension("invesalius.data.mips", ["invesalius/data/mips.pyx"], | 34 | + ext_modules = cythonize([ Extension("invesalius.data.mips", ["invesalius/data/mips.pyx"], |
22 | include_dirs = [numpy.get_include()], | 35 | include_dirs = [numpy.get_include()], |
23 | - extra_compile_args=['/openmp'], | ||
24 | - )] | 36 | + extra_compile_args=['/openmp'],), |
37 | + | ||
38 | + Extension("invesalius.data.interpolation", ["invesalius/data/interpolation.pyx"], | ||
39 | + include_dirs=[numpy.get_include()], | ||
40 | + extra_compile_args=['/openmp'],), | ||
41 | + | ||
42 | + Extension("invesalius.data.transforms", ["invesalius/data/transforms.pyx"], | ||
43 | + include_dirs=[numpy.get_include()], | ||
44 | + extra_compile_args=['/openmp'],), | ||
45 | + ]) | ||
25 | ) | 46 | ) |
26 | 47 | ||
27 | else: | 48 | else: |
28 | setup( | 49 | setup( |
50 | + packages=["invesalius", ], | ||
29 | cmdclass = {'build_ext': build_ext}, | 51 | cmdclass = {'build_ext': build_ext}, |
30 | - ext_modules = [ Extension("invesalius.data.mips", ["invesalius/data/mips.pyx"], | ||
31 | - include_dirs = [numpy.get_include()],)] | ||
32 | - ) | 52 | + ext_modules = cythonize([Extension("invesalius.data.mips", ["invesalius/data/mips.pyx"], |
53 | + include_dirs = [numpy.get_include()], | ||
54 | + extra_compile_args=['-fopenmp',], | ||
55 | + extra_link_args=['-fopenmp',]), | ||
56 | + | ||
57 | + Extension("invesalius.data.interpolation", ["invesalius/data/interpolation.pyx"], | ||
58 | + include_dirs=[numpy.get_include()], | ||
59 | + extra_compile_args=['-fopenmp',], | ||
60 | + extra_link_args=['-fopenmp',]), | ||
61 | + | ||
62 | + Extension("invesalius.data.transforms", ["invesalius/data/transforms.pyx"], | ||
63 | + include_dirs=[numpy.get_include()], | ||
64 | + extra_compile_args=['-fopenmp',], | ||
65 | + extra_link_args=['-fopenmp',]), | ||
66 | + ]) | ||
67 | + ) |