Commit 78b054a84b4e76c0df737985214929e245e2c1e2
1 parent
c673b9b2
Exists in
master
and in
1 other branch
Deleted old files.
Showing
5 changed files
with
0 additions
and
447 deletions
Show diff stats
src/experiments/experiments.cfg
@@ -1,27 +0,0 @@ | @@ -1,27 +0,0 @@ | ||
1 | -[DEFAULT] | ||
2 | -repetitions = 1 | ||
3 | -iterations = 10 | ||
4 | -path = 'results' | ||
5 | -experiment = 'grid' | ||
6 | -weight = ['bm25', 'trad'] | ||
7 | -;profile_size = range(10,100,10) | ||
8 | -;sample = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] | ||
9 | -sample = [0.6, 0.7, 0.8, 0.9] | ||
10 | - | ||
11 | -[content] | ||
12 | -strategy = ['cb','cbt','cbd'] | ||
13 | - | ||
14 | -[clustering] | ||
15 | -experiment = 'single' | ||
16 | -;iterations = 4 | ||
17 | -;medoids = range(2,6) | ||
18 | -iterations = 6 | ||
19 | -medoids = [100,500,1000,5000,10000,50000] | ||
20 | -;disabled for this experiment | ||
21 | -weight = 0 | ||
22 | -profile_size = 0 | ||
23 | -sample = 0 | ||
24 | - | ||
25 | -[colaborative] | ||
26 | -users_repository=["data/popcon","data/popcon-100","data/popcon-500","data/popcon-1000","data/popcon-5000","data/popcon-10000","data/popcon-50000"] | ||
27 | -neighbors = range(10,1010,50) |
src/experiments/legacy/clustering-suite.py
@@ -1,51 +0,0 @@ | @@ -1,51 +0,0 @@ | ||
1 | -#!/usr/bin/env python | ||
2 | -""" | ||
3 | - recommender suite - recommender experiments suite | ||
4 | -""" | ||
5 | -__author__ = "Tassia Camoes Araujo <tassia@gmail.com>" | ||
6 | -__copyright__ = "Copyright (C) 2011 Tassia Camoes Araujo" | ||
7 | -__license__ = """ | ||
8 | - This program is free software: you can redistribute it and/or modify | ||
9 | - it under the terms of the GNU General Public License as published by | ||
10 | - the Free Software Foundation, either version 3 of the License, or | ||
11 | - (at your option) any later version. | ||
12 | - | ||
13 | - This program is distributed in the hope that it will be useful, | ||
14 | - but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
15 | - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
16 | - GNU General Public License for more details. | ||
17 | - | ||
18 | - You should have received a copy of the GNU General Public License | ||
19 | - along with this program. If not, see <http://www.gnu.org/licenses/>. | ||
20 | -""" | ||
21 | - | ||
22 | -import sys | ||
23 | -import os | ||
24 | -sys.path.insert(0,'../') | ||
25 | -from config import Config | ||
26 | -from data import PopconXapianIndex, PopconSubmission | ||
27 | -from recommender import Recommender | ||
28 | -from user import LocalSystem, User | ||
29 | -from evaluation import * | ||
30 | -import logging | ||
31 | -import random | ||
32 | -import Gnuplot | ||
33 | - | ||
34 | -if __name__ == '__main__': | ||
35 | - | ||
36 | - cfg = Config() | ||
37 | - cfg.index_mode = "recluster" | ||
38 | - logging.info("Starting clustering experiments") | ||
39 | - logging.info("Medoids: %d\t Max popcon:%d" % (cfg.k_medoids,cfg.max_popcon)) | ||
40 | - cfg.popcon_dir = os.path.expanduser("~/org/popcon.debian.org/popcon-mail/popcon-entries/") | ||
41 | - cfg.popcon_index = cfg.popcon_index+("_%dmedoids%dmax" % | ||
42 | - (cfg.k_medoids,cfg.max_popcon)) | ||
43 | - cfg.clusters_dir = cfg.clusters_dir+("_%dmedoids%dmax" % | ||
44 | - (cfg.k_medoids,cfg.max_popcon)) | ||
45 | - pxi = PopconXapianIndex(cfg) | ||
