Commit 78b054a84b4e76c0df737985214929e245e2c1e2
1 parent
c673b9b2
Exists in
master
and in
1 other branch
Deleted old files.
Showing
5 changed files
with
0 additions
and
447 deletions
Show diff stats
src/experiments/experiments.cfg
... | ... | @@ -1,27 +0,0 @@ |
1 | -[DEFAULT] | |
2 | -repetitions = 1 | |
3 | -iterations = 10 | |
4 | -path = 'results' | |
5 | -experiment = 'grid' | |
6 | -weight = ['bm25', 'trad'] | |
7 | -;profile_size = range(10,100,10) | |
8 | -;sample = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] | |
9 | -sample = [0.6, 0.7, 0.8, 0.9] | |
10 | - | |
11 | -[content] | |
12 | -strategy = ['cb','cbt','cbd'] | |
13 | - | |
14 | -[clustering] | |
15 | -experiment = 'single' | |
16 | -;iterations = 4 | |
17 | -;medoids = range(2,6) | |
18 | -iterations = 6 | |
19 | -medoids = [100,500,1000,5000,10000,50000] | |
20 | -;disabled for this experiment | |
21 | -weight = 0 | |
22 | -profile_size = 0 | |
23 | -sample = 0 | |
24 | - | |
25 | -[colaborative] | |
26 | -users_repository=["data/popcon","data/popcon-100","data/popcon-500","data/popcon-1000","data/popcon-5000","data/popcon-10000","data/popcon-50000"] | |
27 | -neighbors = range(10,1010,50) |
src/experiments/legacy/clustering-suite.py
... | ... | @@ -1,51 +0,0 @@ |
1 | -#!/usr/bin/env python | |
2 | -""" | |
3 | - recommender suite - recommender experiments suite | |
4 | -""" | |
5 | -__author__ = "Tassia Camoes Araujo <tassia@gmail.com>" | |
6 | -__copyright__ = "Copyright (C) 2011 Tassia Camoes Araujo" | |
7 | -__license__ = """ | |
8 | - This program is free software: you can redistribute it and/or modify | |
9 | - it under the terms of the GNU General Public License as published by | |
10 | - the Free Software Foundation, either version 3 of the License, or | |
11 | - (at your option) any later version. | |
12 | - | |
13 | - This program is distributed in the hope that it will be useful, | |
14 | - but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | - GNU General Public License for more details. | |
17 | - | |
18 | - You should have received a copy of the GNU General Public License | |
19 | - along with this program. If not, see <http://www.gnu.org/licenses/>. | |
20 | -""" | |
21 | - | |
22 | -import sys | |
23 | -import os | |
24 | -sys.path.insert(0,'../') | |
25 | -from config import Config | |
26 | -from data import PopconXapianIndex, PopconSubmission | |
27 | -from recommender import Recommender | |
28 | -from user import LocalSystem, User | |
29 | -from evaluation import * | |
30 | -import logging | |
31 | -import random | |
32 | -import Gnuplot | |
33 | - | |
34 | -if __name__ == '__main__': | |
35 | - | |
36 | - cfg = Config() | |
37 | - cfg.index_mode = "recluster" | |
38 | - logging.info("Starting clustering experiments") | |
39 | - logging.info("Medoids: %d\t Max popcon:%d" % (cfg.k_medoids,cfg.max_popcon)) | |
40 | - cfg.popcon_dir = os.path.expanduser("~/org/popcon.debian.org/popcon-mail/popcon-entries/") | |
41 | - cfg.popcon_index = cfg.popcon_index+("_%dmedoids%dmax" % | |
42 | - (cfg.k_medoids,cfg.max_popcon)) | |
43 | - cfg.clusters_dir = cfg.clusters_dir+("_%dmedoids%dmax" % | |
44 | - (cfg.k_medoids,cfg.max_popcon)) | |
45 | - pxi = PopconXapianIndex(cfg) | |