46 | - logging.info("Overall dispersion: %f\n" % pxi.cluster_dispersion) | ||
47 | - # Write clustering log | ||
48 | - output = open(("results/clustering/%dmedoids%dmax" % (cfg.k_medoids,cfg.max_popcon)),'w') | ||
49 | - output.write("# k_medoids\tmax_popcon\tdispersion\n") | ||
50 | - output.write("%d %f\n" % (cfg.k_medoids,cfg.max_popcon,pxi.cluster_dispersion)) | ||
51 | - output.close() |
src/experiments/legacy/experiments.cfg
@@ -1,27 +0,0 @@ | @@ -1,27 +0,0 @@ | ||
1 | -[DEFAULT] | ||
2 | -repetitions = 1 | ||
3 | -iterations = 10 | ||
4 | -path = 'results' | ||
5 | -experiment = 'grid' | ||
6 | -weight = ['bm25', 'trad'] | ||
7 | -;profile_size = range(10,100,10) | ||
8 | -;sample = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] | ||
9 | -sample = [0.6, 0.7, 0.8, 0.9] | ||
10 | - | ||
11 | -[content] | ||
12 | -strategy = ['cb','cbt','cbd'] | ||
13 | - | ||
14 | -[clustering] | ||
15 | -experiment = 'single' | ||
16 | -;iterations = 4 | ||
17 | -;medoids = range(2,6) | ||
18 | -iterations = 6 | ||
19 | -medoids = [100,500,1000,5000,10000,50000] | ||
20 | -;disabled for this experiment | ||
21 | -weight = 0 | ||
22 | -profile_size = 0 | ||
23 | -sample = 0 | ||
24 | - | ||
25 | -[colaborative] | ||
26 | -users_repository=["data/popcon","data/popcon-100","data/popcon-500","data/popcon-1000","data/popcon-5000","data/popcon-10000","data/popcon-50000"] | ||
27 | -neighbors = range(10,1010,50) |
src/experiments/legacy/runner.py
@@ -1,171 +0,0 @@ | @@ -1,171 +0,0 @@ | ||
1 | -#!/usr/bin/env python | ||
2 | -""" | ||
3 | - recommender suite - recommender experiments suite | ||
4 | -""" | ||
5 | -__author__ = "Tassia Camoes Araujo <tassia@gmail.com>" | ||
6 | -__copyright__ = "Copyright (C) 2011 Tassia Camoes Araujo" | ||
7 | -__license__ = """ | ||
8 | - This program is free software: you can redistribute it and/or modify | ||
9 | - it under the terms of the GNU General Public License as published by | ||
10 | - the Free Software Foundation, either version 3 of the License, or | ||
11 | - (at your option) any later version. | ||
12 | - | ||
13 | - This program is distributed in the hope that it will be useful, | ||
14 | - but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
15 | - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
16 | - GNU General Public License for more details. | ||
17 | - | ||
18 | - You should have received a copy of the GNU General Public License | ||
19 | - along with this program. If not, see <http://www.gnu.org/licenses/>. | ||
20 | -""" | ||
21 | - | ||
22 | -import expsuite | ||
23 | -import sys | ||
24 | -sys.path.insert(0,'../') | ||
25 | -from config import Config | ||
26 | -from data import PopconXapianIndex, PopconSubmission | ||
27 | -from recommender import Recommender | ||
28 | -from user import LocalSystem, User | ||
29 | -from evaluation import * | ||
30 | -import logging | ||
31 | -import random | ||
32 | -import Gnuplot | ||
33 | - | ||
34 | -class ClusteringSuite(expsuite.PyExperimentSuite): | ||
35 | - def reset(self, params, rep): | ||
36 | - self.cfg = Config() | ||
37 | - self.cfg.popcon_index = "../tests/test_data/.sample_pxi" | ||
38 | - self.cfg.popcon_dir = "../tests/test_data/popcon_dir" | ||
39 | - self.cfg.clusters_dir = "../tests/test_data/clusters_dir" | ||
40 | - | ||
41 | - if params['name'] == "clustering": | ||
42 | - logging.info("Starting 'clustering' experiments suite...") | ||
43 | - self.cfg.index_mode = "recluster" | ||
44 | - | ||
45 | - def iterate(self, params, rep, n): | ||
46 | - if params['name'] == "clustering": | ||
47 | - logging.info("Running iteration %d" % params['medoids'][n]) | ||
48 | - self.cfg.k_medoids = params['medoids'][n] | ||
49 | - pxi = PopconXapianIndex(self.cfg) | ||
50 | - result = {'k_medoids': params['medoids'][n], | ||
51 | - 'dispersion': pxi.cluster_dispersion} | ||
52 | - else: | ||
53 | - result = {} | ||
54 | - return result | ||
55 | - | ||
56 | -class ContentBasedSuite(expsuite.PyExperimentSuite): | ||
57 | - def reset(self, params, rep): | ||
58 | - if params['name'].startswith("content"): | ||
59 | - cfg = Config() | ||
60 | - #if the index was not built yet | ||
61 | - #app_axi = AppAptXapianIndex(cfg.axi,"results/arnaldo/AppAxi") | ||
62 | - cfg.axi = "data/AppAxi" | ||
63 | - cfg.index_mode = "old" | ||
64 | - cfg.weight = params['weight'] | ||
65 | - self.rec = Recommender(cfg) | ||
66 | - self.rec.set_strategy(params['strategy']) | ||
67 | - self.repo_size = self.rec.items_repository.get_doccount() | ||
68 | - self.user = LocalSystem() | ||
69 | - self.user.app_pkg_profile(self.rec.items_repository) | ||
70 | - self.user.no_auto_pkg_profile() | ||
71 | - self.sample_size = int(len(self.user.pkg_profile)*params['sample']) | ||
72 | - # iteration should be set to 10 in config file | ||
73 | - #self.profile_size = range(10,101,10) | ||
74 | - | ||
75 | - def iterate(self, params, rep, n): | ||
76 | - if params['name'].startswith("content"): | ||
77 | - item_score = dict.fromkeys(self.user.pkg_profile,1) | ||
78 | - # Prepare partition | ||
79 | - sample = {} | ||
80 | - for i in range(self.sample_size): | ||
81 | - key = random.choice(item_score.keys()) | ||
82 | - sample[key] = item_score.pop(key) | ||
83 | - # Get full recommendation | ||
84 | - user = User(item_score) | ||
85 | - recommendation = self.rec.get_recommendation(user,self.repo_size) | ||
86 | - # Write recall log | ||
87 | - recall_file = "results/content/recall/%s-%s-%.2f-%d" % \ | ||
88 | - (params['strategy'],params['weight'],params['sample'],n) | ||
89 | - output = open(recall_file,'w') | ||
90 | - output.write("# weight=%s\n" % params['weight']) | ||
91 | - output.write("# strategy=%s\n" % params['strategy']) | ||
92 | - output.write("# sample=%f\n" % params['sample']) | ||
93 | - output.write("\n%d %d %d\n" % \ | ||
94 | - (self.repo_size,len(item_score),self.sample_size)) | ||
95 | - notfound = [] | ||
96 | - ranks = [] | ||
97 | - for pkg in sample.keys(): | ||
98 | - if pkg in recommendation.ranking: | ||
99 | - ranks.append(recommendation.ranking.index(pkg)) | ||
100 | - else: | ||
101 | - notfound.append(pkg) | ||
102 | - for r in sorted(ranks): | ||
103 | - output.write(str(r)+"\n") | ||
104 | - if notfound: | ||
105 | - output.write("Out of recommendation:\n") | ||
106 | - for pkg in notfound: | ||
107 | - output.write(pkg+"\n") | ||
108 | - output.close() | ||
109 | - # Plot metrics summary | ||
110 | - accuracy = [] | ||
111 | - precision = [] | ||
112 | - recall = [] | ||
113 | - f1 = [] | ||
114 | - g = Gnuplot.Gnuplot() | ||
115 | - g('set style data lines') | ||
116 | - g.xlabel('Recommendation size') | ||
117 | - for size in range(1,len(recommendation.ranking)+1,100): | ||