46 | - logging.info("Overall dispersion: %f\n" % pxi.cluster_dispersion) | |
47 | - # Write clustering log | |
48 | - output = open(("results/clustering/%dmedoids%dmax" % (cfg.k_medoids,cfg.max_popcon)),'w') | |
49 | - output.write("# k_medoids\tmax_popcon\tdispersion\n") | |
50 | - output.write("%d %f\n" % (cfg.k_medoids,cfg.max_popcon,pxi.cluster_dispersion)) | |
51 | - output.close() |
src/experiments/legacy/experiments.cfg
... | ... | @@ -1,27 +0,0 @@ |
1 | -[DEFAULT] | |
2 | -repetitions = 1 | |
3 | -iterations = 10 | |
4 | -path = 'results' | |
5 | -experiment = 'grid' | |
6 | -weight = ['bm25', 'trad'] | |
7 | -;profile_size = range(10,100,10) | |
8 | -;sample = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] | |
9 | -sample = [0.6, 0.7, 0.8, 0.9] | |
10 | - | |
11 | -[content] | |
12 | -strategy = ['cb','cbt','cbd'] | |
13 | - | |
14 | -[clustering] | |
15 | -experiment = 'single' | |
16 | -;iterations = 4 | |
17 | -;medoids = range(2,6) | |
18 | -iterations = 6 | |
19 | -medoids = [100,500,1000,5000,10000,50000] | |
20 | -;disabled for this experiment | |
21 | -weight = 0 | |
22 | -profile_size = 0 | |
23 | -sample = 0 | |
24 | - | |
25 | -[colaborative] | |
26 | -users_repository=["data/popcon","data/popcon-100","data/popcon-500","data/popcon-1000","data/popcon-5000","data/popcon-10000","data/popcon-50000"] | |
27 | -neighbors = range(10,1010,50) |
src/experiments/legacy/runner.py
... | ... | @@ -1,171 +0,0 @@ |
1 | -#!/usr/bin/env python | |
2 | -""" | |
3 | - recommender suite - recommender experiments suite | |
4 | -""" | |
5 | -__author__ = "Tassia Camoes Araujo <tassia@gmail.com>" | |
6 | -__copyright__ = "Copyright (C) 2011 Tassia Camoes Araujo" | |
7 | -__license__ = """ | |
8 | - This program is free software: you can redistribute it and/or modify | |
9 | - it under the terms of the GNU General Public License as published by | |
10 | - the Free Software Foundation, either version 3 of the License, or | |
11 | - (at your option) any later version. | |
12 | - | |
13 | - This program is distributed in the hope that it will be useful, | |
14 | - but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | - GNU General Public License for more details. | |
17 | - | |
18 | - You should have received a copy of the GNU General Public License | |
19 | - along with this program. If not, see <http://www.gnu.org/licenses/>. | |
20 | -""" | |
21 | - | |
22 | -import expsuite | |
23 | -import sys | |
24 | -sys.path.insert(0,'../') | |
25 | -from config import Config | |
26 | -from data import PopconXapianIndex, PopconSubmission | |
27 | -from recommender import Recommender | |
28 | -from user import LocalSystem, User | |
29 | -from evaluation import * | |
30 | -import logging | |
31 | -import random | |
32 | -import Gnuplot | |
33 | - | |
34 | -class ClusteringSuite(expsuite.PyExperimentSuite): | |
35 | - def reset(self, params, rep): | |
36 | - self.cfg = Config() | |
37 | - self.cfg.popcon_index = "../tests/test_data/.sample_pxi" | |
38 | - self.cfg.popcon_dir = "../tests/test_data/popcon_dir" | |
39 | - self.cfg.clusters_dir = "../tests/test_data/clusters_dir" | |
40 | - | |
41 | - if params['name'] == "clustering": | |
42 | - logging.info("Starting 'clustering' experiments suite...") | |
43 | - self.cfg.index_mode = "recluster" | |