118 | - predicted = RecommendationResult(dict.fromkeys(recommendation.ranking[:size],1)) | ||
119 | - real = RecommendationResult(sample) | ||
120 | - evaluation = Evaluation(predicted,real,self.repo_size) | ||
121 | - accuracy.append([size,evaluation.run(Accuracy())]) | ||
122 | - precision.append([size,evaluation.run(Precision())]) | ||
123 | - recall.append([size,evaluation.run(Recall())]) | ||
124 | - f1.append([size,evaluation.run(F1())]) | ||
125 | - g.plot(Gnuplot.Data(accuracy,title="Accuracy"), | ||
126 | - Gnuplot.Data(precision,title="Precision"), | ||
127 | - Gnuplot.Data(recall,title="Recall"), | ||
128 | - Gnuplot.Data(f1,title="F1")) | ||
129 | - g.hardcopy(recall_file+"-plot.ps", enhanced=1, color=1) | ||
130 | - # Iteration log | ||
131 | - result = {'iteration': n, | ||
132 | - 'weight': params['weight'], | ||
133 | - 'strategy': params['strategy'], | ||
134 | - 'accuracy': accuracy[20], | ||
135 | - 'precision': precision[20], | ||
136 | - 'recall:': recall[20], | ||
137 | - 'f1': f1[20]} | ||
138 | - return result | ||
139 | - | ||
140 | -#class CollaborativeSuite(expsuite.PyExperimentSuite): | ||
141 | -# def reset(self, params, rep): | ||
142 | -# if params['name'].startswith("collaborative"): | ||
143 | -# | ||
144 | -# def iterate(self, params, rep, n): | ||
145 | -# if params['name'].startswith("collaborative"): | ||
146 | -# for root, dirs, files in os.walk(self.source_dir): | ||
147 | -# for popcon_file in files: | ||
148 | -# submission = PopconSubmission(os.path.join(root,popcon_file)) | ||
149 | -# user = User(submission.packages) | ||
150 | -# user.maximal_pkg_profile() | ||
151 | -# rec.get_recommendation(user) | ||
152 | -# precision = 0 | ||
153 | -# result = {'weight': params['weight'], | ||
154 | -# 'strategy': params['strategy'], | ||
155 | -# 'profile_size': self.profile_size[n], | ||
156 | -# 'accuracy': accuracy, | ||
157 | -# 'precision': precision, | ||
158 | -# 'recall:': recall, | ||
159 | -# 'f1': } | ||
160 | -# else: | ||
161 | -# result = {} | ||
162 | -# return result | ||
163 | - | ||
164 | -if __name__ == '__main__': | ||
165 | - | ||
166 | - if "clustering" in sys.argv or len(sys.argv)<3: | ||
167 | - ClusteringSuite().start() | ||
168 | - if "content" in sys.argv or len(sys.argv)<3: | ||
169 | - ContentBasedSuite().start() | ||
170 | - #if "collaborative" in sys.argv or len(sys.argv)<3: | ||
171 | - #CollaborativeSuite().start() |
src/experiments/runner.py
@@ -1,171 +0,0 @@ | @@ -1,171 +0,0 @@ | ||
1 | -#!/usr/bin/env python | ||
2 | -""" | ||
3 | - recommender suite - recommender experiments suite | ||
4 | -""" | ||
5 | -__author__ = "Tassia Camoes Araujo <tassia@gmail.com>" | ||
6 | -__copyright__ = "Copyright (C) 2011 Tassia Camoes Araujo" | ||
7 | -__license__ = """ | ||
8 | - This program is free software: you can redistribute it and/or modify | ||
9 | - it under the terms of the GNU General Public License as published by | ||
10 | - the Free Software Foundation, either version 3 of the License, or | ||
11 | - (at your option) any later version. | ||
12 | - | ||
13 | - This program is distributed in the hope that it will be useful, | ||
14 | - but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
15 | - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
16 | - GNU General Public License for more details. | ||
17 | - | ||
18 | - You should have received a copy of the GNU General Public License | ||
19 | - along with this program. If not, see <http://www.gnu.org/licenses/>. | ||
20 | -""" | ||
21 | - | ||
22 | -import expsuite | ||
23 | -import sys | ||
24 | -sys.path.insert(0,'../') | ||
25 | -from config import Config | ||
26 | -from data import PopconXapianIndex, PopconSubmission | ||
27 | -from recommender import Recommender | ||
28 | -from user import LocalSystem, User | ||
29 | -from evaluation import * | ||
30 | -import logging | ||
31 | -import random | ||
32 | -import Gnuplot | ||
33 | - | ||
34 | -class ClusteringSuite(expsuite.PyExperimentSuite): | ||
35 | - def reset(self, params, rep): | ||
36 | - self.cfg = Config() | ||
37 | - self.cfg.popcon_index = "../tests/test_data/.sample_pxi" | ||
38 | - self.cfg.popcon_dir = "../tests/test_data/popcon_dir" | ||
39 | - self.cfg.clusters_dir = "../tests/test_data/clusters_dir" | ||
40 | - | ||
41 | - if params['name'] == "clustering": | ||
42 | - logging.info("Starting 'clustering' experiments suite...") | ||
43 | - self.cfg.index_mode = "recluster" | ||
44 | - | ||
45 | - def iterate(self, params, rep, n): | ||
46 | - if params['name'] == "clustering": | ||
47 | - logging.info("Running iteration %d" % params['medoids'][n]) | ||
48 | - self.cfg.k_medoids = params['medoids'][n] | ||
49 | - pxi = PopconXapianIndex(self.cfg) | ||
50 | - result = {'k_medoids': params['medoids'][n], | ||
51 | - 'dispersion': pxi.cluster_dispersion} | ||
52 | - else: | ||
53 | - result = {} | ||
54 | - return result | ||
55 | - | ||
56 | -class ContentBasedSuite(expsuite.PyExperimentSuite): | ||
57 | - def reset(self, params, rep): | ||
58 | - if params['name'].startswith("content"): | ||
59 | - cfg = Config() | ||
60 | - #if the index was not built yet | ||
61 | - #app_axi = AppAptXapianIndex(cfg.axi,"results/arnaldo/AppAxi") | ||
62 | - cfg.axi = "data/AppAxi" | ||
63 | - cfg.index_mode = "old" | ||
64 | - cfg.weight = params['weight'] | ||
65 | - self.rec = Recommender(cfg) | ||
66 | - self.rec.set_strategy(params['strategy']) | ||
67 | - self.repo_size = self.rec.items_repository.get_doccount() | ||
68 | - self.user = LocalSystem() | ||
69 | - self.user.app_pkg_profile(self.rec.items_repository) | ||
70 | - self.user.no_auto_pkg_profile() | ||
71 | - self.sample_size = int(len(self.user.pkg_profile)*params['sample']) | ||
72 | - # iteration should be set to 10 in config file | ||
73 | - #self.profile_size = range(10,101,10) | ||
74 | - | ||
75 | - def iterate(self, params, rep, n): | ||
76 | - if params['name'].startswith("content"): | ||
77 | - item_score = dict.fromkeys(self.user.pkg_profile,1) | ||
78 | - # Prepare partition | ||
79 | - sample = {} | ||
80 | - for i in range(self.sample_size): | ||
81 | - key = random.choice(item_score.keys()) | ||
82 | - sample[key] = item_score.pop(key) | ||
83 | - # Get full recommendation | ||
84 | - user = User(item_score) | ||
85 | - recommendation = self.rec.get_recommendation(user,self.repo_size) | ||
86 | - # Write recall log | ||
87 | - recall_file = "results/content/recall/%s-%s-%.2f-%d" % \ | ||
88 | - (params['strategy'],params['weight'],params['sample'],n) | ||
89 | - output = open(recall_file,'w') | ||
90 | - output.write("# weight=%s\n" % params['weight']) | ||
91 | - output.write("# strategy=%s\n" % params['strategy']) | ||
92 | - output.write("# sample=%f\n" % params['sample']) | ||