44 | - | |
45 | - def iterate(self, params, rep, n): | |
46 | - if params['name'] == "clustering": | |
47 | - logging.info("Running iteration %d" % params['medoids'][n]) | |
48 | - self.cfg.k_medoids = params['medoids'][n] | |
49 | - pxi = PopconXapianIndex(self.cfg) | |
50 | - result = {'k_medoids': params['medoids'][n], | |
51 | - 'dispersion': pxi.cluster_dispersion} | |
52 | - else: | |
53 | - result = {} | |
54 | - return result | |
55 | - | |
56 | -class ContentBasedSuite(expsuite.PyExperimentSuite): | |
57 | - def reset(self, params, rep): | |
58 | - if params['name'].startswith("content"): | |
59 | - cfg = Config() | |
60 | - #if the index was not built yet | |
61 | - #app_axi = AppAptXapianIndex(cfg.axi,"results/arnaldo/AppAxi") | |
62 | - cfg.axi = "data/AppAxi" | |
63 | - cfg.index_mode = "old" | |
64 | - cfg.weight = params['weight'] | |
65 | - self.rec = Recommender(cfg) | |
66 | - self.rec.set_strategy(params['strategy']) | |
67 | - self.repo_size = self.rec.items_repository.get_doccount() | |
68 | - self.user = LocalSystem() | |
69 | - self.user.app_pkg_profile(self.rec.items_repository) | |
70 | - self.user.no_auto_pkg_profile() | |
71 | - self.sample_size = int(len(self.user.pkg_profile)*params['sample']) | |
72 | - # iteration should be set to 10 in config file | |
73 | - #self.profile_size = range(10,101,10) | |
74 | - | |
75 | - def iterate(self, params, rep, n): | |
76 | - if params['name'].startswith("content"): | |
77 | - item_score = dict.fromkeys(self.user.pkg_profile,1) | |
78 | - # Prepare partition | |
79 | - sample = {} | |
80 | - for i in range(self.sample_size): | |
81 | - key = random.choice(item_score.keys()) | |
82 | - sample[key] = item_score.pop(key) | |
83 | - # Get full recommendation | |
84 | - user = User(item_score) | |
85 | - recommendation = self.rec.get_recommendation(user,self.repo_size) | |
86 | - # Write recall log | |
87 | - recall_file = "results/content/recall/%s-%s-%.2f-%d" % \ | |
88 | - (params['strategy'],params['weight'],params['sample'],n) | |
89 | - output = open(recall_file,'w') | |
90 | - output.write("# weight=%s\n" % params['weight']) | |
91 | - output.write("# strategy=%s\n" % params['strategy']) | |
92 | - output.write("# sample=%f\n" % params['sample']) | |
93 | - output.write("\n%d %d %d\n" % \ | |
94 | - (self.repo_size,len(item_score),self.sample_size)) | |
95 | - notfound = [] | |
96 | - ranks = [] | |
97 | - for pkg in sample.keys(): | |
98 | - if pkg in recommendation.ranking: | |
99 | - ranks.append(recommendation.ranking.index(pkg)) | |
100 | - else: | |
101 | - notfound.append(pkg) | |
102 | - for r in sorted(ranks): | |
103 | - output.write(str(r)+"\n") | |
104 | - if notfound: | |
105 | - output.write("Out of recommendation:\n") | |
106 | - for pkg in notfound: | |
107 | - output.write(pkg+"\n") | |
108 | - output.close() | |
109 | - # Plot metrics summary | |
110 | - accuracy = [] | |
111 | - precision = [] | |
112 | - recall = [] | |
113 | - f1 = [] | |
114 | - g = Gnuplot.Gnuplot() | |
115 | - g('set style data lines') | |
116 | - g.xlabel('Recommendation size') | |
117 | - for size in range(1,len(recommendation.ranking)+1,100): | |
118 | - predicted = RecommendationResult(dict.fromkeys(recommendation.ranking[:size],1)) | |