93 | - output.write("\n%d %d %d\n" % \ | ||
94 | - (self.repo_size,len(item_score),self.sample_size)) | ||
95 | - notfound = [] | ||
96 | - ranks = [] | ||
97 | - for pkg in sample.keys(): | ||
98 | - if pkg in recommendation.ranking: | ||
99 | - ranks.append(recommendation.ranking.index(pkg)) | ||
100 | - else: | ||
101 | - notfound.append(pkg) | ||
102 | - for r in sorted(ranks): | ||
103 | - output.write(str(r)+"\n") | ||
104 | - if notfound: | ||
105 | - output.write("Out of recommendation:\n") | ||
106 | - for pkg in notfound: | ||
107 | - output.write(pkg+"\n") | ||
108 | - output.close() | ||
109 | - # Plot metrics summary | ||
110 | - accuracy = [] | ||
111 | - precision = [] | ||
112 | - recall = [] | ||
113 | - f1 = [] | ||
114 | - g = Gnuplot.Gnuplot() | ||
115 | - g('set style data lines') | ||
116 | - g.xlabel('Recommendation size') | ||
117 | - for size in range(1,len(recommendation.ranking)+1,100): | ||
118 | - predicted = RecommendationResult(dict.fromkeys(recommendation.ranking[:size],1)) | ||
119 | - real = RecommendationResult(sample) | ||
120 | - evaluation = Evaluation(predicted,real,self.repo_size) | ||
121 | - accuracy.append([size,evaluation.run(Accuracy())]) | ||
122 | - precision.append([size,evaluation.run(Precision())]) | ||
123 | - recall.append([size,evaluation.run(Recall())]) | ||
124 | - f1.append([size,evaluation.run(F1())]) | ||
125 | - g.plot(Gnuplot.Data(accuracy,title="Accuracy"), | ||
126 | - Gnuplot.Data(precision,title="Precision"), | ||
127 | - Gnuplot.Data(recall,title="Recall"), | ||
128 | - Gnuplot.Data(f1,title="F1")) | ||
129 | - g.hardcopy(recall_file+"-plot.ps", enhanced=1, color=1) | ||
130 | - # Iteration log | ||
131 | - result = {'iteration': n, | ||
132 | - 'weight': params['weight'], | ||
133 | - 'strategy': params['strategy'], | ||
134 | - 'accuracy': accuracy[20], | ||
135 | - 'precision': precision[20], | ||
136 | - 'recall:': recall[20], | ||
137 | - 'f1': f1[20]} | ||
138 | - return result | ||
139 | - | ||
140 | -#class CollaborativeSuite(expsuite.PyExperimentSuite): | ||
141 | -# def reset(self, params, rep): | ||
142 | -# if params['name'].startswith("collaborative"): | ||
143 | -# | ||
144 | -# def iterate(self, params, rep, n): | ||
145 | -# if params['name'].startswith("collaborative"): | ||
146 | -# for root, dirs, files in os.walk(self.source_dir): | ||
147 | -# for popcon_file in files: | ||
148 | -# submission = PopconSubmission(os.path.join(root,popcon_file)) | ||
149 | -# user = User(submission.packages) | ||
150 | -# user.maximal_pkg_profile() | ||
151 | -# rec.get_recommendation(user) | ||
152 | -# precision = 0 | ||
153 | -# result = {'weight': params['weight'], | ||
154 | -# 'strategy': params['strategy'], | ||
155 | -# 'profile_size': self.profile_size[n], | ||
156 | -# 'accuracy': accuracy, | ||
157 | -# 'precision': precision, | ||
158 | -# 'recall:': recall, | ||
159 | -# 'f1': } | ||
160 | -# else: | ||
161 | -# result = {} | ||
162 | -# return result | ||
163 | - | ||
164 | -if __name__ == '__main__': | ||
165 | - | ||
166 | - if "clustering" in sys.argv or len(sys.argv)<3: | ||
167 | - ClusteringSuite().start() | ||
168 | - if "content" in sys.argv or len(sys.argv)<3: | ||
169 | - ContentBasedSuite().start() | ||
170 | - #if "collaborative" in sys.argv or len(sys.argv)<3: | ||
171 | - #CollaborativeSuite().start() |