119 | - real = RecommendationResult(sample) | |
120 | - evaluation = Evaluation(predicted,real,self.repo_size) | |
121 | - accuracy.append([size,evaluation.run(Accuracy())]) | |
122 | - precision.append([size,evaluation.run(Precision())]) | |
123 | - recall.append([size,evaluation.run(Recall())]) | |
124 | - f1.append([size,evaluation.run(F1())]) | |
125 | - g.plot(Gnuplot.Data(accuracy,title="Accuracy"), | |
126 | - Gnuplot.Data(precision,title="Precision"), | |
127 | - Gnuplot.Data(recall,title="Recall"), | |
128 | - Gnuplot.Data(f1,title="F1")) | |
129 | - g.hardcopy(recall_file+"-plot.ps", enhanced=1, color=1) | |
130 | - # Iteration log | |
131 | - result = {'iteration': n, | |
132 | - 'weight': params['weight'], | |
133 | - 'strategy': params['strategy'], | |
134 | - 'accuracy': accuracy[20], | |
135 | - 'precision': precision[20], | |
136 | - 'recall:': recall[20], | |
137 | - 'f1': f1[20]} | |
138 | - return result | |
139 | - | |
140 | -#class CollaborativeSuite(expsuite.PyExperimentSuite): | |
141 | -# def reset(self, params, rep): | |
142 | -# if params['name'].startswith("collaborative"): | |
143 | -# | |
144 | -# def iterate(self, params, rep, n): | |
145 | -# if params['name'].startswith("collaborative"): | |
146 | -# for root, dirs, files in os.walk(self.source_dir): | |
147 | -# for popcon_file in files: | |
148 | -# submission = PopconSubmission(os.path.join(root,popcon_file)) | |
149 | -# user = User(submission.packages) | |
150 | -# user.maximal_pkg_profile() | |
151 | -# rec.get_recommendation(user) | |
152 | -# precision = 0 | |
153 | -# result = {'weight': params['weight'], | |
154 | -# 'strategy': params['strategy'], | |
155 | -# 'profile_size': self.profile_size[n], | |
156 | -# 'accuracy': accuracy, | |
157 | -# 'precision': precision, | |
158 | -# 'recall:': recall, | |
159 | -# 'f1': } | |
160 | -# else: | |
161 | -# result = {} | |
162 | -# return result | |
163 | - | |
164 | -if __name__ == '__main__': | |
165 | - | |
166 | - if "clustering" in sys.argv or len(sys.argv)<3: | |
167 | - ClusteringSuite().start() | |
168 | - if "content" in sys.argv or len(sys.argv)<3: | |
169 | - ContentBasedSuite().start() | |
170 | - #if "collaborative" in sys.argv or len(sys.argv)<3: | |
171 | - #CollaborativeSuite().start() |
src/experiments/runner.py
... | ... | @@ -1,171 +0,0 @@ |
1 | -#!/usr/bin/env python | |
2 | -""" | |
3 | - recommender suite - recommender experiments suite | |
4 | -""" | |
5 | -__author__ = "Tassia Camoes Araujo <tassia@gmail.com>" | |
6 | -__copyright__ = "Copyright (C) 2011 Tassia Camoes Araujo" | |
7 | -__license__ = """ | |
8 | - This program is free software: you can redistribute it and/or modify | |
9 | - it under the terms of the GNU General Public License as published by | |
10 | - the Free Software Foundation, either version 3 of the License, or | |
11 | - (at your option) any later version. | |
12 | - | |
13 | - This program is distributed in the hope that it will be useful, | |
14 | - but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | - GNU General Public License for more details. | |
17 | - | |
18 | - You should have received a copy of the GNU General Public License | |
19 | - along with this program. If not, see <http://www.gnu.org/licenses/>. | |
20 | -""" | |
21 | - | |
22 | -import expsuite | |
23 | -import sys | |
24 | -sys.path.insert(0,'../') | |
25 | -from config import Config | |
26 | -from data import PopconXapianIndex, PopconSubmission | |
27 | -from recommender import Recommender | |
28 | -from user import LocalSystem, User | |
29 | -from evaluation import * | |
30 | -import logging | |
31 | -import random | |
32 | -import Gnuplot | |
33 | - | |
34 | -class ClusteringSuite(expsuite.PyExperimentSuite): | |
35 | - def reset(self, params, rep): | |
36 | - self.cfg = Config() | |
37 | - self.cfg.popcon_index = "../tests/test_data/.sample_pxi" | |
38 | - self.cfg.popcon_dir = "../tests/test_data/popcon_dir" | |
39 | - self.cfg.clusters_dir = "../tests/test_data/clusters_dir" | |
40 | - | |
41 | - if params['name'] == "clustering": | |
42 | - logging.info("Starting 'clustering' experiments suite...") | |
43 | - self.cfg.index_mode = "recluster" | |
44 | - | |
45 | - def iterate(self, params, rep, n): | |
46 | - if params['name'] == "clustering": | |
47 | - logging.info("Running iteration %d" % params['medoids'][n]) | |
48 | - self.cfg.k_medoids = params['medoids'][n] | |
49 | - pxi = PopconXapianIndex(self.cfg) | |
50 | - result = {'k_medoids': params['medoids'][n], | |
51 | - 'dispersion': pxi.cluster_dispersion} | |
52 | - else: | |
53 | - result = {} | |
54 | - return result | |
55 | - | |
56 | -class ContentBasedSuite(expsuite.PyExperimentSuite): | |
57 | - def reset(self, params, rep): | |
58 | - if params['name'].startswith("content"): | |
59 | - cfg = Config() | |
60 | - #if the index was not built yet | |
61 | - #app_axi = AppAptXapianIndex(cfg.axi,"results/arnaldo/AppAxi") | |
62 | - cfg.axi = "data/AppAxi" | |
63 | - cfg.index_mode = "old" | |
64 | - cfg.weight = params['weight'] | |
65 | - self.rec = Recommender(cfg) | |
66 | - self.rec.set_strategy(params['strategy']) | |
67 | - self.repo_size = self.rec.items_repository.get_doccount() | |
68 | - self.user = LocalSystem() | |
69 | - self.user.app_pkg_profile(self.rec.items_repository) | |
70 | - self.user.no_auto_pkg_profile() | |
71 | - self.sample_size = int(len(self.user.pkg_profile)*params['sample']) | |
72 | - # iteration should be set to 10 in config file | |
73 | - #self.profile_size = range(10,101,10) | |
74 | - | |
75 | - def iterate(self, params, rep, n): | |
76 | - if params['name'].startswith("content"): | |
77 | - item_score = dict.fromkeys(self.user.pkg_profile,1) | |
78 | - # Prepare partition | |
79 | - sample = {} | |
80 | - for i in range(self.sample_size): | |
81 | - key = random.choice(item_score.keys()) | |
82 | - sample[key] = item_score.pop(key) | |
83 | - # Get full recommendation | |
84 | - user = User(item_score) | |
85 | - recommendation = self.rec.get_recommendation(user,self.repo_size) | |
86 | - # Write recall log | |
87 | - recall_file = "results/content/recall/%s-%s-%.2f-%d" % \ | |
88 | - (params['strategy'],params['weight'],params['sample'],n) | |
89 | - output = open(recall_file,'w') | |
90 | - output.write("# weight=%s\n" % params['weight']) | |
91 | - output.write("# strategy=%s\n" % params['strategy']) | |
92 | - output.write("# sample=%f\n" % params['sample']) | |
93 | - output.write("\n%d %d %d\n" % \ | |
94 | - (self.repo_size,len(item_score),self.sample_size)) | |
95 | - notfound = [] | |
96 | - ranks = [] | |
97 | - for pkg in sample.keys(): | |
98 | - if pkg in recommendation.ranking: | |
99 | - ranks.append(recommendation.ranking.index(pkg)) | |
100 | - else: | |
101 | - notfound.append(pkg) | |
102 | - for r in sorted(ranks): | |
103 | - output.write(str(r)+"\n") | |
104 | - if notfound: | |
105 | - output.write("Out of recommendation:\n") | |
106 | - for pkg in notfound: | |
107 | - output.write(pkg+"\n") | |
108 | - output.close() | |
109 | - # Plot metrics summary | |
110 | - accuracy = [] | |
111 | - precision = [] | |
112 | - recall = [] | |
113 | - f1 = [] | |
114 | - g = Gnuplot.Gnuplot() | |
115 | - g('set style data lines') | |
116 | - g.xlabel('Recommendation size') | |
117 | - for size in range(1,len(recommendation.ranking)+1,100): | |
118 | - predicted = RecommendationResult(dict.fromkeys(recommendation.ranking[:size],1)) | |
119 | - real = RecommendationResult(sample) | |
120 | - evaluation = Evaluation(predicted,real,self.repo_size) | |
121 | - accuracy.append([size,evaluation.run(Accuracy())]) | |
122 | - precision.append([size,evaluation.run(Precision())]) | |
123 | - recall.append([size,evaluation.run(Recall())]) | |
124 | - f1.append([size,evaluation.run(F1())]) | |
125 | - g.plot(Gnuplot.Data(accuracy,title="Accuracy"), | |
126 | - Gnuplot.Data(precision,title="Precision"), | |
127 | - Gnuplot.Data(recall,title="Recall"), | |
128 | - Gnuplot.Data(f1,title="F1")) | |
129 | - g.hardcopy(recall_file+"-plot.ps", enhanced=1, color=1) | |
130 | - # Iteration log | |
131 | - result = {'iteration': n, | |
132 | - 'weight': params['weight'], | |
133 | - 'strategy': params['strategy'], | |
134 | - 'accuracy': accuracy[20], | |
135 | - 'precision': precision[20], | |
136 | - 'recall:': recall[20], | |
137 | - 'f1': f1[20]} | |
138 | - return result | |
139 | - | |
140 | -#class CollaborativeSuite(expsuite.PyExperimentSuite): | |
141 | -# def reset(self, params, rep): | |
142 | -# if params['name'].startswith("collaborative"): | |
143 | -# | |
144 | -# def iterate(self, params, rep, n): | |
145 | -# if params['name'].startswith("collaborative"): | |
146 | -# for root, dirs, files in os.walk(self.source_dir): | |
147 | -# for popcon_file in files: | |
148 | -# submission = PopconSubmission(os.path.join(root,popcon_file)) | |
149 | -# user = User(submission.packages) | |
150 | -# user.maximal_pkg_profile() | |
151 | -# rec.get_recommendation(user) | |
152 | -# precision = 0 | |
153 | -# result = {'weight': params['weight'], | |
154 | -# 'strategy': params['strategy'], | |
155 | -# 'profile_size': self.profile_size[n], | |
156 | -# 'accuracy': accuracy, | |
157 | -# 'precision': precision, | |
158 | -# 'recall:': recall, | |
159 | -# 'f1': } | |
160 | -# else: | |
161 | -# result = {} | |
162 | -# return result | |
163 | - | |
164 | -if __name__ == '__main__': | |
165 | - | |
166 | - if "clustering" in sys.argv or len(sys.argv)<3: | |
167 | - ClusteringSuite().start() | |
168 | - if "content" in sys.argv or len(sys.argv)<3: | |
169 | - ContentBasedSuite().start() | |
170 | - #if "collaborative" in sys.argv or len(sys.argv)<3: | |
171 | - #CollaborativeSuite().start() |